Functions of Number Theory - 27.7 Lambert Series as Generating Functions
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
27.7.E4 | \sum_{n=1}^{\infty}\Eulertotientphi[]@{n}\frac{x^{n}}{1-x^{n}} = \frac{x}{(1-x)^{2}} |
sum(phi(n)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = (x)/((1 - x)^(2))
|
Sum[EulerPhi[n]*Divide[(x)^(n),1 - (x)^(n)], {n, 1, Infinity}, GenerateConditions->None] == Divide[x,(1 - x)^(2)]
|
Failure | Successful | Successful [Tested: 1] | Successful [Tested: 1] | |
27.7.E5 | \sum_{n=1}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}} = \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}x^{n} |
sum((n)^(alpha)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = sum(add(divisors(alpha))*(x)^(n), n = 1..infinity)
|
Error
|
Failure | Missing Macro Error | Failed [3 / 3] Result: 2.671514971
Test Values: {alpha = 3/2, x = 1/2}
Result: 1.507450946
Test Values: {alpha = 1/2, x = 1/2}
... skip entries to safe data |
- |