Results of Bessel Functions II
This is the second half of the chapter Bessel Functions. It shows the sections 10.33 to 10.73. For sections 10.2 to 10.32 go to Bessel Functions I.
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
10.34.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}} | BesselI(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselI(nu, z) |
BesselI[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselI[\[Nu], z] |
Failure | Failure | Failed [132 / 210] 132/210]: [[-2.206479866-1.131319388*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} .5147384726+.2724622562e-1*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} |
Failed [120 / 210]
{Complex[-2.206479866313521, -1.1313193889480602] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.5147384728800724, 0.02724622519878004] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\modBesselK{\nu}@{z}-\pi i\sin@{m\nu\pi}\csc@{\nu\pi}\modBesselI{\nu}@{z}} | BesselK(nu, z*exp(m*Pi*I)) = exp(- m*nu*Pi*I)*BesselK(nu, z)- Pi*I*sin(m*nu*Pi)*csc(nu*Pi)*BesselI(nu, z) |
BesselK[\[Nu], z*Exp[m*Pi*I]] == Exp[- m*\[Nu]*Pi*I]*BesselK[\[Nu], z]- Pi*I*Sin[m*\[Nu]*Pi]*Csc[\[Nu]*Pi]*BesselI[\[Nu], z] |
Failure | Failure | Failed [170 / 210] 170/210]: [[2.965939338+3.157233720*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} -10.37113928-12.75980866*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} |
Failed [162 / 210]
{Complex[2.965939340334436, 3.157233721966529] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-10.371139260352992, -12.75980869099896] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(+ e^{m\nu\pi i}\modBesselK{\nu}@{ze^{+\pi i}}- e^{(m- 1)\nu\pi i}\modBesselK{\nu}@{z}\right)} | BesselI(nu, z*exp(m*Pi*I)) = (I/ Pi)*(+ exp(m*nu*Pi*I)*BesselK(nu, z*exp(+ Pi*I))- exp((m - 1)* nu*Pi*I)*BesselK(nu, z)) |
BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/ Pi)*(+ Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Exp[(m - 1)* \[Nu]*Pi*I]*BesselK[\[Nu], z]) |
Failure | Failure | Failed [152 / 210] 152/210]: [[-2.316975457-.8668337446*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} .5132395470-.3232131754e-1*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} |
Failed [140 / 210]
{Complex[-2.3169754573845194, -0.8668337451474188] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.5132395471581521, -0.03232131806579792] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(- e^{m\nu\pi i}\modBesselK{\nu}@{ze^{-\pi i}}+ e^{(m+ 1)\nu\pi i}\modBesselK{\nu}@{z}\right)} | BesselI(nu, z*exp(m*Pi*I)) = (I/ Pi)*(- exp(m*nu*Pi*I)*BesselK(nu, z*exp(- Pi*I))+ exp((m + 1)* nu*Pi*I)*BesselK(nu, z)) |
BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/ Pi)*(- Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Exp[(m + 1)* \[Nu]*Pi*I]*BesselK[\[Nu], z]) |
Failure | Failure | Failed [190 / 210] 190/210]: [[-2.206479866-1.131319388*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} .5147384726+.2724622561e-1*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} |
Failed [190 / 210]
{Complex[-2.206479866313521, -1.1313193889480602] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.5147384728800724, 0.027246225198780036] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(+\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{+\pi i}}-\sin@{(m- 1)\nu\pi}\modBesselK{\nu}@{z}\right)} | BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(+ sin(m*nu*Pi)*BesselK(nu, z*exp(+ Pi*I))- sin((m - 1)* nu*Pi)*BesselK(nu, z)) |
BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(+ Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Sin[(m - 1)* \[Nu]*Pi]*BesselK[\[Nu], z]) |
Failure | Failure | Failed [158 / 210] 158/210]: [[-2.723238516+7.278993081*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} 29.12762958-25.06220737*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 3} |
Failed [154 / 210]
{Complex[-2.7232385256388585, 7.278993075467058] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[29.127629620508102, -25.062207299552764] <- {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(-\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{-\pi i}}+\sin@{(m+ 1)\nu\pi}\modBesselK{\nu}@{z}\right)} | BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(- sin(m*nu*Pi)*BesselK(nu, z*exp(- Pi*I))+ sin((m + 1)* nu*Pi)*BesselK(nu, z)) |
BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(- Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Sin[(m + 1)* \[Nu]*Pi]*BesselK[\[Nu], z]) |
Failure | Failure | Failed [170 / 210] 170/210]: [[2.965939338+3.157233717*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} -10.37113929-12.75980866*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} |
Failed [182 / 210]
{Complex[2.9659393403344363, 3.1572337219665294] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-10.371139260352981, -12.759808690998973] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{ze^{m\pi i}} = (-1)^{mn}\modBesselK{n}@{z}+(-1)^{n(m-1)-1}m\pi i\modBesselI{n}@{z}} | BesselK(n, z*exp(m*Pi*I)) = (- 1)^(m*n)* BesselK(n, z)+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI(n, z) |
BesselK[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)* BesselK[n, z]+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI[n, z] |
Failure | Failure | Failed [57 / 63] 57/63]: [[-1.971501919+2.706233555*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1} -.7368261646+.3579119854*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2} |
Failed [48 / 63]
{Complex[-1.9715019183470535, 2.7062335550125516] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.736826162742255, 0.3579119863626685] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{ze^{m\pi i}} = +(-1)^{n(m-1)}m\modBesselK{n}@{ze^{+\pi i}}-(-1)^{nm}(m- 1)\modBesselK{n}@{z}} | BesselK(n, z*exp(m*Pi*I)) = +(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(+ Pi*I))-(- 1)^(n*m)*(m - 1)* BesselK(n, z) |
BesselK[n, z*Exp[m*Pi*I]] == +(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[+ Pi*I]]-(- 1)^(n*m)*(m - 1)* BesselK[n, z] |
Failure | Failure | Failed [51 / 63] 51/63]: [[-1.971501920+2.706233556*I <- {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 1} .7368261602-.357911988*I <- {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 2} |
Failed [42 / 63]
{Complex[-1.9715019183470535, 2.7062335550125516] <- {Rule[m, 2], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.736826162742255, -0.3579119863626685] <- {Rule[m, 2], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{ze^{m\pi i}} = -(-1)^{n(m-1)}m\modBesselK{n}@{ze^{-\pi i}}+(-1)^{nm}(m+ 1)\modBesselK{n}@{z}} | BesselK(n, z*exp(m*Pi*I)) = -(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(- Pi*I))+(- 1)^(n*m)*(m + 1)* BesselK(n, z) |
BesselK[n, z*Exp[m*Pi*I]] == -(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[- Pi*I]]+(- 1)^(n*m)*(m + 1)* BesselK[n, z] |
Failure | Failure | Failed [54 / 63] 54/63]: [[-1.971501919+2.706233556*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1} -.7368261645+.357911985*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2} |
Failed [63 / 63]
{Complex[-1.9715019183470535, 2.7062335550125516] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.736826162742255, 0.3579119863626685] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.34#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{\conj{z}} = \conj{\modBesselI{\nu}@{z}}} | BesselI(nu, conjugate(z)) = conjugate(BesselI(nu, z)) |
BesselI[\[Nu], Conjugate[z]] == Conjugate[BesselI[\[Nu], z]] |
Failure | Failure | Skipped - Because timed out | Failed [28 / 70]
{Complex[-0.1457476573229447, -0.7449450592023206] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[1.100244133383339, 1.2347828003590728] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.34#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{\conj{z}} = \conj{\modBesselK{\nu}@{z}}} | BesselK(nu, conjugate(z)) = conjugate(BesselK(nu, z)) |
BesselK[\[Nu], Conjugate[z]] == Conjugate[BesselK[\[Nu], z]] |
Failure | Failure | Failed [28 / 70] 28/70]: [[-.3322466664+.1347267497*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} .8978926857-1.555608423*I <- {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} |
Failed [28 / 70]
{Complex[-0.332246666369582, 0.13472674975137633] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.23222824698313052, -0.12812607679285354] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.35.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\frac{1}{2}z(t+t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\modBesselI{m}@{z}} | exp((1)/(2)*z*(t + (t)^(- 1))) = sum((t)^(m)* BesselI(m, z), m = - infinity..infinity) |
Exp[Divide[1,2]*z*(t + (t)^(- 1))] == Sum[(t)^(m)* BesselI[m, z], {m, - Infinity, Infinity}, GenerateConditions->None] |
Failure | Error | Skipped - Because timed out | Skipped - Because timed out |
10.35.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{z\cos@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\modBesselI{k}@{z}\cos@{k\theta}} | exp(z*cos(theta)) = BesselI(0, z)+ 2*sum(BesselI(k, z)*cos(k*theta), k = 1..infinity) |
Exp[z*Cos[\[Theta]]] == BesselI[0, z]+ 2*Sum[BesselI[k, z]*Cos[k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Successful | Skipped - Because timed out | Successful [Tested: 70] |
10.35.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{z\sin@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=0}^{\infty}(-1)^{k}\modBesselI{2k+1}@{z}\sin@{(2k+1)\theta}+2\sum_{k=1}^{\infty}(-1)^{k}\modBesselI{2k}@{z}\cos@{2k\theta}} | exp(z*sin(theta)) = BesselI(0, z)+ 2*sum((- 1)^(k)* BesselI(2*k + 1, z)*sin((2*k + 1)* theta), k = 0..infinity)+ 2*sum((- 1)^(k)* BesselI(2*k, z)*cos(2*k*theta), k = 1..infinity) |
Exp[z*Sin[\[Theta]]] == BesselI[0, z]+ 2*Sum[(- 1)^(k)* BesselI[2*k + 1, z]*Sin[(2*k + 1)* \[Theta]], {k, 0, Infinity}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselI[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None] |
Error | Failure | - | Skipped - Because timed out |
10.35.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 = \modBesselI{0}@{z}-2\modBesselI{2}@{z}+2\modBesselI{4}@{z}-2\modBesselI{6}@{z}+\dotsb} | 1 = BesselI(0, z)- 2*BesselI(2, z)+ 2*BesselI(4, z)- 2*BesselI(6, z)+ .. |
1 == BesselI[0, z]- 2*BesselI[2, z]+ 2*BesselI[4, z]- 2*BesselI[6, z]+ \[Ellipsis] |
Error | Failure | - | Failed [7 / 7]
{Plus[Complex[-9.440290591519046*^-8, -1.7199789187696823*^-7], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[-9.924736610669727*^-8, -1.6360842739013975*^-7], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.35.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{+ z} = \modBesselI{0}@{z}+ 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}+ 2\modBesselI{3}@{z}+\dotsb} | exp(+ z) = BesselI(0, z)+ 2*BesselI(1, z)+ 2*BesselI(2, z)+ 2*BesselI(3, z)+ .. |
Exp[+ z] == BesselI[0, z]+ 2*BesselI[1, z]+ 2*BesselI[2, z]+ 2*BesselI[3, z]+ \[Ellipsis] |
Error | Failure | - | Failed [7 / 7]
{Plus[Complex[-0.003384051289485407, 0.00475177611436145], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[-0.002576303532707505, 0.004074841322498801], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.35.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{- z} = \modBesselI{0}@{z}- 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}- 2\modBesselI{3}@{z}+\dotsb} | exp(- z) = BesselI(0, z)- 2*BesselI(1, z)+ 2*BesselI(2, z)- 2*BesselI(3, z)+ .. |
Exp[- z] == BesselI[0, z]- 2*BesselI[1, z]+ 2*BesselI[2, z]- 2*BesselI[3, z]+ \[Ellipsis] |
Error | Failure | - | Failed [7 / 7]
{Plus[Complex[-0.0024389937896763803, 0.0042567403420422645], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[-0.0020316532349716754, 0.004934003265463338], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.37.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}|} | abs(BesselK(nu, z)) < abs(BesselK(mu, z)) |
Abs[BesselK[\[Nu], z]] < Abs[BesselK[\[Mu], z]] |
Failure | Failure | Failed [204 / 300] 204/300]: [[.6496143723 < .6496143723 <- {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} 3.110500858 < 3.110500858 <- {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} |
Failed [184 / 300]
{False <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} False <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
10.38.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}} | diff(BesselI(+ nu, z), nu) = + BesselI(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity) |
D[BesselI[+ \[Nu], z], \[Nu]] == + BesselI[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [7 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]} Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]} |
10.38.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}} | diff(BesselI(- nu, z), nu) = - BesselI(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity) |
D[BesselI[- \[Nu], z], \[Nu]] == - BesselI[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [7 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]} Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]} |
10.38.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z}} | diff(BesselK(nu, z), nu) = (1)/(2)*Pi*csc(nu*Pi)*(diff(BesselI(- nu, z), nu)- diff(BesselI(nu, z), nu))- Pi*cot(nu*Pi)*BesselK(nu, z) |
D[BesselK[\[Nu], z], \[Nu]] == Divide[1,2]*Pi*Csc[\[Nu]*Pi]*(D[BesselI[- \[Nu], z], \[Nu]]- D[BesselI[\[Nu], z], \[Nu]])- Pi*Cot[\[Nu]*Pi]*BesselK[\[Nu], z] |
Successful | Failure | - | Successful [Tested: 7] |
10.39#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z}} | BesselI((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sinh(z) |
BesselI[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sinh[z] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z}} | BesselI(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* cosh(z) |
BesselI[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Cosh[z] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z}} | BesselK((1)/(2), z) = BesselK(-(1)/(2), z) |
BesselK[Divide[1,2], z] == BesselK[-Divide[1,2], z] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
10.39.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}} | BesselK(-(1)/(2), z) = ((Pi)/(2*z))^((1)/(2))* exp(- z) |
BesselK[-Divide[1,2], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}}} | BesselK((1)/(4), z) = (Pi)^((1)/(2))* (z)^(-(1)/(4))* CylinderU(0, 2*(z)^((1)/(2))) |
BesselK[Divide[1,4], z] == (Pi)^(Divide[1,2])* (z)^(-Divide[1,4])* ParabolicCylinderD[- 1/2 -(0), 2*(z)^(Divide[1,2])] |
Successful | Failure | - | Successful [Tested: 7] |
10.39.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right)} | BesselK((3)/(4), z) = (1)/(2)*(Pi)^((1)/(2))* (z)^(-(3)/(4))*((1)/(2)*CylinderU(1, 2*(z)^((1)/(2)))+ CylinderU(- 1, 2*(z)^((1)/(2)))) |
BesselK[Divide[3,4], z] == Divide[1,2]*(Pi)^(Divide[1,2])* (z)^(-Divide[3,4])*(Divide[1,2]*ParabolicCylinderD[- 1/2 -(1), 2*(z)^(Divide[1,2])]+ ParabolicCylinderD[- 1/2 -(- 1), 2*(z)^(Divide[1,2])]) |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z}} | BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(+ z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, - 2*z) |
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[+ z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, - 2*z] |
Failure | Successful | Failed [7 / 56] 7/56]: [[-.800260207-.3396157390*I <- {nu = -1/2, z = 1/2*3^(1/2)+1/2*I} -.4588638571-.5759587792*I <- {nu = -1/2, z = -1/2+1/2*I*3^(1/2)} |
Failed [7 / 56]
{Complex[-0.8002602062152042, -0.3396157389151986] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]} Complex[-0.45886385712966904, -0.5759587792371148] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]} |
10.39.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z}} | BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(- z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*z) |
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*z] |
Successful | Successful | Skip - symbolical successful subtest | Failed [7 / 56]
{Complex[0.8002602062152032, 0.3396157389151989] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]} Complex[0.4588638571296689, 0.575958779237115] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]} |
10.39.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z}} | BesselK(nu, z) = (Pi)^((1)/(2))*(2*z)^(nu)* exp(- z)*KummerU(nu +(1)/(2), 2*nu + 1, 2*z) |
BesselK[\[Nu], z] == (Pi)^(Divide[1,2])*(2*z)^\[Nu]* Exp[- z]*HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z] |
Successful | Successful | - | Successful [Tested: 70] |
10.39.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}}} | BesselI(nu, z) = ((2*z)^(-(1)/(2))* WhittakerM(0, nu, 2*z))/((2)^(2*nu)* GAMMA(nu + 1)) |
BesselI[\[Nu], z] == Divide[(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], 2*z],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]] |
Successful | Successful | - | Successful [Tested: 7] |
10.39.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z}} | BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* WhittakerW(0, nu, 2*z) |
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* WhittakerW[0, \[Nu], 2*z] |
Failure | Failure | Successful [Tested: 70] | Successful [Tested: 70] |
10.39.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}}} | BesselI(nu, z) = (((1)/(2)*z)^(nu))/(GAMMA(nu + 1))*hypergeom([-], [nu + 1], (1)/(4)*(z)^(2)) |
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+ 1]]*HypergeometricPFQ[{-}, {\[Nu]+ 1}, Divide[1,4]*(z)^(2)] |
Error | Failure | - | Error |
10.40.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\left(\sum_{k=0}^{\ell-1}\frac{a_{k}(\nu)}{z^{k}}+R_{\ell}(\nu,z)\right)} | BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)*(sum((a[k]*(nu))/((z)^(k)), k = 0..ell - 1)+ R[ell]*(nu , z)) |
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*(Sum[Divide[Subscript[a, k]*(\[Nu]),(z)^(k)], {k, 0, \[ScriptL]- 1}, GenerateConditions->None]+ Subscript[R, \[ScriptL]]*(\[Nu], z)) |
Failure | Failure | Error | Error |
10.41.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p = (1+z^{2})^{-\frac{1}{2}}} | p = (1 + (z)^(2))^(-(1)/(2)) |
p == (1 + (z)^(2))^(-Divide[1,2]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})} | U[1]*(p) = (1)/(24)*(3*p - 5*(p)^(3)) |
Subscript[U, 1]*(p) == Divide[1,24]*(3*p - 5*(p)^(3)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})} | U[2]*(p) = (1)/(1152)*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6)) |
Subscript[U, 2]*(p) == Divide[1,1152]*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})} | U[3]*(p) = (1)/(414720)*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9)) |
Subscript[U, 3]*(p) == Divide[1,414720]*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})} | V[1]*(p) = (1)/(24)*(- 9*p + 7*(p)^(3)) |
Subscript[V, 1]*(p) == Divide[1,24]*(- 9*p + 7*(p)^(3)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})} | V[2]*(p) = (1)/(1152)*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6)) |
Subscript[V, 2]*(p) == Divide[1,1152]*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})} | V[3]*(p) = (1)/(414720)*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9)) |
Subscript[V, 3]*(p) == Divide[1,414720]*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.43.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\frac{\modBesselI{0}@{t}-1}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x}} | int((BesselI(0, t)- 1)/(t), t = 0..x) = (1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity) |
Integrate[Divide[BesselI[0, t]- 1,t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 3] | Failed [3 / 3]
{Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]} Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]} |
10.43.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} = \frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\digamma@{k+2}-\digamma@{1})\modBesselI{2k+3}@{x}} | (1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity) = (2)/(x)*sum((- 1)^(k)*(2*k + 3)*(Psi(k + 2)- Psi(1))* BesselI(2*k + 3, x), k = 0..infinity) |
Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None] == Divide[2,x]*Sum[(- 1)^(k)*(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])* BesselI[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 3] | Failed [3 / 3]
{Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.3333333333333333, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 1.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]} Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-4.0, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 0.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]} |
10.43.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{\modBesselK{0}@{t}}{t}\diff{t} = \frac{1}{2}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}} | int((BesselK(0, t))/(t), t = x..infinity) = (1)/(2)*(ln((1)/(2)*x)+ gamma)^(2)+((Pi)^(2))/(24)- sum((Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity) |
Integrate[Divide[BesselK[0, t],t], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[(Pi)^(2),24]- Sum[(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Error | Successful [Tested: 3] | Skipped - Because timed out |
10.43.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{-t}\modBesselI{n}@{t}\diff{t} = xe^{-x}(\modBesselI{0}@{x}+\modBesselI{1}@{x})+n(e^{-x}\modBesselI{0}@{x}-1)+2e^{-x}\sum_{k=1}^{n-1}(n-k)\modBesselI{k}@{x}} | int(exp(- t)*BesselI(n, t), t = 0..x) = x*exp(- x)*(BesselI(0, x)+ BesselI(1, x))+ n*(exp(- x)*BesselI(0, x)- 1)+ 2*exp(- x)*sum((n - k)* BesselI(k, x), k = 1..n - 1) |
Integrate[Exp[- t]*BesselI[n, t], {t, 0, x}, GenerateConditions->None] == x*Exp[- x]*(BesselI[0, x]+ BesselI[1, x])+ n*(Exp[- x]*BesselI[0, x]- 1)+ 2*Exp[- x]*Sum[(n - k)* BesselI[k, x], {k, 1, n - 1}, GenerateConditions->None] |
Failure | Error | Successful [Tested: 3] | Failed [2 / 3]
{Plus[1.0269197346695518, Times[-0.44626032029685964, Plus[-4.940169569318671, Times[3.0, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[1.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 1.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[1.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 1.5]], Equal[[2], Plus[BesselI[0, 1.5], BesselI[1, 1.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 1.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 1.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[, 1.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 1.5]], Equal[[3], Plus[Times[2, Power[1.5, -1], Plus[Times[1.5, BesselI[0, 1.5]], Times[-2, BesselI[1, 1.5]]]], BesselI[1, 1.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 1.5]} Plus[0.6643873281588137, Times[-1.2130613194252668, Plus[-3.19045011222397, Times[3.0, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[0.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 0.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[0.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 0.5]], Equal[[2], Plus[BesselI[0, 0.5], BesselI[1, 0.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 0.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 0.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[, 0.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 0.5]], Equal[[3], Plus[Times[2, Power[0.5, -1], Plus[Times[0.5, BesselI[0, 0.5]], Times[-2, BesselI[1, 0.5]]]], BesselI[1, 0.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 0.5]} |
10.43.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{+ t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}-\modBesselI{\nu+1}@{x})} | int(exp(+ t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)- BesselI(nu + 1, x)) |
Integrate[Exp[+ t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]+ 1, x]) |
Failure | Successful | Successful [Tested: 15] | Successful [Tested: 15] |
10.43.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{- t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}+\modBesselI{\nu+1}@{x})} | int(exp(- t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)+ BesselI(nu + 1, x)) |
Integrate[Exp[- t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]+ 1, x]) |
Failure | Successful | Skipped - Because timed out | Successful [Tested: 15] |
10.43.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{+ t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{+ x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}-\modBesselI{\nu-1}@{x})-\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}} | int(exp(+ t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(+ x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)- BesselI(nu - 1, x))-((2)^(- nu + 1))/((2*nu - 1)* GAMMA(nu)) |
Integrate[Exp[+ t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[+ x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]- 1, x])-Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)* Gamma[\[Nu]]] |
Failure | Successful | - | Failed [3 / 12]
{0.39894228040143315 <- {Rule[x, 1.5], Rule[ν, 1.5]} 0.39894228040143254 <- {Rule[x, 0.5], Rule[ν, 1.5]} |
10.43.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{- t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{- x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}+\modBesselI{\nu-1}@{x})+\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}} | int(exp(- t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(- x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)+ BesselI(nu - 1, x))+((2)^(- nu + 1))/((2*nu - 1)* GAMMA(nu)) |
Integrate[Exp[- t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[- x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]- 1, x])+Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)* Gamma[\[Nu]]] |
Failure | Successful | - | Successful [Tested: 12] |
10.43.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{+ t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}+\modBesselK{\nu+1}@{x})-\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}} | int(exp(+ t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)+ BesselK(nu + 1, x))-((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1) |
Integrate[Exp[+ t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]+ 1, x])-Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1] |
Failure | Error | - | Failed [9 / 15]
{DirectedInfinity[] <- {Rule[x, 1.5], Rule[ν, 1.5]} DirectedInfinity[] <- {Rule[x, 1.5], Rule[ν, 0.5]} |
10.43.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{- t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}-\modBesselK{\nu+1}@{x})+\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}} | int(exp(- t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)- BesselK(nu + 1, x))+((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1) |
Integrate[Exp[- t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]- BesselK[\[Nu]+ 1, x])+Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1] |
Failure | Successful | - | Failed [3 / 15]
{DirectedInfinity[] <- {Rule[x, 1.5], Rule[ν, 2]} DirectedInfinity[] <- {Rule[x, 0.5], Rule[ν, 2]} |
10.43.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}e^{t}t^{-\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{x}x^{-\nu+1}}{2\nu-1}(\modBesselK{\nu}@{x}+\modBesselK{\nu-1}@{x})} | int(exp(t)*(t)^(- nu)* BesselK(nu, t), t = x..infinity) = (exp(x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselK(nu, x)+ BesselK(nu - 1, x)) |
Integrate[Exp[t]*(t)^(- \[Nu])* BesselK[\[Nu], t], {t, x, Infinity}, GenerateConditions->None] == Divide[Exp[x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]- 1, x]) |
Failure | Successful | - | Failed [3 / 9]
{Indeterminate <- {Rule[x, 1.5], Rule[ν, 2]} DirectedInfinity[] <- {Rule[x, 0.5], Rule[ν, 2]} |
10.43.E18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\modBesselK{\nu}@{t}\diff{t} = \tfrac{1}{2}\pi\sec@{\tfrac{1}{2}\pi\nu}} | int(BesselK(nu, t), t = 0..infinity) = (1)/(2)*Pi*sec((1)/(2)*Pi*nu) |
Integrate[BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*Sec[Divide[1,2]*Pi*\[Nu]] |
Successful | Successful | - | Successful [Tested: 6] |
10.43.E19 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\mu-1}\modBesselK{\nu}@{t}\diff{t} = 2^{\mu-2}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu}} | int((t)^(mu - 1)* BesselK(nu, t), t = 0..infinity) = (2)^(mu - 2)* GAMMA((1)/(2)*mu -(1)/(2)*nu)*GAMMA((1)/(2)*mu +(1)/(2)*nu) |
Integrate[(t)^(\[Mu]- 1)* BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^(\[Mu]- 2)* Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]] |
Successful | Successful | - | Successful [Tested: 18] |
10.43.E20 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cos@{at}\modBesselK{0}@{t}\diff{t} = \frac{\pi}{2(1+a^{2})^{\frac{1}{2}}}} | int(cos(a*t)*BesselK(0, t), t = 0..infinity) = (Pi)/(2*(1 + (a)^(2))^((1)/(2))) |
Integrate[Cos[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2*(1 + (a)^(2))^(Divide[1,2])] |
Successful | Error | - | Successful [Tested: 6] |
10.43.E21 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\sin@{at}\modBesselK{0}@{t}\diff{t} = \frac{\asinh@@{a}}{(1+a^{2})^{\frac{1}{2}}}} | int(sin(a*t)*BesselK(0, t), t = 0..infinity) = (arcsinh(a))/((1 + (a)^(2))^((1)/(2))) |
Integrate[Sin[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[ArcSinh[a],(1 + (a)^(2))^(Divide[1,2])] |
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 6] |
10.43.E24 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselI{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}} | int(BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(((b)^(2))/(8*(p)^(2)))*BesselI((1)/(2)*nu, ((b)^(2))/(8*(p)^(2))) |
Integrate[BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]] |
Failure | Error | Failed [228 / 300] 228/300]: [[-.7585567167+3.675115279*I <- {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I} -.9489546609+2.381017603*I <- {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = -1/2*3^(1/2)-1/2*I} |
Failed [152 / 300]
{Complex[-0.19039794459564638, -1.294097675814569] <- {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[2.992047945390181, -4.249025046528451] <- {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.43.E25 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\modBesselK{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{4p}\sec@{\tfrac{1}{2}\pi\nu}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselK{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}} | int(BesselK(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(4*p)*sec((1)/(2)*Pi*nu)*exp(((b)^(2))/(8*(p)^(2)))*BesselK((1)/(2)*nu, ((b)^(2))/(8*(p)^(2))) |
Integrate[BesselK[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*p]*Sec[Divide[1,2]*Pi*\[Nu]]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselK[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]] |
Failure | Error | Failed [144 / 288] 144/288]: [[-.4056916296-1.844454275*I <- {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I} -.2830456904e-1-1.996429597*I <- {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 3/2} |
Failed [144 / 288]
{Complex[0.40569163152223653, 1.8444542715605226] <- {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.4232355421098407, -0.8203643961026106] <- {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.43.E29 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{0}@{at}\modBesselK{0}@{at}\diff{t} = \frac{1}{4p^{2}}\exp@{\frac{a^{2}}{2p^{2}}}\modBesselK{0}@{\frac{a^{2}}{2p^{2}}}} | int(t*exp(- (p)^(2)* (t)^(2))*BesselI(0, a*t)*BesselK(0, a*t), t = 0..infinity) = (1)/(4*(p)^(2))*exp(((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2))) |
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[0, a*t]*BesselK[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,4*(p)^(2)]*Exp[Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]] |
Failure | Error | Skipped - Because timed out | Successful [Tested: 48] |
10.44#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \sum_{k=0}^{\infty}\frac{z^{k}}{k!}\BesselJ{\nu+k}@{z}} | BesselI(nu, z) = sum(((z)^(k))/(factorial(k))*BesselJ(nu + k, z), k = 0..infinity) |
BesselI[\[Nu], z] == Sum[Divide[(z)^(k),(k)!]*BesselJ[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Successful | Skipped - Because timed out | Successful [Tested: 70] |
10.44#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \sum_{k=0}^{\infty}(-1)^{k}\frac{z^{k}}{k!}\modBesselI{\nu+k}@{z}} | BesselJ(nu, z) = sum((- 1)^(k)*((z)^(k))/(factorial(k))*BesselI(nu + k, z), k = 0..infinity) |
BesselJ[\[Nu], z] == Sum[(- 1)^(k)*Divide[(z)^(k),(k)!]*BesselI[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [70 / 70]
{Plus[Complex[0.4358908643715884, -0.07192294931339177], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[1.0679098760861825, 0.09257666026367889], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.44.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\tfrac{1}{2}z\right)^{\nu} = \sum_{k=0}^{\infty}(-1)^{k}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\modBesselI{\nu+2k}@{z}} | ((1)/(2)*z)^(nu) = sum((- 1)^(k)*((nu + 2*k)* GAMMA(nu + k))/(factorial(k))*BesselI(nu + 2*k, z), k = 0..infinity) |
(Divide[1,2]*z)^\[Nu] == Sum[(- 1)^(k)*Divide[(\[Nu]+ 2*k)* Gamma[\[Nu]+ k],(k)!]*BesselI[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | - | Failed [7 / 7]
{Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1]} Plus[Complex[-0.2499999999999999, 0.43301270189221935], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 1]} |
10.44.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\frac{\modBesselI{2k}@{z}}{k}} | BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)* BesselI(0, z)+ 2*sum((BesselI(2*k, z))/(k), k = 1..infinity) |
BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)* BesselI[0, z]+ 2*Sum[Divide[BesselI[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
10.44.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{z} = \frac{n!(\tfrac{1}{2}z)^{-n}}{2}\sum_{k=0}^{n-1}(-1)^{k}\frac{(\tfrac{1}{2}z)^{k}\modBesselI{k}@{z}}{k!(n-k)}+(-1)^{n-1}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\modBesselI{n}@{z}+(-1)^{n}\sum_{k=1}^{\infty}\frac{(n+2k)\modBesselI{n+2k}@{z}}{k(n+k)}} | BesselK(n, z) = (factorial(n)*((1)/(2)*z)^(- n))/(2)*sum((- 1)^(k)*(((1)/(2)*z)^(k)* BesselI(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(- 1)^(n - 1)*(ln((1)/(2)*z)- Psi(n + 1))* BesselI(n, z)+(- 1)^(n)* sum(((n + 2*k)* BesselI(n + 2*k, z))/(k*(n + k)), k = 1..infinity) |
BesselK[n, z] == Divide[(n)!*(Divide[1,2]*z)^(- n),2]*Sum[(- 1)^(k)*Divide[(Divide[1,2]*z)^(k)* BesselI[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n - 1)*(Log[Divide[1,2]*z]- PolyGamma[n + 1])* BesselI[n, z]+(- 1)^(n)* Sum[Divide[(n + 2*k)* BesselI[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Error | - | Failed [21 / 21]
{Plus[Complex[1.084080291505059, -0.3914662527648858], NSum[Times[Power[k, -1], Power[Plus[1, k], -1], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]], Times[Complex[-0.8660254037844387, 0.49999999999999994], DifferenceRoot[Function[{, }, {Equal[Plus[Times[-1, Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[-1, , Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselI[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselI[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[-1, 2], Power[Plus[-1, 1], -1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselI[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[-0.001928095904955185, 0.0030033056761246957], Times[-1.0, NSum[Times[Power[k, -1], Power[Plus[2, k], -1], Plus[2, Times[2, k]], BesselI[Plus[2, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.45.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(\nu^{2}-x^{2})w = 0} | (x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((nu)^(2)- (x)^(2))* w = 0 |
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+(\[Nu]^(2)- (x)^(2))* w == 0 |
Failure | Failure | Failed [240 / 300] 240/300]: [[-1.948557159-.1249999996*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2} -.2165063507+.8750000006*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2} |
Failed [240 / 300]
{Complex[-1.948557158514987, -0.12499999999999989] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-1.9485571585149875, -2.125] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.45.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modBesselIimag{\nu}@{x} = \realpart@{\modBesselI{i\nu}@{x}}} | Re(BesselI(I*(nu), x)) = Re(BesselI(I*nu, x)) |
Re[BesselI[I*\[Nu], x]] == Re[BesselI[I*\[Nu], x]] |
Successful | Successful | - | Successful [Tested: 30] |
10.45.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modBesselKimag{\nu}@{x} = \modBesselK{i\nu}@{x}} | BesselK(I*(nu), x) = BesselK(I*nu, x) |
BesselK[I*\[Nu], x] == BesselK[I*\[Nu], x] |
Successful | Successful | - | Successful [Tested: 30] |
10.45.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modBesselIimag{-\nu}@{x} = \modBesselIimag{\nu}@{x}} | Re(BesselI(I*(- nu), x)) = Re(BesselI(I*(nu), x)) |
Re[BesselI[I*- \[Nu], x]] == Re[BesselI[I*\[Nu], x]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.45.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modBesselKimag{-\nu}@{x} = \modBesselKimag{\nu}@{x}} | BesselK(I*(- nu), x) = BesselK(I*(nu), x) |
BesselK[I*- \[Nu], x] == BesselK[I*\[Nu], x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.45.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modBesselKimag{\nu}@{x},\modBesselIimag{\nu}@{x}} = 1/x} | (BesselK(I*(nu), x))*diff(Re(BesselI(I*(nu), x)), x)-diff(BesselK(I*(nu), x), x)*(Re(BesselI(I*(nu), x))) = 1/ x |
Wronskian[{BesselK[I*\[Nu], x], Re[BesselI[I*\[Nu], x]]}, x] == 1/ x |
Failure | Failure | Error | Failed [30 / 30]
{Plus[-0.6666666666666666, Times[0.5, Plus[Complex[1.0700115379721733, -0.3754447148158467], Times[Complex[0.1636629185333998, 0.09141848176750039], Derivative[1][Re][Complex[2.445786867824693, 0.6492150843755028]]]]]] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[-0.6666666666666666, Times[0.5, Plus[Complex[0.8415452902387464, 0.2726729041814867], Times[Complex[0.3412924192180222, 0.19179892830603273], Derivative[1][Re][Complex[1.3137906770541619, -0.7251169608509622]]]]]] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.45.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselKimag{0}@{x} = \modBesselK{0}@{x}} | BesselK(I*(0), x) = BesselK(0, x) |
BesselK[I*0, x] == BesselK[0, x] |
Successful | Successful | - | Successful [Tested: 3] |
10.47.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}+\left(z^{2}-n(n+1)\right)w = 0} | (z)^(2)* diff(w, [z$(2)])+ 2*z*diff(w, z)+((z)^(2)- n*(n + 1))* w = 0 |
(z)^(2)* D[w, {z, 2}]+ 2*z*D[w, z]+((z)^(2)- n*(n + 1))* w == 0 |
Failure | Failure | Failed [210 / 210] 210/210]: [[-1.732050808+.3733632160e-9*I <- {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1} -5.196152424-2.000000000*I <- {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2} |
Failed [210 / 210]
{Complex[-1.7320508075688772, 1.1102230246251565*^-16] <- {Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-5.196152422706633, -1.9999999999999996] <- {Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.47.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}-\left(z^{2}+n(n+1)\right)w = 0} | (z)^(2)* diff(w, [z$(2)])+ 2*z*diff(w, z)-((z)^(2)+ n*(n + 1))* w = 0 |
(z)^(2)* D[w, {z, 2}]+ 2*z*D[w, z]-((z)^(2)+ n*(n + 1))* w == 0 |
Failure | Failure | Failed [210 / 210] 210/210]: [[-1.732050808-2.000000000*I <- {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1} -5.196152424-4.000000000*I <- {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2} |
Failed [210 / 210]
{Complex[-1.7320508075688776, -1.9999999999999998] <- {Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-5.196152422706632, -3.9999999999999996] <- {Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.47.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z}} | Error |
SphericalBesselJ[n, z] == Sqrt[Divide[1,2]*Pi/ z]*BesselJ[n +Divide[1,2], z] |
Error | Failure | Skip - symbolical successful subtest | Successful [Tested: 21] |
10.47.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z} = (-1)^{n}\sqrt{\tfrac{1}{2}\pi/z}\BesselY{-n-\frac{1}{2}}@{z}} | sqrt((1)/(2)*Pi/ z)*BesselJ(n +(1)/(2), z) = (- 1)^(n)*sqrt((1)/(2)*Pi/ z)*BesselY(- n -(1)/(2), z) |
Sqrt[Divide[1,2]*Pi/ z]*BesselJ[n +Divide[1,2], z] == (- 1)^(n)*Sqrt[Divide[1,2]*Pi/ z]*BesselY[- n -Divide[1,2], z] |
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] |
10.47.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z}} | Error |
SphericalBesselY[n, z] == Sqrt[Divide[1,2]*Pi/ z]*BesselY[n +Divide[1,2], z] |
Error | Failure | Skip - symbolical successful subtest | Successful [Tested: 21] |
10.47.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z} = (-1)^{n+1}\sqrt{\tfrac{1}{2}\pi/z}\BesselJ{-n-\frac{1}{2}}@{z}} | sqrt((1)/(2)*Pi/ z)*BesselY(n +(1)/(2), z) = (- 1)^(n + 1)*sqrt((1)/(2)*Pi/ z)*BesselJ(- n -(1)/(2), z) |
Sqrt[Divide[1,2]*Pi/ z]*BesselY[n +Divide[1,2], z] == (- 1)^(n + 1)*Sqrt[Divide[1,2]*Pi/ z]*BesselJ[- n -Divide[1,2], z] |
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] |
10.47.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z}} | Error |
SphericalHankelH1[n, z] == Sqrt[Divide[1,2]*Pi/ z]*HankelH1[n +Divide[1,2], z] |
Error | Failure | - | Successful [Tested: 21] |
10.47.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z} = (-1)^{n+1}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{-n-\frac{1}{2}}@{z}} | sqrt((1)/(2)*Pi/ z)*HankelH1(n +(1)/(2), z) = (- 1)^(n + 1)* I*sqrt((1)/(2)*Pi/ z)*HankelH1(- n -(1)/(2), z) |
Sqrt[Divide[1,2]*Pi/ z]*HankelH1[n +Divide[1,2], z] == (- 1)^(n + 1)* I*Sqrt[Divide[1,2]*Pi/ z]*HankelH1[- n -Divide[1,2], z] |
Successful | Failure | - | Successful [Tested: 21] |
10.47.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z}} | Error |
SphericalHankelH2[n, z] == Sqrt[Divide[1,2]*Pi/ z]*HankelH2[n +Divide[1,2], z] |
Error | Failure | - | Successful [Tested: 21] |
10.47.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z} = (-1)^{n}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{-n-\frac{1}{2}}@{z}} | sqrt((1)/(2)*Pi/ z)*HankelH2(n +(1)/(2), z) = (- 1)^(n)* I*sqrt((1)/(2)*Pi/ z)*HankelH2(- n -(1)/(2), z) |
Sqrt[Divide[1,2]*Pi/ z]*HankelH2[n +Divide[1,2], z] == (- 1)^(n)* I*Sqrt[Divide[1,2]*Pi/ z]*HankelH2[- n -Divide[1,2], z] |
Successful | Failure | - | Successful [Tested: 21] |
10.47.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{n+\frac{1}{2}}@{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == Sqrt[Divide[1,2]*Pi/ z]*BesselI[n +Divide[1,2], z] |
Error | Failure | - | Failed [20 / 21]
{Complex[0.06771919180965624, -0.29579816936516184] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.4498252419402129, -0.19064547195046921] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.47.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{-n-\frac{1}{2}}@{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Sqrt[Divide[1,2]*Pi/ z]*BesselI[- n -Divide[1,2], z] |
Error | Failure | - | Failed [20 / 21]
{Complex[-0.41419719140728084, -0.8850762711170854] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[1.1065867555175597, 2.4569570135519543] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.47.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z}} | Error |
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Sqrt[Divide[1,2]*Pi/ z]*BesselK[n +Divide[1,2], z] |
Error | Successful | - | Successful [Tested: 21] |
10.47.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{-n-\frac{1}{2}}@{z}} | sqrt((1)/(2)*Pi/ z)*BesselK(n +(1)/(2), z) = sqrt((1)/(2)*Pi/ z)*BesselK(- n -(1)/(2), z) |
Sqrt[Divide[1,2]*Pi/ z]*BesselK[n +Divide[1,2], z] == Sqrt[Divide[1,2]*Pi/ z]*BesselK[- n -Divide[1,2], z] |
Successful | Successful | - | Successful [Tested: 21] |
10.47#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{1}{n}@{z} = \sphBesselJ{n}@{z}+i\sphBesselY{n}@{z}} | Error |
SphericalHankelH1[n, z] == SphericalBesselJ[n, z]+ I*SphericalBesselY[n, z] |
Error | Successful | - | Successful [Tested: 21] |
10.47#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{2}{n}@{z} = \sphBesselJ{n}@{z}-i\sphBesselY{n}@{z}} | Error |
SphericalHankelH2[n, z] == SphericalBesselJ[n, z]- I*SphericalBesselY[n, z] |
Error | Successful | - | Successful [Tested: 21] |
10.47.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = (-1)^{n+1}\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}-\modsphBesseli{2}{n}@{z}\right)} | Error |
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == (- 1)^(n + 1)*Divide[1,2]*Pi*(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]- Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]) |
Error | Failure | - | Failed [20 / 21]
{Complex[-0.7569924845794465, -0.925635877692591] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-1.0316385731075524, -4.1588442590402455] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.47#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = i^{-n}\sphBesselJ{n}@{iz}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (I)^(- n)* SphericalBesselJ[n, I*z] |
Error | Failure | - | Failed [20 / 21]
{Complex[0.06771919180965624, -0.2957981693651618] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.44982524194021284, -0.19064547195046921] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.47#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = i^{-n-1}\sphBesselY{n}@{iz}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == (I)^(- n - 1)* SphericalBesselY[n, I*z] |
Error | Failure | - | Failed [20 / 21]
{Complex[-0.41419719140728045, -0.8850762711170859] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[1.1065867555175588, 2.456957013551956] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.47.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = -\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz}} | Error |
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == -Divide[1,2]*Pi*(I)^(n)* SphericalHankelH1[n, I*z] |
Error | Failure | - | Successful [Tested: 21] |
10.47.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz} = -\tfrac{1}{2}\pi i^{-n}\sphHankelh{2}{n}@{-iz}} | Error |
-Divide[1,2]*Pi*(I)^(n)* SphericalHankelH1[n, I*z] == -Divide[1,2]*Pi*(I)^(- n)* SphericalHankelH2[n, - I*z] |
Error | Failure | - | Successful [Tested: 21] |
10.47.E14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\sphBesselJ{n}@{-z} = (-1)^{n}\sphBesselJ{n}@{z}} | Error |
SphericalBesselJ[n, - z] == (- 1)^(n)* SphericalBesselJ[n, z] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.47.E14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\sphBesselY{n}@{-z} = (-1)^{n+1}\sphBesselY{n}@{z}} | Error |
SphericalBesselY[n, - z] == (- 1)^(n + 1)* SphericalBesselY[n, z] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.47.E15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\sphHankelh{1}{n}@{-z} = (-1)^{n}\sphHankelh{2}{n}@{z}} | Error |
SphericalHankelH1[n, - z] == (- 1)^(n)* SphericalHankelH2[n, z] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.47.E15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\sphHankelh{2}{n}@{-z} = (-1)^{n}\sphHankelh{1}{n}@{z}} | Error |
SphericalHankelH2[n, - z] == (- 1)^(n)* SphericalHankelH1[n, z] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.47.E16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modsphBesseli{1}{n}@{-z} = (-1)^{n}\modsphBesseli{1}{n}@{z}} | Error |
Sqrt[Divide[Pi, - z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (- 1)^(n)* Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.47.E16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modsphBesseli{2}{n}@{-z} = (-1)^{n+1}\modsphBesseli{2}{n}@{z}} | Error |
Sqrt[Divide[Pi, - z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == (- 1)^(n + 1)* Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.47.E17 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{-z} = -\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}+\modsphBesseli{2}{n}@{z}\right)} | Error |
Sqrt[1/2 Pi /- z] BesselK[n + 1/2, - z] == -Divide[1,2]*Pi*(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]+ Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]) |
Error | Failure | - | Failed [21 / 21]
{Complex[-0.5442463690831921, -1.8549132335154932] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[2.444806248586177, 3.5599138449204935] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}} | Error |
SphericalBesselJ[n, z] == Sin[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 1)], {k, 0, Floor[n/ 2]}, GenerateConditions->None]+ Cos[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[(n - 1)/ 2]}, GenerateConditions->None] |
Error | Failure | - | Skipped - Because timed out |
10.49#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{0}@{z} = \frac{\sin@@{z}}{z}} | Error |
SphericalBesselJ[0, z] == Divide[Sin[z],z] |
Error | Successful | - | Successful [Tested: 7] |
10.49#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{1}@{z} = \frac{\sin@@{z}}{z^{2}}-\frac{\cos@@{z}}{z}} | Error |
SphericalBesselJ[1, z] == Divide[Sin[z],(z)^(2)]-Divide[Cos[z],z] |
Error | Successful | - | Successful [Tested: 7] |
10.49#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{2}@{z} = \left(-\frac{1}{z}+\frac{3}{z^{3}}\right)\sin@@{z}-\frac{3}{z^{2}}\cos@@{z}} | Error |
SphericalBesselJ[2, z] == (-Divide[1,z]+Divide[3,(z)^(3)])* Sin[z]-Divide[3,(z)^(2)]*Cos[z] |
Error | Successful | - | Successful [Tested: 7] |
10.49.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{z} = -\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}} | Error |
SphericalBesselY[n, z] == - Cos[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 1)], {k, 0, Floor[n/ 2]}, GenerateConditions->None]+ Sin[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[(n - 1)/ 2]}, GenerateConditions->None] |
Error | Failure | - | Skipped - Because timed out |
10.49#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{0}@{z} = -\frac{\cos@@{z}}{z}} | Error |
SphericalBesselY[0, z] == -Divide[Cos[z],z] |
Error | Successful | - | Successful [Tested: 7] |
10.49#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{1}@{z} = -\frac{\cos@@{z}}{z^{2}}-\frac{\sin@@{z}}{z}} | Error |
SphericalBesselY[1, z] == -Divide[Cos[z],(z)^(2)]-Divide[Sin[z],z] |
Error | Successful | - | Successful [Tested: 7] |
10.49#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{2}@{z} = \left(\frac{1}{z}-\frac{3}{z^{3}}\right)\cos@@{z}-\frac{3}{z^{2}}\sin@@{z}} | Error |
SphericalBesselY[2, z] == (Divide[1,z]-Divide[3,(z)^(3)])* Cos[z]-Divide[3,(z)^(2)]*Sin[z] |
Error | Successful | - | Successful [Tested: 7] |
10.49.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{1}{n}@{z} = e^{iz}\sum_{k=0}^{n}i^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}} | Error |
SphericalHankelH1[n, z] == Exp[I*z]*Sum[(I)^(k - n - 1)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None] |
Error | Failure | - | Failed [210 / 210]
{Complex[-0.3966692432410339, 0.7497610210111748] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.3157223500929769, 0.5313692545383957] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{2}{n}@{z} = e^{-iz}\sum_{k=0}^{n}(-i)^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}} | Error |
SphericalHankelH2[n, z] == Exp[- I*z]*Sum[(- I)^(k - n - 1)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None] |
Error | Failure | - | Skipped - Because timed out |
10.49.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n+1}\*\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == Divide[1,2]*Exp[z]*Sum[(- 1)^(k)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]+(- 1)^(n + 1)*Divide[1,2]*(E)^(- z)* Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None] |
Error | Failure | - | Skipped - Because timed out |
10.49#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{0}@{z} = \frac{\sinh@@{z}}{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(0 + 1/2), 0] == Divide[Sinh[z],z] |
Error | Failure | - | Failed [7 / 7]
{Complex[-1.0789668887893185, -0.15155203743332835] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.9126970224666039, 0.13712305377128448] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.49#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{1}@{z} = -\frac{\sinh@@{z}}{z^{2}}+\frac{\cosh@@{z}}{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(1 + 1/2), 1] == -Divide[Sinh[z],(z)^(2)]+Divide[Cosh[z],z] |
Error | Failure | - | Failed [7 / 7]
{Complex[0.06771919180965646, -0.2957981693651617] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.3178790653897484, -0.6062561841669247] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.49#Ex9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\sinh@@{z}-\frac{3}{z^{2}}\cosh@@{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(2 + 1/2), 2] == (Divide[1,z]+Divide[3,(z)^(3)])* Sinh[z]-Divide[3,(z)^(2)]*Cosh[z] |
Error | Failure | - | Failed [6 / 7]
{Complex[0.44982524194021334, -0.19064547195046933] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.2843828483915114, -0.37732112452647515] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.49.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n}\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[1,2]*Exp[z]*Sum[(- 1)^(k)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]+(- 1)^(n)*Divide[1,2]*(E)^(- z)* Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None] |
Error | Failure | - | Skipped - Because timed out |
10.49#Ex10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{0}@{z} = \frac{\cosh@@{z}}{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(0 + 1/2), 0] == Divide[Cosh[z],z] |
Error | Failure | - | Failed [7 / 7]
{DirectedInfinity[] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} DirectedInfinity[] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.49#Ex11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{1}@{z} = -\frac{\cosh@@{z}}{z^{2}}+\frac{\sinh@@{z}}{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(1 + 1/2), 1] == -Divide[Cosh[z],(z)^(2)]+Divide[Sinh[z],z] |
Error | Failure | - | Failed [7 / 7]
{Complex[-0.41419719140728073, -0.8850762711170859] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-1.1181398580617885, 1.2868595835312289] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.49#Ex12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\cosh@@{z}-\frac{3}{z^{2}}\sinh@@{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(2 + 1/2), 2] == (Divide[1,z]+Divide[3,(z)^(3)])* Cosh[z]-Divide[3,(z)^(2)]*Sinh[z] |
Error | Failure | - | Failed [6 / 7]
{Complex[1.106586755517561, 2.456957013551956] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-2.803584197807803, -1.2408087832280956] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.49.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = \tfrac{1}{2}\pi e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}} | Error |
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None] |
Error | Failure | - | Failed [210 / 210]
{Complex[-1.0260307573251746, 0.0967341401667452] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-2.907697530268464, -0.43148595883398677] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49#Ex13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{0}@{z} = \tfrac{1}{2}\pi\frac{e^{-z}}{z}} | Error |
Sqrt[1/2 Pi /z] BesselK[0 + 1/2, z] == Divide[1,2]*Pi*Divide[Exp[- z],z] |
Error | Failure | - | Successful [Tested: 7] |
10.49#Ex14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{1}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{1}{z^{2}}\right)} | Error |
Sqrt[1/2 Pi /z] BesselK[1 + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*(Divide[1,z]+Divide[1,(z)^(2)]) |
Error | Failure | - | Successful [Tested: 7] |
10.49#Ex15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{2}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{3}{z^{2}}+\frac{3}{z^{3}}\right)} | Error |
Sqrt[1/2 Pi /z] BesselK[2 + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*(Divide[1,z]+Divide[3,(z)^(2)]+Divide[3,(z)^(3)]) |
Error | Failure | - | Successful [Tested: 7] |
10.49#Ex16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sin@@{z}}{z}} | Error |
(-Divide[1,z]*D[(z)^(n)*-Divide[1,z], z])^(n)*Divide[Sin[z],z] |
Error | Failure | - | Failed [21 / 21]
{Complex[0.28766324258243325, 0.13393934480402792] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.302013441049254, 0.9125931496973667] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49#Ex17 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{z} = -z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cos@@{z}}{z}} | Error |
SphericalBesselY[n, z] (-Divide[1,z]*D[(z)^(n)*-Divide[1,z], z])^(n)*Divide[Cos[z],z] |
Error | Failure | - | Failed [21 / 21]
{Complex[-0.9342001374760677, 0.968266641946737] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.14357960272401077, 3.9384338499123404] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49#Ex18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sinh@@{z}}{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] (Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Sinh[z],z] |
Error | Failure | - | Failed [21 / 21]
{Complex[0.35534425318828616, -0.09521420567684166] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.19008700336701606, 0.7298484499303669] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49#Ex19 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cosh@@{z}}{z}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] (Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Cosh[z],z] |
Error | Failure | - | Failed [21 / 21]
{Complex[-0.3553442531882861, 0.09521420567684165] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.31198506093225176, 1.0184810034762684] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49.E16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = (-1)^{n}\tfrac{1}{2}\pi z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{e^{-z}}{z}} | Error |
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == (- 1)^(n)*Divide[1,2]*(Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Exp[- z],z] |
Error | Failure | - | Failed [21 / 21]
{Complex[0.3593544107322247, -1.2247601267643444] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.45891810409859557, -4.100723067341411] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49.E18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}^{2}@{z}+\sphBesselY{n}^{2}@{z} = \sum_{k=0}^{n}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}} | Error |
(SphericalBesselJ[n, z])^(2)+ (SphericalBesselY[n, z])^(2) == Sum[Divide[Subscript[s, k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, n}, GenerateConditions->None] |
Error | Failure | - | Failed [210 / 210]
{Complex[-1.2990381056766571, 0.5179491924311224] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-9.999999999999996, 1.5358983848622398] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.49#Ex20 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{0}^{2}@{z}+\sphBesselY{0}^{2}@{z} = z^{-2}} | Error |
(SphericalBesselJ[0, z])^(2)+ (SphericalBesselY[0, z])^(2) == (z)^(- 2) |
Error | Successful | - | Successful [Tested: 7] |
10.49#Ex21 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{1}^{2}@{z}+\sphBesselY{1}^{2}@{z} = z^{-2}+z^{-4}} | Error |
(SphericalBesselJ[1, z])^(2)+ (SphericalBesselY[1, z])^(2) == (z)^(- 2)+ (z)^(- 4) |
Error | Successful | - | Successful [Tested: 7] |
10.49#Ex22 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{2}^{2}@{z}+\sphBesselY{2}^{2}@{z} = z^{-2}+3z^{-4}+9z^{-6}} | Error |
(SphericalBesselJ[2, z])^(2)+ (SphericalBesselY[2, z])^(2) == (z)^(- 2)+ 3*(z)^(- 4)+ 9*(z)^(- 6) |
Error | Successful | - | Successful [Tested: 7] |
10.49.E20 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\modsphBesseli{1}{n}@{z}\right)^{2}-\left(\modsphBesseli{2}{n}@{z}\right)^{2} = (-1)^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}} | Error |
(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n])^(2)-(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n])^(2) == (- 1)^(n + 1)* Sum[(- 1)^(k)*Divide[Subscript[s, k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, n}, GenerateConditions->None] |
Error | Failure | - | Failed [210 / 210]
{Complex[-1.299038105676658, -0.7500000000000001] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.35182282028742856, 0.20312500000000058] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.50#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}} | Error |
Wronskian[{SphericalBesselJ[n, z], SphericalBesselY[n, z]}, z] == (z)^(- 2) |
Error | Successful | - | Successful [Tested: 21] |
10.50#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}} | Error |
Wronskian[{SphericalHankelH1[n, z], SphericalHankelH2[n, z]}, z] == - 2*I*(z)^(- 2) |
Error | Successful | - | Successful [Tested: 21] |
10.50#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}} | Error |
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]}, z] == (- 1)^(n + 1)* (z)^(- 2) |
Error | Failure | - | Failed [21 / 21]
{Complex[-0.5000000000000001, 0.8660254037844386] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.5000000000000001, -0.8660254037844386] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.50#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\} | Error |
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] |
Error | Failure | - | Failed [21 / 21]
{Complex[0.5384915109869794, 1.7026856201657974] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-2.6544302063904848, -2.4451654315616667] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.50#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}} | Error |
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == -Divide[1,2]*Pi*(z)^(- 2) |
Error | Failure | - | Failed [21 / 21]
{Complex[0.5161524079039588, -2.211692333258562] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[7.686727830477982, 4.996906619076774] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.50#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}} | Error |
SphericalBesselJ[n + 1, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 1, z] == (z)^(- 2) |
Error | Successful | - | Successful [Tested: 21] |
10.50#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}} | Error |
SphericalBesselJ[n + 2, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 2, z] == (2*n + 3)* (z)^(- 3) |
Error | Failure | - | Successful [Tested: 21] |
10.50.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}} | Error |
SphericalBesselJ[0, z]*SphericalBesselJ[n, z]+ SphericalBesselY[0, z]*SphericalBesselY[n, z] == Cos[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[n/ 2]}, GenerateConditions->None]+ Sin[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 3)], {k, 0, Floor[(n - 1)/ 2]}, GenerateConditions->None] |
Error | Failure | - | Skipped - Because timed out |
10.51#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{n-1}(z)+f_{n+1}(z) = ((2n+1)/z)f_{n}(z)} | f[n - 1]*(z)+ f[n + 1]*(z) = ((2*n + 1)/ z)* f[n]*(z) |
Subscript[f, n - 1]*(z)+ Subscript[f, n + 1]*(z) == ((2*n + 1)/ z)* Subscript[f, n]*(z) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.51#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}f_{n}(z)) = z^{n-m+1}f_{n-m}(z)} | (diff((1)/(z), z))^(m)*((z)^(n + 1)* f[n]*(z)) = (z)^(n - m + 1)* f[n - m]*(z) |
(D[Divide[1,z], z])^(m)*((z)^(n + 1)* Subscript[f, n]*(z)) == (z)^(n - m + 1)* Subscript[f, n - m]*(z) |
Failure | Failure | Error | Failed [288 / 300]
{Complex[-0.49999999999999994, -1.8660254037844388] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.49999999999999994, -1.8660254037844388] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.51#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}f_{n}(z)) = (-1)^{m}z^{-n-m}f_{n+m}(z)} | (diff((1)/(z), z))^(m)*((z)^(- n)* f[n]*(z)) = (- 1)^(m)* (z)^(- n - m)* f[n + m]*(z) |
(D[Divide[1,z], z])^(m)*((z)^(- n)* Subscript[f, n]*(z)) == (- 1)^(m)* (z)^(- n - m)* Subscript[f, n + m]*(z) |
Failure | Failure | Failed [288 / 300] 288/300]: [[1.366025403-.3660254033*I <- {z = 1/2*3^(1/2)+1/2*I, f[n] = 1/2*3^(1/2)+1/2*I, f[n+m] = 1/2*3^(1/2)+1/2*I, n = 1, m = 3} .9999999993-.9999999984*I <- {z = 1/2*3^(1/2)+1/2*I, f[n] = 1/2*3^(1/2)+1/2*I, f[n+m] = 1/2*3^(1/2)+1/2*I, n = 2, m = 3} |
Failed [288 / 300]
{Complex[0.1339745962155613, 0.49999999999999994] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.3660254037844386, 0.36602540378443865] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.51#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle g_{n-1}(z)-g_{n+1}(z) = ((2n+1)/z)g_{n}(z)} | g[n - 1]*(z)- g[n + 1]*(z) = ((2*n + 1)/ z)* g[n]*(z) |
Subscript[g, n - 1]*(z)- Subscript[g, n + 1]*(z) == ((2*n + 1)/ z)* Subscript[g, n]*(z) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.51#Ex11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}g_{n}(z)) = z^{n-m+1}g_{n-m}(z)} | (diff((1)/(z), z))^(m)*((z)^(n + 1)* g[n]*(z)) = (z)^(n - m + 1)* g[n - m]*(z) |
(D[Divide[1,z], z])^(m)*((z)^(n + 1)* Subscript[g, n]*(z)) == (z)^(n - m + 1)* Subscript[g, n - m]*(z) |
Failure | Failure | Error | Failed [288 / 300]
{Complex[-0.49999999999999994, -1.8660254037844388] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.49999999999999994, -1.8660254037844388] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.51#Ex12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}g_{n}(z)) = z^{-n-m}g_{n+m}(z)} | (diff((1)/(z), z))^(m)*((z)^(- n)* g[n]*(z)) = (z)^(- n - m)* g[n + m]*(z) |
(D[Divide[1,z], z])^(m)*((z)^(- n)* Subscript[g, n]*(z)) == (z)^(- n - m)* Subscript[g, n + m]*(z) |
Failure | Failure | Failed [288 / 300] 288/300]: [[.3660254028+1.366025403*I <- {z = 1/2*3^(1/2)+1/2*I, g[n] = 1/2*3^(1/2)+1/2*I, g[n+m] = 1/2*3^(1/2)+1/2*I, n = 1, m = 3} .9999999987+.9999999996*I <- {z = 1/2*3^(1/2)+1/2*I, g[n] = 1/2*3^(1/2)+1/2*I, g[n+m] = 1/2*3^(1/2)+1/2*I, n = 2, m = 3} |
Failed [288 / 300]
{Complex[-1.8660254037844388, 0.49999999999999994] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-1.3660254037844388, 1.3660254037844386] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.53.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}} | Error |
SphericalBesselJ[n, z] == (z)^(n)* Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Successful [Tested: 21] |
10.53.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}} | Error |
SphericalBesselY[n, z] == -Divide[1,(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[(- 1)^(n + 1),(z)^(n + 1)]*Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None] |
Error | Failure | - | Successful [Tested: 21] |
10.53.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (z)^(n)* Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [20 / 21]
{Complex[0.06771919180965624, -0.29579816936516184] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.4498252419402129, -0.19064547195046921] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.53.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}} | Error |
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[(- 1)^(n),(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(-Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[1,(z)^(n + 1)]*Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [20 / 21]
{Complex[-0.4141971914072808, -0.8850762711170854] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[1.1065867555175597, 2.456957013551954] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.54.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}} | Error |
SphericalBesselJ[n, z] == Divide[(z)^(n),(2)^(n + 1)* (n)!]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*n + 1), {\[Theta], 0, Pi}, GenerateConditions->None] |
Error | Successful | - | Successful [Tested: 21] |
10.54.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}} | Error |
SphericalBesselJ[n, z] == Divide[(- I)^(n + 1),2*Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 + , 1 +)}, GenerateConditions->None] |
Error | Failure | - | Error |
10.54#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}} | Error |
SphericalHankelH1[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (1 +)}, GenerateConditions->None] |
Error | Failure | - | Error |
10.54#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}} | Error |
SphericalHankelH2[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 +)}, GenerateConditions->None] |
Error | Failure | - | Error |
10.56.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\cos@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\cos@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselJ{n-1}@{z}} | Error |
Divide[Cos[Sqrt[(z)^(2)- 2*z*t]],z] == Divide[Cos[z],z]+ Sum[Divide[(t)^(n),(n)!]*SphericalBesselJ[n - 1, z], {n, 1, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [42 / 42]
{Plus[Complex[-1.0653161526495918, 0.32810386977400907], Times[-1.0, NSum[Times[Power[-1.5, n], Power[Factorial[n], -1], SphericalBesselJ[Plus[-1, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[-1.8246723112251149, 0.13108435615091096], Times[-1.0, NSum[Times[Power[-1.5, n], Power[Factorial[n], -1], SphericalBesselJ[Plus[-1, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]] <- {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.56.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\cosh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\cosh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{1}{n-1}@{z}} | Error |
Divide[Cosh[Sqrt[(z)^(2)+ 2*I*z*t]],z] == Divide[Cosh[z],z]+ Sum[Divide[(I*t)^(n),(n)!]*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n - 1 + 1/2), n - 1], {n, 1, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [42 / 42]
{Plus[Complex[-0.13108435615091052, -1.8246723112251153], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[-1, 2], n], Plus[-1, n]], Power[Factorial[n], -1]] <- {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[-0.022834987510423566, -1.7127448295681993], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[-1, 2], n], Plus[-1, n]], Power[Factorial[n], -1]] <- {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.56.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\sinh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\sinh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{2}{n-1}@{z}} | Error |
Divide[Sinh[Sqrt[(z)^(2)+ 2*I*z*t]],z] == Divide[Sinh[z],z]+ Sum[Divide[(I*t)^(n),(n)!]*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n - 1 + 1/2), n - 1], {n, 1, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [42 / 42]
{Plus[Complex[-0.12983798012989667, -2.1935922908985273], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[-1, n]], Plus[-1, n]], Power[Factorial[n], -1]] <- {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[-1.4886830119296848, -1.839102010336905], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[-1, n]], Plus[-1, n]], Power[Factorial[n], -1]] <- {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.57.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}'@{(n+\tfrac{1}{2})z} = \frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{1}{2}}}\BesselJ{n+\frac{1}{2}}'@{(n+\tfrac{1}{2})z}-\frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{3}{2}}}\BesselJ{n+\frac{1}{2}}@{(n+\tfrac{1}{2})z}} | Error |
D[SphericalBesselJ[n, (n +Divide[1,2])* z], {(n +Divide[1,2])* z, 1}] == Divide[(Pi)^(Divide[1,2]),((2*n + 1)*z)^(Divide[1,2])]*D[BesselJ[n +Divide[1,2], (n +Divide[1,2])* z], {(n +Divide[1,2])* z, 1}]-Divide[(Pi)^(Divide[1,2]),((2*n + 1)*z)^(Divide[3,2])]*BesselJ[n +Divide[1,2], (n +Divide[1,2])* z] |
Error | Failure | - | Failed [21 / 21]
{Plus[Complex[0.14653389603833195, -0.029869009956249915], Times[Complex[-0.988457695936884, 0.2648564413786163], D[Complex[0.36567703182522004, 0.24184221354059504] <- {Complex[1.299038105676658, 0.7499999999999999], 1.0}]], D[Complex[0.425509744388485, 0.14219887983348967], {Complex[1.299038105676658, 0.7499999999999999], 1.0}]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[0.06710374092328811, 0.007963502819859997], Times[Complex[-0.7656560389588212, 0.20515691731902835], D[Complex[0.2637838125883578, 0.3348231997381719] <- {Complex[2.165063509461097, 1.2499999999999998], 1.0}]], D[Complex[0.27065896459303473, 0.20224233103375913], {Complex[2.165063509461097, 1.2499999999999998], 1.0}]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
10.60.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\cos@@{w}}{w} = -\sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselY{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}} | Error |
Divide[Cos[w],w] == - Sum[(2*n + 1)* SphericalBesselJ[n, v]*SphericalBesselY[n, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [300 / 300]
{Plus[Complex[0.43419403794642014, -0.7090399040477617], NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], SphericalBesselJ[n, -0.5], SphericalBesselY[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]} Plus[Complex[0.43419403794642014, -0.7090399040477617], NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], SphericalBesselJ[n, -0.5], SphericalBesselY[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]} |
10.60.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\sin@@{w}}{w} = \sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselJ{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}} | Error |
Divide[Sin[w],w] == Sum[(2*n + 1)* SphericalBesselJ[n, v]*SphericalBesselJ[n, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [300 / 300]
{Plus[Complex[0.912697022466604, -0.13712305377128448], Times[-1.0, NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]} Plus[Complex[0.912697022466604, -0.13712305377128448], Times[-1.0, NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]} |
10.60.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{e^{-w}}{w} = \frac{2}{\pi}\sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{v}\modsphBesselK{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}} | Error |
Divide[Exp[- w],w] == Divide[2,Pi]*Sum[(2*n + 1)* Sqrt[Divide[Pi, v]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*Sqrt[1/2 Pi /u] BesselK[n + 1/2, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Skipped - Because timed out |
10.60.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{iz\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)i^{n}\sphBesselJ{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}} | Error |
Exp[I*z*Cos[\[Alpha]]] == Sum[(2*n + 1)* (I)^(n)* SphericalBesselJ[n, z]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [21 / 21]
{Plus[Complex[0.9634389243184156, 0.05909441627762202], Times[-1.0, NSum[Times[Power[Complex[0, 1], n], Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]} Plus[Complex[0.46738148067268087, 0.44423123280344756], Times[-1.0, NSum[Times[Power[Complex[0, 1], n], Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]} |
10.60.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}} | Error |
Exp[z*Cos[\[Alpha]]] == Sum[(2*n + 1)* Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [21 / 21]
{Plus[Complex[1.0625106169893304, 0.037595191618525974], Times[-1.0, NSum[Times[Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.0707372016677029]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]} Plus[Complex[1.935725445820811, 0.9084451535292719], Times[-1.0, NSum[Times[Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.8775825618903728]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]} |
10.60.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(-1)^{n}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}} | Error |
Exp[- z*Cos[\[Alpha]]] == Sum[(- 1)^(n)*(2*n + 1)* Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [21 / 21]
{Plus[Complex[0.939990215282077, -0.03326000860415312], Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.0707372016677029]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]} Plus[Complex[0.4233587200353881, -0.19868425982147583], Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.8775825618903728]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]} |
10.60.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{0}@{z\sin@@{\alpha}} = \sum_{n=0}^{\infty}(4n+1)\frac{(2n)!}{2^{2n}(n!)^{2}}\sphBesselJ{2n}@{z}\assLegendreP[]{2n}@{\cos@@{\alpha}}} | Error |
BesselJ[0, z*Sin[\[Alpha]]] == Sum[(4*n + 1)*Divide[(2*n)!,(2)^(2*n)*((n)!)^(2)]*SphericalBesselJ[2*n, z]*LegendreP[2*n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [21 / 21]
{Plus[Complex[0.8683151459050518, -0.20203213835937428], Times[-1.0, NSum[Times[Power[2, Times[-2, n]], Plus[1, Times[4, n]], Power[Factorial[n], -2], Factorial[Times[2, n]], LegendreP[Times[2, n], 0.0707372016677029], SphericalBesselJ[Times[2, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]} Plus[Complex[0.9708614168197589, -0.04904886793011446], Times[-1.0, NSum[Times[Power[2, Times[-2, n]], Plus[1, Times[4, n]], Power[Factorial[n], -2], Factorial[Times[2, n]], LegendreP[Times[2, n], 0.8775825618903728], SphericalBesselJ[Times[2, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]} |
10.60.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\sphBesselJ{n}^{2}@{z} = \frac{\sinint@{2z}}{2z}} | Error |
Sum[(SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == Divide[SinIntegral[2*z],2*z] |
Error | Successful | - | Successful [Tested: 7] |
10.60.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}^{2}@{z} = 1} | Error |
Sum[(2*n + 1)* (SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == 1 |
Error | Failure | - | Failed [7 / 7]
{Plus[-1.0, NSum[Times[Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[-1.0, NSum[Times[Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.60.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}(-1)^{n}(2n+1)\sphBesselJ{n}^{2}@{z} = \frac{\sin@{2z}}{2z}} | Error |
Sum[(- 1)^(n)*(2*n + 1)* (SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == Divide[Sin[2*z],2*z] |
Error | Failure | - | Failed [7 / 7]
{Plus[Complex[-0.6123335037567501, 0.46246896224791606], NSum[Times[Power[-1, n], Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[-1.2536290109103816, -0.6921871649112455], NSum[Times[Power[-1, n], Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.61.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \BesselJ{\nu}@{xe^{3\pi i/4}}} | KelvinBer(nu, x)+ I*KelvinBei(nu, x) = BesselJ(nu, x*exp(3*Pi*I/ 4)) |
KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == BesselJ[\[Nu], x*Exp[3*Pi*I/ 4]] |
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 30] |
10.61.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{xe^{3\pi i/4}} = e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}}} | BesselJ(nu, x*exp(3*Pi*I/ 4)) = exp(nu*Pi*I)*BesselJ(nu, x*exp(- Pi*I/ 4)) |
BesselJ[\[Nu], x*Exp[3*Pi*I/ 4]] == Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], x*Exp[- Pi*I/ 4]] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}} = e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}}} | exp(nu*Pi*I)*BesselJ(nu, x*exp(- Pi*I/ 4)) = exp(nu*Pi*I/ 2)*BesselI(nu, x*exp(Pi*I/ 4)) |
Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], x*Exp[- Pi*I/ 4]] == Exp[\[Nu]*Pi*I/ 2]*BesselI[\[Nu], x*Exp[Pi*I/ 4]] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}} = e^{3\nu\pi i/2}\modBesselI{\nu}@{xe^{-3\pi i/4}}} | exp(nu*Pi*I/ 2)*BesselI(nu, x*exp(Pi*I/ 4)) = exp(3*nu*Pi*I/ 2)*BesselI(nu, x*exp(- 3*Pi*I/ 4)) |
Exp[\[Nu]*Pi*I/ 2]*BesselI[\[Nu], x*Exp[Pi*I/ 4]] == Exp[3*\[Nu]*Pi*I/ 2]*BesselI[\[Nu], x*Exp[- 3*Pi*I/ 4]] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{\nu}@@{x}+i\Kelvinkei{\nu}@@{x} = e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}}} | KelvinKer(nu, x)+ I*KelvinKei(nu, x) = exp(- nu*Pi*I/ 2)*BesselK(nu, x*exp(Pi*I/ 4)) |
KelvinKer[\[Nu], x]+ I*KelvinKei[\[Nu], x] == Exp[- \[Nu]*Pi*I/ 2]*BesselK[\[Nu], x*Exp[Pi*I/ 4]] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}} = \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}}} | exp(- nu*Pi*I/ 2)*BesselK(nu, x*exp(Pi*I/ 4)) = (1)/(2)*Pi*I*HankelH1(nu, x*exp(3*Pi*I/ 4)) |
Exp[- \[Nu]*Pi*I/ 2]*BesselK[\[Nu], x*Exp[Pi*I/ 4]] == Divide[1,2]*Pi*I*HankelH1[\[Nu], x*Exp[3*Pi*I/ 4]] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}} = -\tfrac{1}{2}\pi ie^{-\nu\pi i}\HankelH{2}{\nu}@{xe^{-\pi i/4}}} | (1)/(2)*Pi*I*HankelH1(nu, x*exp(3*Pi*I/ 4)) = -(1)/(2)*Pi*I*exp(- nu*Pi*I)*HankelH2(nu, x*exp(- Pi*I/ 4)) |
Divide[1,2]*Pi*I*HankelH1[\[Nu], x*Exp[3*Pi*I/ 4]] == -Divide[1,2]*Pi*I*Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], x*Exp[- Pi*I/ 4]] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}-(ix^{2}+\nu^{2})w = 0} | (x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)-(I*(x)^(2)+ (nu)^(2))* w = 0 |
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]-(I*(x)^(2)+ \[Nu]^(2))* w == 0 |
Failure | Failure | Failed [300 / 300] 300/300]: [[1.125000000-2.948557160*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2} .1249999997-1.216506352*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2} |
Failed [300 / 300]
{Complex[1.1249999999999996, -2.948557158514987] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[1.1249999999999996, -0.9485571585149869] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.61.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{4}\deriv[4]{w}{x}+2x^{3}\deriv[3]{w}{x}-(1+2\nu^{2})\left(x^{2}\deriv[2]{w}{x}-x\deriv{w}{x}\right)+(\nu^{4}-4\nu^{2}+x^{4})w = 0} | (x)^(4)* diff(w, [x$(4)])+ 2*(x)^(3)* diff(w, [x$(3)])-(1 + 2*(nu)^(2))*((x)^(2)* diff(w, [x$(2)])- x*diff(w, x))+((nu)^(4)- 4*(nu)^(2)+ (x)^(4))* w = 0 |
(x)^(4)* D[w, {x, 4}]+ 2*(x)^(3)* D[w, {x, 3}]-(1 + 2*\[Nu]^(2))*((x)^(2)* D[w, {x, 2}]- x*D[w, x])+(\[Nu]^(4)- 4*\[Nu]^(2)+ (x)^(4))* w == 0 |
Error | Failure | - | Skip - No test values generated |
10.61#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{n}@{-x} = (-1)^{n}\Kelvinber{n}@@{x}} | KelvinBer(n, - x) = (- 1)^(n)* KelvinBer(n, x) |
KelvinBer[n, - x] == (- 1)^(n)* KelvinBer[n, x] |
Successful | Failure | - | Successful [Tested: 9] |
10.61#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{n}@{-x} = (-1)^{n}\Kelvinbei{n}@@{x}} | KelvinBei(n, - x) = (- 1)^(n)* KelvinBei(n, x) |
KelvinBei[n, - x] == (- 1)^(n)* KelvinBei[n, x] |
Successful | Failure | - | Successful [Tested: 9] |
10.61#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinber{\nu}@@{x}+\sin@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinker{\nu}@@{x}} | KelvinBer(- nu, x) = cos(nu*Pi)*KelvinBer(nu, x)+ sin(nu*Pi)*KelvinBei(nu, x)+(2/ Pi)* sin(nu*Pi)*KelvinKer(nu, x) |
KelvinBer[- \[Nu], x] == Cos[\[Nu]*Pi]*KelvinBer[\[Nu], x]+ Sin[\[Nu]*Pi]*KelvinBei[\[Nu], x]+(2/ Pi)* Sin[\[Nu]*Pi]*KelvinKer[\[Nu], x] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{-\nu}@@{x} = -\sin@{\nu\pi}\Kelvinber{\nu}@@{x}+\cos@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}} | KelvinBei(- nu, x) = - sin(nu*Pi)*KelvinBer(nu, x)+ cos(nu*Pi)*KelvinBei(nu, x)+(2/ Pi)* sin(nu*Pi)*KelvinKei(nu, x) |
KelvinBei[- \[Nu], x] == - Sin[\[Nu]*Pi]*KelvinBer[\[Nu], x]+ Cos[\[Nu]*Pi]*KelvinBei[\[Nu], x]+(2/ Pi)* Sin[\[Nu]*Pi]*KelvinKei[\[Nu], x] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinker{\nu}@@{x}-\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}} | KelvinKer(- nu, x) = cos(nu*Pi)*KelvinKer(nu, x)- sin(nu*Pi)*KelvinKei(nu, x) |
KelvinKer[- \[Nu], x] == Cos[\[Nu]*Pi]*KelvinKer[\[Nu], x]- Sin[\[Nu]*Pi]*KelvinKei[\[Nu], x] |
Successful | Failure | - | Successful [Tested: 30] |
10.61#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{-\nu}@@{x} = \sin@{\nu\pi}\Kelvinker{\nu}@@{x}+\cos@{\nu\pi}\Kelvinkei{\nu}@@{x}} | KelvinKei(- nu, x) = sin(nu*Pi)*KelvinKer(nu, x)+ cos(nu*Pi)*KelvinKei(nu, x) |
KelvinKei[- \[Nu], x] == Sin[\[Nu]*Pi]*KelvinKer[\[Nu], x]+ Cos[\[Nu]*Pi]*KelvinKei[\[Nu], x] |
Successful | Failure | - | Successful [Tested: 30] |
10.61#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{-n}@@{x} = (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x}} | KelvinBer(- n, x) = (- 1)^(n)* KelvinBer(n, x),*KelvinBei(- n, x) |
KelvinBer[- n, x] == (- 1)^(n)* KelvinBer[n, x],*KelvinBei[- n, x] |
Error | Failure | - | Error |
10.61#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x} = (-1)^{n}\Kelvinbei{n}@@{x}} | (- 1)^(n)* KelvinBer(n, x),*KelvinBei(- n, x) = (- 1)^(n)* KelvinBei(n, x) |
(- 1)^(n)* KelvinBer[n, x],*KelvinBei[- n, x] == (- 1)^(n)* KelvinBei[n, x] |
Error | Failure | - | Error |
10.61#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{-n}@@{x} = (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x}} | KelvinKer(- n, x) = (- 1)^(n)* KelvinKer(n, x),*KelvinKei(- n, x) |
KelvinKer[- n, x] == (- 1)^(n)* KelvinKer[n, x],*KelvinKei[- n, x] |
Error | Failure | - | Error |
10.61#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x} = (-1)^{n}\Kelvinkei{n}@@{x}} | (- 1)^(n)* KelvinKer(n, x),*KelvinKei(- n, x) = (- 1)^(n)* KelvinKei(n, x) |
(- 1)^(n)* KelvinKer[n, x],*KelvinKei[- n, x] == (- 1)^(n)* KelvinKei[n, x] |
Error | Failure | - | Error |
10.61#Ex9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}-e^{-x}\cos@{x-\frac{\pi}{8}}\right)} | KelvinBer((1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*cos(x +(Pi)/(8))- exp(- x)*cos(x -(Pi)/(8))) |
KelvinBer[Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Cos[x +Divide[Pi,8]]- Exp[- x]*Cos[x -Divide[Pi,8]]) |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
10.61#Ex10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}+\,e^{-x}\sin@{x-\frac{\pi}{8}}\right)} | KelvinBei((1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*sin(x +(Pi)/(8))+ exp(- x)*sin(x -(Pi)/(8))) |
KelvinBei[Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Sin[x +Divide[Pi,8]]+ Exp[- x]*Sin[x -Divide[Pi,8]]) |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
10.61#Ex11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{-\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}-e^{-x}\sin@{x-\frac{\pi}{8}}\right)} | KelvinBer(-(1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*sin(x +(Pi)/(8))- exp(- x)*sin(x -(Pi)/(8))) |
KelvinBer[-Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Sin[x +Divide[Pi,8]]- Exp[- x]*Sin[x -Divide[Pi,8]]) |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
10.61#Ex12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{-\frac{1}{2}}@{x\sqrt{2}} = -\frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}+e^{-x}\cos@{x-\frac{\pi}{8}}\right)} | KelvinBei(-(1)/(2), x*sqrt(2)) = -((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*cos(x +(Pi)/(8))+ exp(- x)*cos(x -(Pi)/(8))) |
KelvinBei[-Divide[1,2], x*Sqrt[2]] == -Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Cos[x +Divide[Pi,8]]+ Exp[- x]*Cos[x -Divide[Pi,8]]) |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
10.61.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{\frac{1}{2}}@{x\sqrt{2}} = \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}}} | KelvinKer((1)/(2), x*sqrt(2)) = KelvinKei(-(1)/(2), x*sqrt(2)) |
KelvinKer[Divide[1,2], x*Sqrt[2]] == KelvinKei[-Divide[1,2], x*Sqrt[2]] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 3] |
10.61.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\sin@{x-\frac{\pi}{8}}} | KelvinKei(-(1)/(2), x*sqrt(2)) = - (2)^(-(3)/(4))*sqrt((Pi)/(x))*exp(- x)*sin(x -(Pi)/(8)) |
KelvinKei[-Divide[1,2], x*Sqrt[2]] == - (2)^(-Divide[3,4])*Sqrt[Divide[Pi,x]]*Exp[- x]*Sin[x -Divide[Pi,8]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
10.61.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{\frac{1}{2}}@{x\sqrt{2}} = -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}}} | KelvinKei((1)/(2), x*sqrt(2)) = - KelvinKer(-(1)/(2), x*sqrt(2)) |
KelvinKei[Divide[1,2], x*Sqrt[2]] == - KelvinKer[-Divide[1,2], x*Sqrt[2]] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 3] |
10.61.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\cos@{x-\frac{\pi}{8}}} | - KelvinKer(-(1)/(2), x*sqrt(2)) = - (2)^(-(3)/(4))*sqrt((Pi)/(x))*exp(- x)*cos(x -(Pi)/(8)) |
- KelvinKer[-Divide[1,2], x*Sqrt[2]] == - (2)^(-Divide[3,4])*Sqrt[Divide[Pi,x]]*Exp[- x]*Cos[x -Divide[Pi,8]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
10.63#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{\nu-1}(x)+f_{\nu+1}(x) = -(\nu\sqrt{2}/x)\left(f_{\nu}(x)-g_{\nu}(x)\right)} | f[nu - 1]*(x)+ f[nu + 1]*(x) = -(nu*sqrt(2)/ x)*(f[nu]*(x)- g[nu]*(x)) |
Subscript[f, \[Nu]- 1]*(x)+ Subscript[f, \[Nu]+ 1]*(x) == -(\[Nu]*Sqrt[2]/ x)*(Subscript[f, \[Nu]]*(x)- Subscript[g, \[Nu]]*(x)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.63#Ex9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2}\Kelvinber{}'@@{x} = \Kelvinber{1}@@{x}+\Kelvinbei{1}@@{x}} | diff( KelvinBer(, x), x$(1) ) = KelvinBer(1, x)+ KelvinBei(1, x) |
D[KelvinBer[, x], {x, 1}] == KelvinBer[1, x]+ KelvinBei[1, x] |
Error | Failure | - | Failed [3 / 3]
{Plus[0.297000428957679, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 1.5]], KelvinBei[Plus[1.0, Null], 1.5], Times[-1.0, KelvinBer[Plus[-1.0, Null], 1.5]], KelvinBer[Plus[1.0, Null], 1.5]]]] <- {Rule[x, 1.5]} Plus[0.011047944038096752, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 0.5]], KelvinBei[Plus[1.0, Null], 0.5], Times[-1.0, KelvinBer[Plus[-1.0, Null], 0.5]], KelvinBer[Plus[1.0, Null], 0.5]]]] <- {Rule[x, 0.5]} |
10.63#Ex10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2}\Kelvinbei{}'@@{x} = -\Kelvinber{1}x+\Kelvinbei{1}x} | diff( KelvinBei(, x), x$(1) ) = - KelvinBer(1, x)+ KelvinBei(1, x) |
D[KelvinBei[, x], {x, 1}] == - KelvinBer[1, x]+ KelvinBei[1, x] |
Error | Failure | - | Failed [3 / 3]
{Plus[-1.0327304069618592, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 1.5]], KelvinBei[Plus[1.0, Null], 1.5], KelvinBer[Plus[-1.0, Null], 1.5], Times[-1.0, KelvinBer[Plus[1.0, Null], 1.5]]]]] <- {Rule[x, 1.5]} Plus[-0.35343830347212746, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 0.5]], KelvinBei[Plus[1.0, Null], 0.5], KelvinBer[Plus[-1.0, Null], 0.5], Times[-1.0, KelvinBer[Plus[1.0, Null], 0.5]]]]] <- {Rule[x, 0.5]} |
10.63#Ex11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2}\Kelvinker{}'@@{x} = \Kelvinker{1}x+\Kelvinkei{1}x} | diff( KelvinKer(, x), x$(1) ) = KelvinKer(1, x)+ KelvinKei(1, x) |
D[KelvinKer[, x], {x, 1}] == KelvinKer[1, x]+ KelvinKei[1, x] |
Error | Failure | - | Failed [3 / 3]
{Plus[0.4160356041812476, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 1.5]], KelvinKei[Plus[1.0, Null], 1.5], Times[-1.0, KelvinKer[Plus[-1.0, Null], 1.5]], KelvinKer[Plus[1.0, Null], 1.5]]]] <- {Rule[x, 1.5]} Plus[2.5735854919446126, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 0.5]], KelvinKei[Plus[1.0, Null], 0.5], Times[-1.0, KelvinKer[Plus[-1.0, Null], 0.5]], KelvinKer[Plus[1.0, Null], 0.5]]]] <- {Rule[x, 0.5]} |
10.63#Ex12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2}\Kelvinkei{}'@@{x} = -\Kelvinker{1}x+\Kelvinkei{1}x} | diff( KelvinKei(, x), x$(1) ) = - KelvinKer(1, x)+ KelvinKei(1, x) |
D[KelvinKei[, x], {x, 1}] == - KelvinKer[1, x]+ KelvinKei[1, x] |
Error | Failure | - | Failed [3 / 3]
{Plus[-0.418052966151267, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 1.5]], KelvinKei[Plus[1.0, Null], 1.5], KelvinKer[Plus[-1.0, Null], 1.5], Times[-1.0, KelvinKer[Plus[1.0, Null], 1.5]]]]] <- {Rule[x, 1.5]} Plus[-0.47122132111956727, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 0.5]], KelvinKei[Plus[1.0, Null], 0.5], KelvinKer[Plus[-1.0, Null], 0.5], Times[-1.0, KelvinKer[Plus[1.0, Null], 0.5]]]]] <- {Rule[x, 0.5]} |
10.63#Ex17 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{\nu+1} = p_{\nu-1}-(4\nu/x)r_{\nu}} | p[nu + 1] = p[nu - 1]-(4*nu/ x)* r[nu] |
Subscript[p, \[Nu]+ 1] == Subscript[p, \[Nu]- 1]-(4*\[Nu]/ x)* Subscript[r, \[Nu]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.63#Ex18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q_{\nu+1} = -(\nu/x)p_{\nu}+r_{\nu}} | q[nu + 1] = -(nu/ x)* p[nu]+ r[nu] |
Subscript[q, \[Nu]+ 1] == -(\[Nu]/ x)* Subscript[p, \[Nu]]+ Subscript[r, \[Nu]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.63#Ex19 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r_{\nu+1} = -((\nu+1)/x)p_{\nu+1}+q_{\nu}} | r[nu + 1] = -((nu + 1)/ x)* p[nu + 1]+ q[nu] |
Subscript[r, \[Nu]+ 1] == -((\[Nu]+ 1)/ x)* Subscript[p, \[Nu]+ 1]+ Subscript[q, \[Nu]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.63#Ex20 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s_{\nu} = \tfrac{1}{2}p_{\nu+1}+\tfrac{1}{2}p_{\nu-1}-(\nu^{2}/x^{2})p_{\nu}} | s[nu] = (1)/(2)*p[nu + 1]+(1)/(2)*p[nu - 1]-((nu)^(2)/ (x)^(2))* p[nu] |
Subscript[s, \[Nu]] == Divide[1,2]*Subscript[p, \[Nu]+ 1]+Divide[1,2]*Subscript[p, \[Nu]- 1]-(\[Nu]^(2)/ (x)^(2))* Subscript[p, \[Nu]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.63.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{\nu}s_{\nu} = r_{\nu}^{2}+q_{\nu}^{2}} | p[nu]*s[nu] = (r[nu])^(2)+ (q[nu])^(2) |
Subscript[p, \[Nu]]*Subscript[s, \[Nu]] == (Subscript[r, \[Nu]])^(2)+ (Subscript[q, \[Nu]])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.64.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t}} | KelvinBer(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(cos(x*sin(t)- n*t)*cosh(x*sin(t)), t = 0..Pi) |
KelvinBer[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Cos[x*Sin[t]- n*t]*Cosh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None] |
Failure | Error | Successful [Tested: 9] | Skipped - Because timed out |
10.64.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t}} | KelvinBei(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(sin(x*sin(t)- n*t)*sinh(x*sin(t)), t = 0..Pi) |
KelvinBei[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Sin[x*Sin[t]- n*t]*Sinh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None] |
Failure | Error | Successful [Tested: 9] | Skipped - Because timed out |
10.65#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\cos@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}} | KelvinBer(nu, x) = ((1)/(2)*x)^(nu)* sum((cos((3)/(4)*nu*Pi +(1)/(2)*k*Pi))/(factorial(k)*GAMMA(nu + k + 1))*((1)/(4)*(x)^(2))^(k), k = 0..infinity) |
KelvinBer[\[Nu], x] == (Divide[1,2]*x)^\[Nu]* Sum[Divide[Cos[Divide[3,4]*\[Nu]*Pi +Divide[1,2]*k*Pi],(k)!*Gamma[\[Nu]+ k + 1]]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.65#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\sin@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}} | KelvinBei(nu, x) = ((1)/(2)*x)^(nu)* sum((sin((3)/(4)*nu*Pi +(1)/(2)*k*Pi))/(factorial(k)*GAMMA(nu + k + 1))*((1)/(4)*(x)^(2))^(k), k = 0..infinity) |
KelvinBei[\[Nu], x] == (Divide[1,2]*x)^\[Nu]* Sum[Divide[Sin[Divide[3,4]*\[Nu]*Pi +Divide[1,2]*k*Pi],(k)!*Gamma[\[Nu]+ k + 1]]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.65#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{}@@{x} = 1-\frac{(\frac{1}{4}x^{2})^{2}}{(2!)^{2}}+\frac{(\frac{1}{4}x^{2})^{4}}{(4!)^{2}}-\dotsb} | KelvinBer(, x) = 1 -(((1)/(4)*(x)^(2))^(2))/((factorial(2))^(2))+(((1)/(4)*(x)^(2))^(4))/((factorial(4))^(2))- .. |
KelvinBer[, x] == 1 -Divide[(Divide[1,4]*(x)^(2))^(2),((2)!)^(2)]+Divide[(Divide[1,4]*(x)^(2))^(4),((4)!)^(2)]- \[Ellipsis] |
Error | Failure | - | Failed [3 / 3]
{Plus[-0.921072244644165, …, KelvinBer[Null, 1.5]] <- {Rule[x, 1.5]} Plus[-0.9990234639909532, …, KelvinBer[Null, 0.5]] <- {Rule[x, 0.5]} |
10.65#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{}@@{x} = \tfrac{1}{4}x^{2}-\frac{(\frac{1}{4}x^{2})^{3}}{(3!)^{2}}+\frac{(\frac{1}{4}x^{2})^{5}}{(5!)^{2}}-\dotsi} | KelvinBei(, x) = (1)/(4)*(x)^(2)-(((1)/(4)*(x)^(2))^(3))/((factorial(3))^(2))+(((1)/(4)*(x)^(2))^(5))/((factorial(5))^(2))- .. |
KelvinBei[, x] == Divide[1,4]*(x)^(2)-Divide[(Divide[1,4]*(x)^(2))^(3),((3)!)^(2)]+Divide[(Divide[1,4]*(x)^(2))^(5),((5)!)^(2)]- \[Ellipsis] |
Error | Failure | - | Failed [3 / 3]
{Plus[-0.5575600630044937, …, KelvinBei[Null, 1.5]] <- {Rule[x, 1.5]} Plus[-0.06249321838219961, …, KelvinBei[Null, 0.5]] <- {Rule[x, 0.5]} |
10.65#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinbei{}@@{x}-\tfrac{1}{4}\pi\Kelvinber{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+2}}{((2k+1)!)^{2}}(\tfrac{1}{4}x^{2})^{2k+1}} | KelvinBer(, x)+ sum((- 1)^(k)*(Psi(2*k + 2))/((factorial(2*k + 1))^(2))*((1)/(4)*(x)^(2))^(2*k + 1), k = 0..infinity) |
KelvinBer[, x]+ Sum[(- 1)^(k)*Divide[PolyGamma[2*k + 2],((2*k + 1)!)^(2)]*(Divide[1,4]*(x)^(2))^(2*k + 1), {k, 0, Infinity}, GenerateConditions->None] |
Error | Failure | - | Failed [3 / 3]
{Plus[-0.23161280473545226, Times[-1.0, KelvinBer[Null, 1.5]], KelvinKei[Null, 1.5]] <- {Rule[x, 1.5]} Plus[-0.02641550246351669, Times[-1.0, KelvinBer[Null, 0.5]], KelvinKei[Null, 0.5]] <- {Rule[x, 0.5]} |
10.65.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x} = (\tfrac{1}{2}x)^{2\nu}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}} | (KelvinBer(nu, x))^(2)+ (KelvinBei(nu, x))^(2) = ((1)/(2)*x)^(2*nu)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 1))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity) |
(KelvinBer[\[Nu], x])^(2)+ (KelvinBei[\[Nu], x])^(2) == (Divide[1,2]*x)^(2*\[Nu])* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 1]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None] |
Successful | Successful | - | Successful [Tested: 30] |
10.65.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{2\nu+1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+2}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}} | KelvinBer(nu, x)*diff( KelvinBei(nu, x), x$(1) )- diff( KelvinBer(nu, x), x$(1) )*KelvinBei(nu, x) = ((1)/(2)*x)^(2*nu + 1)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 2))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity) |
KelvinBer[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}]- D[KelvinBer[\[Nu], x], {x, 1}]*KelvinBei[\[Nu], x] == (Divide[1,2]*x)^(2*\[Nu]+ 1)* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 2]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Successful | Failed [21 / 30] 21/30]: [[.7271930e-3+.45983036e-2*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2} -.41528503e-2+.322695404e-1*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 2} |
Failed [3 / 30]
{Indeterminate <- {Rule[x, 1.5], Rule[ν, -2]} Indeterminate <- {Rule[x, 0.5], Rule[ν, -2]} |
10.65.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}\Kelvinber{\nu}'@@{x}+\Kelvinbei{\nu}@@{x}\Kelvinbei{\nu}'@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{2\nu-1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}} | KelvinBer(nu, x)*diff( KelvinBer(nu, x), x$(1) )+ KelvinBei(nu, x)*diff( KelvinBei(nu, x), x$(1) ) = (1)/(2)*((1)/(2)*x)^(2*nu - 1)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity) |
KelvinBer[\[Nu], x]*D[KelvinBer[\[Nu], x], {x, 1}]+ KelvinBei[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}] == Divide[1,2]*(Divide[1,2]*x)^(2*\[Nu]- 1)* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Successful | Failed [25 / 30] 25/30]: [[.71978298e-2-.3037583875e-1*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2} .607273780e-1-.1071579728*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 2} |
Failed [3 / 30]
{Indeterminate <- {Rule[x, 1.5], Rule[ν, -2]} Indeterminate <- {Rule[x, 0.5], Rule[ν, -2]} |
10.65.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\Kelvinber{\nu}'@@{x}\right)^{2}+\left(\Kelvinbei{\nu}'@@{x}\right)^{2} = (\tfrac{1}{2}x)^{2\nu-2}\sum_{k=0}^{\infty}\frac{2k^{2}+2\nu k+\frac{1}{4}\nu^{2}}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}} | (diff( KelvinBer(nu, x), x$(1) ))^(2)+(diff( KelvinBei(nu, x), x$(1) ))^(2) = ((1)/(2)*x)^(2*nu - 2)* sum((2*(k)^(2)+ 2*nu*k +(1)/(4)*(nu)^(2))/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 1))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity) |
(D[KelvinBer[\[Nu], x], {x, 1}])^(2)+(D[KelvinBei[\[Nu], x], {x, 1}])^(2) == (Divide[1,2]*x)^(2*\[Nu]- 2)* Sum[Divide[2*(k)^(2)+ 2*\[Nu]*k +Divide[1,4]*\[Nu]^(2),Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 1]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Successful | Failed [3 / 30] 3/30]: [[Float(undefined)+Float(undefined)*I <- {nu = -2, x = 3/2} Float(undefined)+Float(undefined)*I <- {nu = -2, x = 1/2} |
Failed [3 / 30]
{Indeterminate <- {Rule[x, 1.5], Rule[ν, -2]} Indeterminate <- {Rule[x, 0.5], Rule[ν, -2]} |
10.66.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!}} | KelvinBer(nu, x)+ I*KelvinBei(nu, x) = sum((exp((3*nu + k)* Pi*I/ 4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/ 2)* factorial(k)), k = 0..infinity) |
KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == Sum[Divide[Exp[(3*\[Nu]+ k)* Pi*I/ 4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/ 2)* (k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [30 / 30]
{Plus[Complex[-0.12257968900025018, 0.2735107661041647], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Complex[0.3467793075651209, -0.08562995402477025], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.66.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/4}x^{k}\modBesselI{\nu+k}@{x}}{2^{k/2}k!}} | sum((exp((3*nu + k)* Pi*I/ 4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/ 2)* factorial(k)), k = 0..infinity) = sum((exp((3*nu + 3*k)* Pi*I/ 4)*(x)^(k)* BesselI(nu + k, x))/((2)^(k/ 2)* factorial(k)), k = 0..infinity) |
Sum[Divide[Exp[(3*\[Nu]+ k)* Pi*I/ 4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/ 2)* (k)!], {k, 0, Infinity}, GenerateConditions->None] == Sum[Divide[Exp[(3*\[Nu]+ 3*k)* Pi*I/ 4]*(x)^(k)* BesselI[\[Nu]+ k, x],(2)^(k/ 2)* (k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [30 / 30]
{Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.66#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k}@{x}\modBesselI{2k}@{x}} | KelvinBer(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k, x)*BesselI(2*k, x), k = - infinity..infinity) |
KelvinBer[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k, x]*BesselI[2*k, x], {k, - Infinity, Infinity}, GenerateConditions->None] |
Failure | Error | Successful [Tested: 9] | Skipped - Because timed out |
10.66#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k+1}@{x}\modBesselI{2k+1}@{x}} | KelvinBei(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k + 1, x)*BesselI(2*k + 1, x), k = - infinity..infinity) |
KelvinBei[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k + 1, x]*BesselI[2*k + 1, x], {k, - Infinity, Infinity}, GenerateConditions->None] |
Failure | Error | Successful [Tested: 9] | Skipped - Because timed out |
10.68#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodM{\nu}@{x} = (\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x})^{\ifrac{1}{2}}} | Error |
Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2] == ((KelvinBer[\[Nu], x])^(2)+ (KelvinBei[\[Nu], x])^(2))^(Divide[1,2]) |
Error | Successful | - | Successful [Tested: 30] |
10.68#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodderivN{\nu}@{x} = (\Kelvinker{\nu}^{2}@@{x}+\Kelvinkei{\nu}^{2}@@{x})^{\ifrac{1}{2}}} | Error |
Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2] == ((KelvinKer[\[Nu], x])^(2)+ (KelvinKei[\[Nu], x])^(2))^(Divide[1,2]) |
Error | Successful | - | Successful [Tested: 30] |
10.68#Ex9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodM{-n}@{x} = \HankelmodM{n}@{x}} | Error |
Sqrt[KelvinBer[- n, x]^2 + KelvinBei[- n, x]^2] == Sqrt[KelvinBer[n, x]^2 + KelvinBei[n, x]^2] |
Error | Failure | - | Successful [Tested: 9] |
10.68#Ex17 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodderivN{-\nu}@{x} = \HankelmodderivN{\nu}@{x}} | Error |
Sqrt[KelvinKer[- \[Nu], x]^2 + KelvinKei[- \[Nu], x]^2] == Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2] |
Error | Failure | - | Successful [Tested: 30] |
10.71.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x^{1+\nu}f_{\nu}\diff{x} = -\frac{x^{1+\nu}}{\sqrt{2}}(f_{\nu+1}-g_{\nu+1})} | int((x)^(1 + nu)* f[nu], x) = -((x)^(1 + nu))/(sqrt(2))*(f[nu + 1]- g[nu + 1]) |
Integrate[(x)^(1 + \[Nu])* Subscript[f, \[Nu]], x, GenerateConditions->None] == -Divide[(x)^(1 + \[Nu]),Sqrt[2]]*(Subscript[f, \[Nu]+ 1]- Subscript[g, \[Nu]+ 1]) |
Failure | Failure | Failed [300 / 300] 300/300]: [[.9346151411+.5776724966*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I} 3.061934630+.4518721345*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = -1/2+1/2*I*3^(1/2)} |
Failed [300 / 300]
{Complex[0.9346151408625077, 0.5776724967688012] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[3.061934629891139, 0.45187213490403344] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.71.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x^{1-\nu}f_{\nu}\diff{x} = \frac{x^{1-\nu}}{\sqrt{2}}(f_{\nu-1}-g_{\nu-1})} | int((x)^(1 - nu)* f[nu], x) = ((x)^(1 - nu))/(sqrt(2))*(f[nu - 1]- g[nu - 1]) |
Integrate[(x)^(1 - \[Nu])* Subscript[f, \[Nu]], x, GenerateConditions->None] == Divide[(x)^(1 - \[Nu]),Sqrt[2]]*(Subscript[f, \[Nu]- 1]- Subscript[g, \[Nu]- 1]) |
Failure | Failure | Failed [300 / 300] 300/300]: [[.9470105611+.8580421171*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu-1] = 1/2*3^(1/2)+1/2*I} .30703090e-2+1.331056152*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu-1] = -1/2+1/2*I*3^(1/2)} |
Failed [300 / 300]
{Complex[0.9470105613079453, 0.8580421172974921] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.0030703089818392426, 1.3310561520338196] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
10.71.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int xf_{\nu}g_{\nu}\diff{x} = \tfrac{1}{4}x^{2}\left(2f_{\nu}g_{\nu}-f_{\nu-1}g_{\nu+1}-f_{\nu+1}g_{\nu-1}\right)} | int(x*f[nu]*g[nu], x) = (1)/(4)*(x)^(2)*(2*f[nu]*g[nu]- f[nu - 1]*g[nu + 1]- f[nu + 1]*g[nu - 1]) |
Integrate[x*Subscript[f, \[Nu]]*Subscript[g, \[Nu]], x, GenerateConditions->None] == Divide[1,4]*(x)^(2)*(2*Subscript[f, \[Nu]]*Subscript[g, \[Nu]]- Subscript[f, \[Nu]- 1]*Subscript[g, \[Nu]+ 1]- Subscript[f, \[Nu]+ 1]*Subscript[g, \[Nu]- 1]) |
Failure | Failure | Failed [270 / 300] 270/300]: [[.5625000004+.9742785795*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I, g[nu-1] = 1/2*3^(1/2)+1/2*I} -.2058892896+.7683892900*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I, g[nu-1] = -1/2+1/2*I*3^(1/2)} |
Skipped - Because timed out |
10.71.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x(f_{\nu}^{2}-g_{\nu}^{2})\diff{x} = \tfrac{1}{2}x^{2}\left(f_{\nu}^{2}-f_{\nu-1}f_{\nu+1}-g_{\nu}^{2}+g_{\nu-1}g_{\nu+1}\right)} | int(x*(f(f[nu])^(2)- g(g[nu])^(2)), x) = (f(f[nu])^(2)- f[nu - 1]*f[nu + 1]- g(g[nu])^(2)+ g[nu - 1]*g[nu + 1]) |
Integrate[x*(f(Subscript[f, \[Nu]])^(2)- g(Subscript[g, \[Nu]])^(2)), x, GenerateConditions->None] == (f(Subscript[f, \[Nu]])^(2)- Subscript[f, \[Nu]- 1]*Subscript[f, \[Nu]+ 1]- g(Subscript[g, \[Nu]])^(2)+ Subscript[g, \[Nu]- 1]*Subscript[g, \[Nu]+ 1]) |
Failure | Failure | Error | Error |
10.71#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x\HankelmodM{\nu}^{2}@{x}\diff{x} = x(\Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x})} | Error |
Integrate[x*(Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2])^(2), x, GenerateConditions->None] == x*(KelvinBer[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}]- D[KelvinBer[\[Nu], x], {x, 1}]*KelvinBei[\[Nu], x]) |
Error | Successful | - | Successful [Tested: 30] |
10.71#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x\HankelmodderivN{\nu}^{2}@{x}\diff{x} = x(\Kelvinker{\nu}@@{x}\Kelvinkei{\nu}'@@{x}-\Kelvinker{\nu}'@@{x}\Kelvinkei{\nu}@@{x})} | Error |
Integrate[x*(Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2])^(2), x, GenerateConditions->None] == x*(KelvinKer[\[Nu], x]*D[KelvinKei[\[Nu], x], {x, 1}]- D[KelvinKer[\[Nu], x], {x, 1}]*KelvinKei[\[Nu], x]) |
Error | Successful | - | Successful [Tested: 30] |
10.73.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{r}\pderiv{}{r}\left(r\pderiv{V}{r}\right)+\frac{1}{r^{2}}\pderiv[2]{V}{\phi}+\pderiv[2]{V}{z} = 0} | (1)/(r)*diff((r*diff(V, r))+(1)/((r)^(2))*diff(V, [phi$(2)]), r)+ diff(V, [z$(2)]) = 0 |
Divide[1,r]*D[(r*D[V, r])+Divide[1,(r)^(2)]*D[V, {\[Phi], 2}], r]+ D[V, {z, 2}] == 0 |
Successful | Successful | - | Successful [Tested: 300] |