15.15: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
|  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica | ||
| Line 14: | Line 14: | ||
| ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
| |-   | |-   | ||
| | [https://dlmf.nist.gov/15.15.E1 15.15.E1] | | | [https://dlmf.nist.gov/15.15.E1 15.15.E1] || <math qid="Q5177">\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [c], (1)/(z))/GAMMA(c) = (1 -(z[0])/(z))^(- a)* sum((a[s])/(factorial(s))* hypergeom([- s, b], [c], (1)/(z[0]))/GAMMA(c)*(1 -(z)/(z[0]))^(- s), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1Regularized[a, b, c, Divide[1,z]] == (1 -Divide[Subscript[z, 0],z])^(- a)* Sum[Divide[Subscript[a, s],(s)!]* Hypergeometric2F1Regularized[- s, b, c, Divide[1,Subscript[z, 0]]]*(1 -Divide[z,Subscript[z, 0]])^(- s), {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out | ||
| |} | |} | ||
| </div> | </div> | ||
Latest revision as of 11:41, 28 June 2021
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple | Symbolic Mathematica | Numeric Maple | Numeric Mathematica | 
|---|---|---|---|---|---|---|---|---|
| 15.15.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}} \hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | hypergeom([a, b], [c], (1)/(z))/GAMMA(c) = (1 -(z[0])/(z))^(- a)* sum((a[s])/(factorial(s))* hypergeom([- s, b], [c], (1)/(z[0]))/GAMMA(c)*(1 -(z)/(z[0]))^(- s), s = 0..infinity)
 | Hypergeometric2F1Regularized[a, b, c, Divide[1,z]] == (1 -Divide[Subscript[z, 0],z])^(- a)* Sum[Divide[Subscript[a, s],(s)!]* Hypergeometric2F1Regularized[- s, b, c, Divide[1,Subscript[z, 0]]]*(1 -Divide[z,Subscript[z, 0]])^(- s), {s, 0, Infinity}, GenerateConditions->None]
 | Failure | Failure | Skipped - Because timed out | Skipped - Because timed out |