Airy and Related Functions - 10.2 Definitions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.2.E1 z 2 ⁒ d 2 w d z 2 + z ⁒ d w d z + ( z 2 - Ξ½ 2 ) ⁒ w = 0 superscript 𝑧 2 derivative 𝑀 𝑧 2 𝑧 derivative 𝑀 𝑧 superscript 𝑧 2 superscript 𝜈 2 𝑀 0 {\displaystyle{\displaystyle z^{2}\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+% z\frac{\mathrm{d}w}{\mathrm{d}z}+(z^{2}-\nu^{2})w=0}}
z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}+(z^{2}-\nu^{2})w = 0

(z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)+((z)^(2)- (nu)^(2))*w = 0
(z)^(2)* D[w, {z, 2}]+ z*D[w, z]+((z)^(2)- \[Nu]^(2))*w == 0
Failure Failure
Failed [217 / 300]
Result: -.8660254040e-9-2.000000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.8660254040e-9-2.000000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

... skip entries to safe data
Failed [240 / 300]
Result: Complex[1.1102230246251565*^-16, 2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.1102230246251565*^-16, 2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
10.2.E2 J Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ ⁒ βˆ‘ k = 0 ∞ ( - 1 ) k ⁒ ( 1 4 ⁒ z 2 ) k k ! ⁒ Ξ“ ⁑ ( Ξ½ + k + 1 ) Bessel-J 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript π‘˜ 0 superscript 1 π‘˜ superscript 1 4 superscript 𝑧 2 π‘˜ π‘˜ Euler-Gamma 𝜈 π‘˜ 1 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=(\tfrac{1}{2}z)^{\nu}\sum_{% k=0}^{\infty}(-1)^{k}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\Gamma\left(\nu+k+1% \right)}}}
\BesselJ{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, z) = ((1)/(2)*z)^(nu)* sum((- 1)^(k)*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity)
BesselJ[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[(- 1)^(k)*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 70]
10.2.E3 Y Ξ½ ⁑ ( z ) = J Ξ½ ⁑ ( z ) ⁒ cos ⁑ ( Ξ½ ⁒ Ο€ ) - J - Ξ½ ⁑ ( z ) sin ⁑ ( Ξ½ ⁒ Ο€ ) Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 𝑧 𝜈 πœ‹ Bessel-J 𝜈 𝑧 𝜈 πœ‹ {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{J_{\nu}\left(z\right)% \cos\left(\nu\pi\right)-J_{-\nu}\left(z\right)}{\sin\left(\nu\pi\right)}}}
\BesselY{\nu}@{z} = \frac{\BesselJ{\nu}@{z}\cos@{\nu\pi}-\BesselJ{-\nu}@{z}}{\sin@{\nu\pi}}
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = (BesselJ(nu, z)*cos(nu*Pi)- BesselJ(- nu, z))/(sin(nu*Pi))
BesselY[\[Nu], z] == Divide[BesselJ[\[Nu], z]*Cos[\[Nu]*Pi]- BesselJ[- \[Nu], z],Sin[\[Nu]*Pi]]
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, 2]}

... skip entries to safe data