Bessel Functions - 10.68 Modulus and Phase Functions

From testwiki
Revision as of 11:28, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.68#Ex5 M ν ( x ) = ( ber ν 2 x + bei ν 2 x ) 1 / 2 modulus-Bessel-M 𝜈 𝑥 superscript Kelvin-ber 𝜈 2 𝑥 Kelvin-bei 𝜈 2 𝑥 1 2 {\displaystyle{\displaystyle M_{\nu}\left(x\right)=({\operatorname{ber}_{\nu}^% {2}}x+{\operatorname{bei}_{\nu}^{2}}x)^{\ifrac{1}{2}}}}
\HankelmodM{\nu}@{x} = (\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x})^{\ifrac{1}{2}}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
Error
Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2] == ((KelvinBer[\[Nu], x])^(2)+ (KelvinBei[\[Nu], x])^(2))^(Divide[1,2])
Missing Macro Error Successful - Successful [Tested: 30]
10.68#Ex6 N ν ( x ) = ( ker ν 2 x + kei ν 2 x ) 1 / 2 modulus-Bessel-N 𝜈 𝑥 superscript Kelvin-ker 𝜈 2 𝑥 Kelvin-kei 𝜈 2 𝑥 1 2 {\displaystyle{\displaystyle N_{\nu}\left(x\right)=({\operatorname{ker}_{\nu}^% {2}}x+{\operatorname{kei}_{\nu}^{2}}x)^{\ifrac{1}{2}}}}
\HankelmodderivN{\nu}@{x} = (\Kelvinker{\nu}^{2}@@{x}+\Kelvinkei{\nu}^{2}@@{x})^{\ifrac{1}{2}}

Error
Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2] == ((KelvinKer[\[Nu], x])^(2)+ (KelvinKei[\[Nu], x])^(2))^(Divide[1,2])
Missing Macro Error Successful - Successful [Tested: 30]
10.68#Ex9 M - n ( x ) = M n ( x ) modulus-Bessel-M 𝑛 𝑥 modulus-Bessel-M 𝑛 𝑥 {\displaystyle{\displaystyle M_{-n}\left(x\right)=M_{n}\left(x\right)}}
\HankelmodM{-n}@{x} = \HankelmodM{n}@{x}

Error
Sqrt[KelvinBer[- n, x]^2 + KelvinBei[- n, x]^2] == Sqrt[KelvinBer[n, x]^2 + KelvinBei[n, x]^2]
Missing Macro Error Failure - Successful [Tested: 9]
10.68#Ex17 N - ν ( x ) = N ν ( x ) modulus-Bessel-N 𝜈 𝑥 modulus-Bessel-N 𝜈 𝑥 {\displaystyle{\displaystyle N_{-\nu}\left(x\right)=N_{\nu}\left(x\right)}}
\HankelmodderivN{-\nu}@{x} = \HankelmodderivN{\nu}@{x}

Error
Sqrt[KelvinKer[- \[Nu], x]^2 + KelvinKei[- \[Nu], x]^2] == Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2]
Missing Macro Error Failure - Successful [Tested: 30]