Mathieu Functions and Hill’s Equation - 28.28 Integrals, Integral Representations, and Integral Equations
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
28.28.E1 | w = \cosh@@{z}\cos@@{t}\cos@@{\alpha}+\sinh@@{z}\sin@@{t}\sin@@{\alpha} |
|
w = cosh(z)*cos(t)*cos(alpha)+ sinh(z)*sin(t)*sin(alpha)
|
w == Cosh[z]*Cos[t]*Cos[\[Alpha]]+ Sinh[z]*Sin[t]*Sin[\[Alpha]]
|
Failure | Failure | Failed [299 / 300] Result: 1.714222282+1.165028049*I
Test Values: {alpha = 3/2, t = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: .5264627339+1.356668447*I
Test Values: {alpha = 3/2, t = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [298 / 300]
Result: Complex[1.7142222818783819, 1.165028048919159]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}
Result: Complex[1.2004296775262544, 0.7916410797173274]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}
... skip entries to safe data |
28.28.E10 | 0 < \phase@{h(\cosh@@{z}+ 1)} |
|
0 < argument(h*(cosh(z)+ 1))
|
0 < Arg[h*(Cosh[z]+ 1)]
|
Failure | Failure | Failed [35 / 70] Result: 0. < -.8396703302
Test Values: {h = 1/2-1/2*I*3^(1/2), z = 1/2*3^(1/2)+1/2*I}
Result: 0. < -1.272675688
Test Values: {h = 1/2-1/2*I*3^(1/2), z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [35 / 70]
Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
28.28.E10 | 0 < \phase@{h(\cosh@@{z}- 1)} |
|
0 < argument(h*(cosh(z)- 1))
|
0 < Arg[h*(Cosh[z]- 1)]
|
Failure | Failure | Failed [35 / 70] Result: 0. < -1.643566335
Test Values: {h = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Result: 0. < -1.643566335
Test Values: {h = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [35 / 70]
Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
28.28.E10 | \phase@{h(\cosh@@{z}+ 1)} < \pi |
|
argument(h*(cosh(z)+ 1)) < Pi
|
Arg[h*(Cosh[z]+ 1)] < Pi
|
Failure | Failure | Failed [9 / 70] Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 3/2}
Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 1/2}
... skip entries to safe data |
Failed [9 / 70]
Result: False
Test Values: {Rule[h, -1.5], Rule[z, 1.5]}
Result: False
Test Values: {Rule[h, -1.5], Rule[z, 0.5]}
... skip entries to safe data |
28.28.E10 | \phase@{h(\cosh@@{z}- 1)} < \pi |
|
argument(h*(cosh(z)- 1)) < Pi
|
Arg[h*(Cosh[z]- 1)] < Pi
|
Failure | Failure | Failed [9 / 70] Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 3/2}
Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 1/2}
... skip entries to safe data |
Failed [9 / 70]
Result: False
Test Values: {Rule[h, -1.5], Rule[z, 1.5]}
Result: False
Test Values: {Rule[h, -1.5], Rule[z, 0.5]}
... skip entries to safe data |
28.28#Ex4 | R(z,t) = \left(\tfrac{1}{2}(\cosh@{2z}+\cos@{2t})\right)^{\ifrac{1}{2}} |
|
R(z , t) = ((1)/(2)*(cosh(2*z)+ cos(2*t)))^((1)/(2))
|
R[z , t] == (Divide[1,2]*(Cosh[2*z]+ Cos[2*t]))^(Divide[1,2])
|
Failure | Failure | Failed [300 / 300] Result: (.8660254040+.5000000000*I)*(.8660254040+.5000000000*I, -1.500000000)-.8604472605-.6693200135*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, t = -3/2, z = 1/2*3^(1/2)+1/2*I}
Result: (.8660254040+.5000000000*I)*(-.5000000000+.8660254040*I, -1.500000000)-.3385916178+.8564557052*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, t = -3/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Error |
28.28#Ex5 | R(z,0) = \cosh@@{z} |
|
R(z , 0) = cosh(z)
|
R[z , 0] == Cosh[z]
|
Failure | Failure | Failed [70 / 70] Result: (.8660254040+.5000000000*I)*(.8660254040+.5000000000*I, 0.)-1.227765517-.4690753764*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: (.8660254040+.5000000000*I)*(-.5000000000+.8660254040*I, 0.)-.7305430189+.3969495503*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Error |
28.28#Ex6 | e^{2\iunit\phi} = \dfrac{\cosh@{z+\iunit t}}{\cosh@{z-\iunit t}} |
|
exp(2*I*phi) = (cosh(z + I*t))/(cosh(z - I*t))
|
Exp[2*I*\[Phi]] == Divide[Cosh[z + I*t],Cosh[z - I*t]]
|
Failure | Failure | Failed [300 / 300] Result: .9781641542+.5339822543*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, t = -3/2, z = 1/2*3^(1/2)+1/2*I}
Result: 1.021212458+.2569827752*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, t = -3/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.978164154574313, 0.5339822543847044]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.1328205399920523, 0.022001382090719362]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
28.28#Ex7 | \phi(z,0) = 0 |
|
phi(z , 0) = 0 |
\[Phi][z , 0] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
28.28.E28 | \alpha^{(1)}_{\nu,m} = \dfrac{1}{2\pi}\int_{0}^{2\pi}\sin@@{t}\Mathieume{\nu}@{t}{h^{2}}\Mathieume{-\nu-2m-1}@{t}{h^{2}}\diff{t} |
|
Error
|
(Subscript[\[Alpha], \[Nu], m])^(1) == Divide[1,2*Pi]*Integrate[Sin[t]*Sqrt[2]*MathieuC[\[Nu], (h)^(2), t]*Sqrt[2]*MathieuC[- \[Nu]- 2*m - 1, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Skipped - Because timed out |
28.28.E41 | \dfrac{\cosh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@@{t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{0}@{n}{m}{z} |
|
(cosh(z))/((Pi)^(2))*int((sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p + 1)* I*h*((1)/(2*Pi)*int(sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))
|
Divide[Cosh[z],(Pi)^(2)]*Integrate[Divide[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p + 1)* I*h*(Divide[1,2*Pi]*Integrate[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])
|
Missing Macro Error | Missing Macro Error | - | - |
28.28.E42 | \dfrac{\sinh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\cos@@{t}\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{1}@{n}{m}{z} |
|
(sinh(z))/((Pi)^(2))*int((cos(t)*subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p)* I*h*((1)/(2*Pi)*int(sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))
|
Divide[Sinh[z],(Pi)^(2)]*Integrate[Divide[Cos[t]*(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p)* I*h*(Divide[1,2*Pi]*Integrate[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])
|
Missing Macro Error | Missing Macro Error | - | - |
28.28.E44 | \dfrac{1}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@{2t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{0}@{n}{m}{z} |
|
(1)/((Pi)^(2))*int((sin(2*t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p)* I*((1)/(2*Pi)*int(subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))
|
Divide[1,(Pi)^(2)]*Integrate[Divide[Sin[2*t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p)* I*(Divide[1,2*Pi]*Integrate[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])
|
Missing Macro Error | Missing Macro Error | - | - |
28.28.E45 | \dfrac{\sinh@{2z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{1}@{n}{m}{z} |
|
(sinh(2*z))/((Pi)^(2))*int((subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p + 1)* I*((1)/(2*Pi)*int(subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))
|
Divide[Sinh[2*z],(Pi)^(2)]*Integrate[Divide[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p + 1)* I*(Divide[1,2*Pi]*Integrate[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])
|
Missing Macro Error | Missing Macro Error | - | - |