8.21: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/8.21.E3 8.21.E3] || [[Item:Q2724|<math>\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</syntaxhighlight> || <math>0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)* exp(+ I*t), t = 0..infinity) = exp(+(1)/(2)*Pi*I*a)*GAMMA(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[+Divide[1,2]*Pi*I*a]*Gamma[a]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/8.21.E3 8.21.E3] || <math qid="Q2724">\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</syntaxhighlight> || <math>0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)* exp(+ I*t), t = 0..infinity) = exp(+(1)/(2)*Pi*I*a)*GAMMA(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[+Divide[1,2]*Pi*I*a]*Gamma[a]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/8.21.E3 8.21.E3] || [[Item:Q2724|<math>\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</syntaxhighlight> || <math>0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)* exp(- I*t), t = 0..infinity) = exp(-(1)/(2)*Pi*I*a)*GAMMA(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[-Divide[1,2]*Pi*I*a]*Gamma[a]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/8.21.E3 8.21.E3] || <math qid="Q2724">\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</syntaxhighlight> || <math>0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)* exp(- I*t), t = 0..infinity) = exp(-(1)/(2)*Pi*I*a)*GAMMA(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[-Divide[1,2]*Pi*I*a]*Gamma[a]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 1]
|}
|}
</div>
</div>

Latest revision as of 12:19, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.21.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}}
\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0}
int((t)^(a - 1)* exp(+ I*t), t = 0..infinity) = exp(+(1)/(2)*Pi*I*a)*GAMMA(a)
Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[+Divide[1,2]*Pi*I*a]*Gamma[a]
Successful Aborted - Successful [Tested: 1]
8.21.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}}
\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0}
int((t)^(a - 1)* exp(- I*t), t = 0..infinity) = exp(-(1)/(2)*Pi*I*a)*GAMMA(a)
Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[-Divide[1,2]*Pi*I*a]*Gamma[a]
Successful Aborted - Successful [Tested: 1]