12.11: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.11.E5 12.11.E5] || [[Item:Q4221|<math>p_{0}(\zeta) = t(\zeta)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{0}(\zeta) = t(\zeta)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[0](zeta) = t(zeta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 0][\[Zeta]] == t[\[Zeta]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.11.E5 12.11.E5] || <math qid="Q4221">p_{0}(\zeta) = t(\zeta)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{0}(\zeta) = t(\zeta)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[0](zeta) = t(zeta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 0][\[Zeta]] == t[\[Zeta]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.11.E6 12.11.E6] || [[Item:Q4222|<math>p_{1}(\zeta) = \frac{t^{3}-6t}{24(t^{2}-1)^{2}}+\frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{1}(\zeta) = \frac{t^{3}-6t}{24(t^{2}-1)^{2}}+\frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[1](zeta) = ((t)^(3)- 6*t)/(24*((t)^(2)- 1)^(2))+(5)/(48*(((t)^(2)- 1)*(zeta)^(3))^((1)/(2)))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 1][\[Zeta]] == Divide[(t)^(3)- 6*t,24*((t)^(2)- 1)^(2)]+Divide[5,48*(((t)^(2)- 1)*\[Zeta]^(3))^(Divide[1,2])]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.11.E6 12.11.E6] || <math qid="Q4222">p_{1}(\zeta) = \frac{t^{3}-6t}{24(t^{2}-1)^{2}}+\frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{1}(\zeta) = \frac{t^{3}-6t}{24(t^{2}-1)^{2}}+\frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[1](zeta) = ((t)^(3)- 6*t)/(24*((t)^(2)- 1)^(2))+(5)/(48*(((t)^(2)- 1)*(zeta)^(3))^((1)/(2)))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 1][\[Zeta]] == Divide[(t)^(3)- 6*t,24*((t)^(2)- 1)^(2)]+Divide[5,48*(((t)^(2)- 1)*\[Zeta]^(3))^(Divide[1,2])]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.11.E8 12.11.E8] || [[Item:Q4224|<math>q_{0}(\zeta) = t(\zeta)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{0}(\zeta) = t(\zeta)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[0](zeta) = t(zeta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, 0][\[Zeta]] == t[\[Zeta]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.11.E8 12.11.E8] || <math qid="Q4224">q_{0}(\zeta) = t(\zeta)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{0}(\zeta) = t(\zeta)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[0](zeta) = t(zeta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, 0][\[Zeta]] == t[\[Zeta]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:31, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.11.E5 p 0 ( ζ ) = t ( ζ ) subscript 𝑝 0 𝜁 𝑡 𝜁 {\displaystyle{\displaystyle p_{0}(\zeta)=t(\zeta)}}
p_{0}(\zeta) = t(\zeta)

p[0](zeta) = t(zeta)
Subscript[p, 0][\[Zeta]] == t[\[Zeta]]
Skipped - no semantic math Skipped - no semantic math - -
12.11.E6 p 1 ( ζ ) = t 3 - 6 t 24 ( t 2 - 1 ) 2 + 5 48 ( ( t 2 - 1 ) ζ 3 ) 1 2 subscript 𝑝 1 𝜁 superscript 𝑡 3 6 𝑡 24 superscript superscript 𝑡 2 1 2 5 48 superscript superscript 𝑡 2 1 superscript 𝜁 3 1 2 {\displaystyle{\displaystyle p_{1}(\zeta)=\frac{t^{3}-6t}{24(t^{2}-1)^{2}}+% \frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}}}
p_{1}(\zeta) = \frac{t^{3}-6t}{24(t^{2}-1)^{2}}+\frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}

p[1](zeta) = ((t)^(3)- 6*t)/(24*((t)^(2)- 1)^(2))+(5)/(48*(((t)^(2)- 1)*(zeta)^(3))^((1)/(2)))
Subscript[p, 1][\[Zeta]] == Divide[(t)^(3)- 6*t,24*((t)^(2)- 1)^(2)]+Divide[5,48*(((t)^(2)- 1)*\[Zeta]^(3))^(Divide[1,2])]
Skipped - no semantic math Skipped - no semantic math - -
12.11.E8 q 0 ( ζ ) = t ( ζ ) subscript 𝑞 0 𝜁 𝑡 𝜁 {\displaystyle{\displaystyle q_{0}(\zeta)=t(\zeta)}}
q_{0}(\zeta) = t(\zeta)

q[0](zeta) = t(zeta)
Subscript[q, 0][\[Zeta]] == t[\[Zeta]]
Skipped - no semantic math Skipped - no semantic math - -