Functions of Number Theory - 27.7 Lambert Series as Generating Functions

From testwiki
Revision as of 12:06, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.7.E4 n = 1 ϕ ( n ) x n 1 - x n = x ( 1 - x ) 2 superscript subscript 𝑛 1 Euler-totient-phi 𝑛 superscript 𝑥 𝑛 1 superscript 𝑥 𝑛 𝑥 superscript 1 𝑥 2 {\displaystyle{\displaystyle\sum_{n=1}^{\infty}\phi\left(n\right)\frac{x^{n}}{% 1-x^{n}}=\frac{x}{(1-x)^{2}}}}
\sum_{n=1}^{\infty}\Eulertotientphi[]@{n}\frac{x^{n}}{1-x^{n}} = \frac{x}{(1-x)^{2}}
| x | < 1 𝑥 1 {\displaystyle{\displaystyle|x|<1}}
sum(phi(n)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = (x)/((1 - x)^(2))
Sum[EulerPhi[n]*Divide[(x)^(n),1 - (x)^(n)], {n, 1, Infinity}, GenerateConditions->None] == Divide[x,(1 - x)^(2)]
Failure Successful Successful [Tested: 1] Successful [Tested: 1]
27.7.E5 n = 1 n α x n 1 - x n = n = 1 σ α ( n ) x n superscript subscript 𝑛 1 superscript 𝑛 𝛼 superscript 𝑥 𝑛 1 superscript 𝑥 𝑛 superscript subscript 𝑛 1 divisor-sigma 𝛼 𝑛 superscript 𝑥 𝑛 {\displaystyle{\displaystyle\sum_{n=1}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}}% =\sum_{n=1}^{\infty}\sigma_{\alpha}\left(n\right)x^{n}}}
\sum_{n=1}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}} = \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}x^{n}
| x | < 1 𝑥 1 {\displaystyle{\displaystyle|x|<1}}
sum((n)^(alpha)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = sum(add(divisors(alpha))*(x)^(n), n = 1..infinity)
Error
Failure Missing Macro Error
Failed [3 / 3]
Result: 2.671514971
Test Values: {alpha = 3/2, x = 1/2}

Result: 1.507450946
Test Values: {alpha = 1/2, x = 1/2}

... skip entries to safe data
-