Multidimensional Theta Functions - 21.7 Riemann Surfaces

From testwiki
Revision as of 17:37, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
21.7.E1 P ( λ , μ ) = 0 𝑃 𝜆 𝜇 0 {\displaystyle{\displaystyle P(\lambda,\mu)=0}}
P(\lambda,\mu) = 0

P(lambda , mu) = 0
P[\[Lambda], \[Mu]] == 0
Skipped - no semantic math Skipped - no semantic math - -
21.7.E11 μ 2 = Q ( λ ) superscript 𝜇 2 𝑄 𝜆 {\displaystyle{\displaystyle\mu^{2}=Q(\lambda)}}
\mu^{2} = Q(\lambda)

(mu)^(2) = Q(lambda)
\[Mu]^(2) == Q[\[Lambda]]
Skipped - no semantic math Skipped - no semantic math - -
21.7.E13 𝜼 ( T ) = 𝜼 ( T c ) 𝜼 𝑇 𝜼 superscript 𝑇 𝑐 {\displaystyle{\displaystyle\boldsymbol{{\eta}}(T)=\boldsymbol{{\eta}}(T^{c})}}
\boldsymbol{{\eta}}(T) = \boldsymbol{{\eta}}(T^{c})

eta(T) = eta((T)^(c))
\[Eta][T] == \[Eta][(T)^(c)]
Skipped - no semantic math Skipped - no semantic math - -