Results of Bessel Functions II: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 11: Line 11:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-
|-  
| [https://dlmf.nist.gov/10.22.E38 10.22.E38] || [[Item:Q3412|<math>\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) = (((a)^(2))/((b)^(2))+ (alpha[ell])^(2)- (nu)^(2))*((BesselJ(nu, alpha[ell]))^(2))/(2*(alpha[ell])^(2))*KroneckerDelta[ell, m]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] == (Divide[(a)^(2),(b)^(2)]+ (Subscript[\[Alpha], \[ScriptL]])^(2)- \[Nu]^(2))*Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*(Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.22.E39 10.22.E39] || [[Item:Q3413|<math>\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.22.E39 10.22.E39] || [[Item:Q3413|<math>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.22.E40 10.22.E40] || [[Item:Q3414|<math>\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselY(0, t))/(t), t = x..infinity) = -(1)/(Pi)*(ln((1)/(2)*x)+ gamma)^(2)+(Pi)/(6)+(2)/(Pi)*sum((- 1)^(k)*(Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselY[0, t],t], {t, x, Infinity}, GenerateConditions->None] == -Divide[1,Pi]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[Pi,6]+Divide[2,Pi]*Sum[(- 1)^(k)*(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E41 10.22.E41] || [[Item:Q3415|<math>\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t), t = 0..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 8]
|-
| [https://dlmf.nist.gov/10.22.E42 10.22.E42] || [[Item:Q3416|<math>\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/10.22.E43 10.22.E43] || [[Item:Q3417|<math>\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-
| [https://dlmf.nist.gov/10.22.E44 10.22.E44] || [[Item:Q3418|<math>\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselY(nu, t), t = 0..infinity) = ((2)^(mu))/(Pi)*GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*sin((1)/(2)*mu -(1)/(2)*nu)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2)^\[Mu],Pi]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Sin[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Pi</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5512405929316078, 0.2551977660147906]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.26217720344291356, -0.18052742798771904]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.22.E45 10.22.E45] || [[Item:Q3419|<math>\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}</syntaxhighlight> || <math>1 < \realpart@@{\mu}, \realpart@@{\mu} < 3, \realpart@@{(0+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/((t)^(mu)), t = 0..infinity) = -(Pi*sec((1)/(2)*mu*Pi))/((2)^(mu)* (GAMMA((1)/(2)*mu +(1)/(2)))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],(t)^\[Mu]], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Pi*Sec[Divide[1,2]*\[Mu]*Pi],(2)^\[Mu]* (Gamma[Divide[1,2]*\[Mu]+Divide[1,2]])^(2)]</syntaxhighlight> || Error || Aborted || - || Successful [Tested: 10]
|-
| [https://dlmf.nist.gov/10.22.E46 10.22.E46] || [[Item:Q3420|<math>\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}</syntaxhighlight> || <math>a > 0, \realpart@@{b} > 0, -1 < \realpart@@{\nu}, \realpart@@{\nu} < 2\realpart@@{\mu}+\tfrac{3}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(nu + 1)* BesselJ(nu, a*t))/(((t)^(2)+ (b)^(2))^(mu + 1)), t = 0..infinity) = ((a)^(mu)* (b)^(nu - mu))/((2)^(mu)* GAMMA(mu + 1))*BesselK(nu - mu, a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(\[Nu]+ 1)* BesselJ[\[Nu], a*t],((t)^(2)+ (b)^(2))^(\[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* (b)^(\[Nu]- \[Mu]),(2)^\[Mu]* Gamma[\[Mu]+ 1]]*BesselK[\[Nu]- \[Mu], a*b]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E47 10.22.E47] || [[Item:Q3421|<math>\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}</syntaxhighlight> || <math>a > 0, \realpart@@{b} > 0, -\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{5}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(nu)* BesselY(nu, a*t))/((t)^(2)+ (b)^(2)), t = 0..infinity) = - (b)^(nu - 1)* BesselK(nu, a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^\[Nu]* BesselY[\[Nu], a*t],(t)^(2)+ (b)^(2)], {t, 0, Infinity}, GenerateConditions->None] == - (b)^(\[Nu]- 1)* BesselK[\[Nu], a*b]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E48 10.22.E48] || [[Item:Q3422|<math>\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}</syntaxhighlight> || <math>x > 0, \realpart@@{\nu} > -1, \realpart@@{\mu} > 2\realpart@@{\nu}+\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu-\nu-1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, x*cosh(phi))*(cosh(phi))^(1 - mu)*(sinh(phi))^(2*nu + 1), phi = 0..infinity) = (2)^(nu)* GAMMA(nu + 1)*(x)^(- nu - 1)* BesselJ(mu - nu - 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], x*Cosh[\[Phi]]]*(Cosh[\[Phi]])^(1 - \[Mu])*(Sinh[\[Phi]])^(2*\[Nu]+ 1), {\[Phi], 0, Infinity}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(x)^(- \[Nu]- 1)* BesselJ[\[Mu]- \[Nu]- 1, x]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E49 10.22.E49] || [[Item:Q3423|<math>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* exp(- a*t)*BesselJ(nu, b*t), t = 0..infinity) = (((1)/(2)*b)^(nu))/((a)^(mu + nu))*GAMMA(mu + nu)* hypergeom([(mu + nu)/(2), (mu + nu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b)^\[Nu],(a)^(\[Mu]+ \[Nu])]*Gamma[\[Mu]+ \[Nu]]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[\[Mu]+ \[Nu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]</syntaxhighlight> || Error || Aborted || - || Successful [Tested: 0]
|-
| [https://dlmf.nist.gov/10.22.E50 10.22.E50] || [[Item:Q3424|<math>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}</syntaxhighlight> || <math>\realpart@@{\mu} > |\realpart@@{\nu}|, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0, \realpart@@{(\mu-\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* exp(- a*t)*BesselY(nu, b*t), t = 0..infinity) = cot(nu*Pi)*(((1)/(2)*b)^(nu)* GAMMA(mu + nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu + nu)))* hypergeom([(mu + nu)/(2), (1 - mu + nu)/(2)], [nu + 1], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(nu + 1)- csc(nu*Pi)*(((1)/(2)*b)^(- nu)* GAMMA(mu - nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu - nu)))* hypergeom([(mu - nu)/(2), (1 - mu - nu)/(2)], [1 - nu], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(1 - nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselY[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Cot[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[1 - \[Mu]+ \[Nu],2], \[Nu]+ 1, Divide[(b)^(2),(a)^(2)+ (b)^(2)]]- Csc[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^(- \[Nu])* Gamma[\[Mu]- \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]- \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]- \[Nu],2], Divide[1 - \[Mu]- \[Nu],2], 1 - \[Nu], Divide[(b)^(2),(a)^(2)+ (b)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E51 10.22.E51] || [[Item:Q3425|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(nu + 1), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(-((b)^(2))/(4*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Nu]+ 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[-Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [151 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.06577510728447342, -0.5886826409090221]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.0556301041786353, -0.2359104145157832]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.22.E52 10.22.E52] || [[Item:Q3426|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*BesselI((nu)/(2), ((b)^(2))/(8*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[\[Nu],2], Divide[(b)^(2),8*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated
|-
| [https://dlmf.nist.gov/10.22.E53 10.22.E53] || [[Item:Q3427|<math>\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)</syntaxhighlight> || <math>|\realpart@@{\nu}| < \tfrac{1}{2}, \realpart@{p^{2}} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(2*nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = -(sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*(BesselI(nu, ((b)^(2))/(8*(p)^(2)))*tan(nu*Pi)+(1)/(Pi)*BesselK(nu, ((b)^(2))/(8*(p)^(2)))*sec(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[2*\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*(BesselI[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Tan[\[Nu]*Pi]+Divide[1,Pi]*BesselK[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Sec[\[Nu]*Pi])</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E54 10.22.E54] || [[Item:Q3428|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(mu - 1), t = 0..infinity) = (((1)/(2)*b/p)^(nu)* GAMMA((1)/(2)*nu +(1)/(2)*mu))/(2*(p)^(mu))*exp(-((b)^(2))/(4*(p)^(2)))* KummerM((1)/(2)*nu -(1)/(2)*mu + 1, nu + 1, ((b)^(2))/(4*(p)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Mu]- 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b/p)^\[Nu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]],2*(p)^\[Mu]]*Exp[-Divide[(b)^(2),4*(p)^(2)]]* Hypergeometric1F1Regularized[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, \[Nu]+ 1, Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [246 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.07541885663346475, -0.6281916024632631]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1002850405400357, -0.7734416454563844]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.22.E55 10.22.E55] || [[Item:Q3429|<math>\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}</syntaxhighlight> || <math>\nu+\ell+m > -1, \realpart@@{((\nu+2\ell+1)+k+1)} > 0, \realpart@@{((\nu+2m+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 54]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Rational[-3, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 2], Rule[ℓ, 2], Rule[ν, Rational[-3, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.22.E56 10.22.E56] || [[Item:Q3430|<math>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}</syntaxhighlight> || <math>0 < a, a < b, \realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)* (b)^(mu - lambda + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)*lambda +(1)/(2)))* hypergeom([(1)/(2)*(mu + nu - lambda + 1), (1)/(2)*(mu - nu - lambda + 1)], [mu + 1], ((a)^(2))/((b)^(2)))/GAMMA(mu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]* (b)^(\[Mu]- \[Lambda]+ 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]*\[Lambda]+Divide[1,2]]]* Hypergeometric2F1Regularized[Divide[1,2]*(\[Mu]+ \[Nu]- \[Lambda]+ 1), Divide[1,2]*(\[Mu]- \[Nu]- \[Lambda]+ 1), \[Mu]+ 1, Divide[(a)^(2),(b)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.12507202091813296, -0.11002587193353452]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.017959797138118128, 0.3252875517547388]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.22.E57 10.22.E57] || [[Item:Q3431|<math>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\lambda)} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, a*t)*BesselJ(nu, a*t))/((t)^(lambda)), t = 0..infinity) = (((1)/(2)*a)^(lambda - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu -(1)/(2)*lambda +(1)/(2))*GAMMA(lambda))/(2*GAMMA((1)/(2)*lambda +(1)/(2)*nu -(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu +(1)/(2)*nu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], a*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*a)^(\[Lambda]- 1)* Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]]*Gamma[\[Lambda]],2*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E58 10.22.E58] || [[Item:Q3432|<math>\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}</syntaxhighlight> || <math>a \neq b, \realpart@{2\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(nu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a*b)^(nu)* GAMMA(nu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)*((a)^(2)+ (b)^(2))^(nu -(1)/(2)*lambda +(1)/(2))* GAMMA((1)/(2)*lambda +(1)/(2)))*hypergeom([(2*nu + 1 - lambda)/(4), (2*nu + 3 - lambda)/(4)], [nu + 1], (4*(a)^(2)* (b)^(2))/(((a)^(2)+ (b)^(2))^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a*b)^\[Nu]* Gamma[\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]*((a)^(2)+ (b)^(2))^(\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2])* Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]]]*Hypergeometric2F1Regularized[Divide[2*\[Nu]+ 1 - \[Lambda],4], Divide[2*\[Nu]+ 3 - \[Lambda],4], \[Nu]+ 1, Divide[4*(a)^(2)* (b)^(2),((a)^(2)+ (b)^(2))^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [209 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.13393539357334844, 0.1322614378889556]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.07230690300251369, -0.15068591568973605]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.22.E66 10.22.E66] || [[Item:Q3440|<math>\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t), t = 0..infinity) = (1)/(Pi*(b*c)^((1)/(2)))* LegendreQ(nu -(1)/(2), ((a)^(2)+ (b)^(2)+ (c)^(2))/(2*b*c))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Pi*(b*c)^(Divide[1,2])]* LegendreQ[\[Nu]-Divide[1,2], 0, 3, Divide[(a)^(2)+ (b)^(2)+ (c)^(2),2*b*c]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E67 10.22.E67] || [[Item:Q3441|<math>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(nu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(-((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[-Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-
| [https://dlmf.nist.gov/10.22.E68 10.22.E68] || [[Item:Q3442|<math>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)</syntaxhighlight> || <math>\realpart@{p^{2}} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(0, a*t)*BesselY(0, a*t), t = 0..infinity) = -(1)/(2*Pi*(p)^(2))*exp(-((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[0, a*t]*BesselY[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == -Divide[1,2*Pi*(p)^(2)]*Exp[-Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-
| [https://dlmf.nist.gov/10.22.E70 10.22.E70] || [[Item:Q3444|<math>\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}</syntaxhighlight> || <math>a \geq b, b > 0, \realpart@@{\nu} > -\tfrac{3}{2}, \imagpart@@{z} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(nu, a*t)*BesselJ(nu + 1, b*t)*(t)/((t)^(2)- (z)^(2)), t = 0..infinity) = (1)/(2)*Pi*BesselJ(nu + 1, b*z)*HankelH1(nu, a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Nu], a*t]*BesselJ[\[Nu]+ 1, b*t]*Divide[t,(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ 1, b*z]*HankelH1[\[Nu], a*z]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.22.E71 10.22.E71] || [[Item:Q3445|<math>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, |b-c| < a, a < b+c, \cos@@{\phi} = (b^{2}+c^{2}-a^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)*(sin(phi))^(mu -(1)/(2)))/((2*Pi)^((1)/(2))* (a)^(mu))*LegendreP(nu -(1)/(2), (1)/(2)- mu, cos(phi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)*(Sin[\[Phi]])^(\[Mu]-Divide[1,2]),(2*Pi)^(Divide[1,2])* (a)^\[Mu]]*LegendreP[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], Cos[\[Phi]]]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-
| [https://dlmf.nist.gov/10.22.E72 10.22.E72] || [[Item:Q3446|<math>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, a > b+c, \cosh@@{\chi} = (a^{2}-b^{2}-c^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)* sin((mu - nu)*Pi)*(sinh(chi))^(mu -(1)/(2)))/(((1)/(2)*(Pi)^(3))^((1)/(2))* (a)^(mu))*exp((mu -(1)/(2))*I*Pi)*LegendreQ(nu -(1)/(2), (1)/(2)- mu, cosh(chi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)* Sin[(\[Mu]- \[Nu])*Pi]*(Sinh[\[Chi]])^(\[Mu]-Divide[1,2]),(Divide[1,2]*(Pi)^(3))^(Divide[1,2])* (a)^\[Mu]]*Exp[(\[Mu]-Divide[1,2])*I*Pi]*LegendreQ[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], 3, Cosh[\[Chi]]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated
|-
| [https://dlmf.nist.gov/10.23.E3 10.23.E3] || [[Item:Q3455|<math>\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Aborted || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.23.E4 10.23.E4] || [[Item:Q3456|<math>\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0</syntaxhighlight> || <math>n \geq 1, \realpart@@{(k+k+1)} > 0, \realpart@@{((2n-k)+k+1)} > 0, \realpart@@{((2n+k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z)*; , k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z]*, {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.23.E5 10.23.E5] || [[Item:Q3457|<math>\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}</syntaxhighlight> || <math>\realpart@@{(k+k+1)} > 0, \realpart@@{((n-k)+k+1)} > 0, \realpart@@{((n+k)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.23#Ex1 10.23#Ex1] || [[Item:Q3458|<math>w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha))</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3146075610-.1816387601*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.680632965+.1843866439*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3146075609842255, -0.18163876002333418]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4375091763619045, 0.252596040745477]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.23#Ex2 10.23#Ex2] || [[Item:Q3459|<math>u-v\cos@@{\alpha} = w\cos@@{\chi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u-v\cos@@{\alpha} = w\cos@@{\chi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u - v*cos(alpha) = w*cos(chi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u - v*Cos[\[Alpha]] == w*Cos[\[Chi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.263783978e-1+.4431282844*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8262683052-.3665121890*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.026378398027867456, 0.44312828415668515]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.023973249213014358, -0.5554825514041751]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.23#Ex3 10.23#Ex3] || [[Item:Q3460|<math>v\sin@@{\alpha} = w\sin@@{\chi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>v\sin@@{\alpha} = w\sin@@{\chi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>v*sin(alpha) = w*sin(chi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>v*Sin[\[Alpha]] == w*Sin[\[Chi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2887554391-.2231097873*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.585713279-.763530664e-1*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [294 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.2887554393029954, -0.22310978722682606]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.8740447527972026, 0.09051196331992012]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.23.E9 10.23.E9] || [[Item:Q3463|<math>e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu)} > 0</math> || <syntaxhighlight lang=mathematica>exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)*(I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)*(I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.23.E15 10.23.E15] || [[Item:Q3469|<math>(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}</syntaxhighlight> || <math>\realpart@@{((\nu+2k)+k+1)} > 0, \realpart@@{(\nu+k)} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*z)^(nu) = sum(((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Skipped - Because timed out || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.23.E16 10.23.E16] || [[Item:Q3470|<math>\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.23.E17 10.23.E17] || [[Item:Q3471|<math>\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(k+k+1)} > 0, \realpart@@{((n+2k)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))*BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)*BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)*BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.24.E1 10.24.E1] || [[Item:Q3476|<math>x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((x)^(2)+ (nu)^(2))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+((x)^(2)+ \[Nu]^(2))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.948557159+2.125000000*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2165063513+1.125000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.9485571585149875, 2.125]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.948557158514987, 0.12499999999999989]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.24#Ex1 10.24#Ex1] || [[Item:Q3477|<math>\BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}}</syntaxhighlight> || <math>\realpart@@{((\iunit \nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselJ(I*nu, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselJ[I*\[Nu], x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.24#Ex2 10.24#Ex2] || [[Item:Q3478|<math>\BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}}</syntaxhighlight> || <math>\realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselY(I*nu, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselY[I*\[Nu], x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.24.E3 10.24.E3] || [[Item:Q3479|<math>\EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}</syntaxhighlight> || <math>\realpart@@{(1+\iunit \nu)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(1 + I*nu) = ((Pi*nu)/(sinh(Pi*nu)))^((1)/(2))* exp(I*gamma[nu])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[1 + I*\[Nu]] == (Divide[Pi*\[Nu],Sinh[Pi*\[Nu]]])^(Divide[1,2])* Exp[I*Subscript[\[Gamma], \[Nu]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .131682196e-1-.6479738907*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2393622021-.2867640040*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.013168219691258531, -0.6479738909120968]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.23936220222535412, -0.28676400411697583]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.24#Ex3 10.24#Ex3] || [[Item:Q3480|<math>\BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(- nu))*Re(BesselJ(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi - \[Nu]] Re[BesselJ[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [12 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1765981285-.1547836875*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.059084556+.9282601935*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.6353785354467336, 0.04153700144653363]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.2910880978413849, 0.681683596996288]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.24#Ex4 10.24#Ex4] || [[Item:Q3481|<math>\BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x}</syntaxhighlight> || <math>\realpart@@{((\iunit (-\nu))+k+1)} > 0, \realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit (-\nu)))+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(- nu))*Re(BesselY(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi - \[Nu]] Re[BesselY[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [12 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6730010946+.5898680353*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1980888923+.1736197856*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.16541121369118172, 0.7534126929509344]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.3242468905843751, -0.9796849117084342]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.24.E5 10.24.E5] || [[Item:Q3482|<math>\Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x)</syntaxhighlight> || <math>\realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)))*diff(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)), x)-diff(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)), x)*(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))) = 2/(Pi*x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]], Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]}, x] == 2/(Pi*x)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [12 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3214564733-.7786157192*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6431025084-4.765445687*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.4244131815783876, Times[Complex[0.017184424665049866, -0.12995814793225188], Plus[Times[Complex[5.94457417937745, -0.08806734388290616], Derivative[1][Re][Complex[0.5424102683642863, 1.3820413572565333]]], Times[Complex[0.04670634387761448, 2.0064149502593187], Derivative[1][Re][Complex[1.5013396639532606, -0.5145465005058608]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.4244131815783876, Times[Complex[-0.5062208144169521, 0.3689208146583662], Plus[Times[Complex[1.2690034139339206, -1.428145592425075], Derivative[1][Re][Complex[-0.5230512553281585, -0.7250724679588263]]], Times[Complex[0.9907135967899046, 0.5862869255257461], Derivative[1][Re][Complex[0.9118063408652576, -0.381897212811936]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.24.E9 10.24.E9] || [[Item:Q3487|<math>\BesselYimag{0}@{x} = \BesselY{0}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselYimag{0}@{x} = \BesselY{0}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{((\iunit 0)+k+1)} > 0, \realpart@@{((-(\iunit 0))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(0))*Re(BesselY(I*(0), x)) = BesselY(0, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi 0] Re[BesselY[I 0, x]] == BesselY[0, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.25.E1 10.25.E1] || [[Item:Q3488|<math>z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)-((z)^(2)+ (nu)^(2))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(2)* D[w, {z, 2}]+ z*D[w, z]-((z)^(2)+ \[Nu]^(2))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [220 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6467477718e-9-2.000000002*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8660254040e-9-2.000000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [264 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.25.E2 10.25.E2] || [[Item:Q3489|<math>\modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = ((1)/(2)*z)^(nu)* sum((((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-
| [https://dlmf.nist.gov/10.27.E1 10.27.E1] || [[Item:Q3491|<math>\modBesselI{-n}@{z} = \modBesselI{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-n}@{z} = \modBesselI{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- n, z) = BesselI(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- n, z] == BesselI[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.27.E2 10.27.E2] || [[Item:Q3492|<math>\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-
| [https://dlmf.nist.gov/10.27.E3 10.27.E3] || [[Item:Q3493|<math>\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(- nu, z) = BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[- \[Nu], z] == BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-
| [https://dlmf.nist.gov/10.27.E4 10.27.E4] || [[Item:Q3494|<math>\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.27.E6 10.27.E6] || [[Item:Q3496|<math>\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-
| [https://dlmf.nist.gov/10.27.E6 10.27.E6] || [[Item:Q3496|<math>\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-
| [https://dlmf.nist.gov/10.27.E7 10.27.E7] || [[Item:Q3497|<math>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-
| [https://dlmf.nist.gov/10.27.E7 10.27.E7] || [[Item:Q3497|<math>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-
| [https://dlmf.nist.gov/10.27.E9 10.27.E9] || [[Item:Q3499|<math>\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-
| [https://dlmf.nist.gov/10.27.E10 10.27.E10] || [[Item:Q3500|<math>-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-
| [https://dlmf.nist.gov/10.27.E11 10.27.E11] || [[Item:Q3501|<math>\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-
| [https://dlmf.nist.gov/10.27.E11 10.27.E11] || [[Item:Q3501|<math>\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-
| [https://dlmf.nist.gov/10.28.E1 10.28.E1] || [[Item:Q3502|<math>\Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselI(nu, z))*diff(BesselI(- nu, z), z)-diff(BesselI(nu, z), z)*(BesselI(- nu, z)) = BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselI[\[Nu], z], BesselI[- \[Nu], z]}, z] == BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
|-
| [https://dlmf.nist.gov/10.28.E1 10.28.E1] || [[Item:Q3502|<math>\modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) = - 2*sin(nu*Pi)/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|-
| [https://dlmf.nist.gov/10.28.E2 10.28.E2] || [[Item:Q3503|<math>\Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselK(nu, z))*diff(BesselI(nu, z), z)-diff(BesselK(nu, z), z)*(BesselI(nu, z)) = BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselK[\[Nu], z], BesselI[\[Nu], z]}, z] == BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
|-
| [https://dlmf.nist.gov/10.28.E2 10.28.E2] || [[Item:Q3503|<math>\modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) = 1/z</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] == 1/z</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|-
| [https://dlmf.nist.gov/10.29#Ex5 10.29#Ex5] || [[Item:Q3508|<math>\modBesselI{0}'@{z} = \modBesselI{1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{0}'@{z} = \modBesselI{1}@{z}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>diff( BesselI(0, z), z$(1) ) = BesselI(1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[BesselI[0, z], {z, 1}] == BesselI[1, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.29#Ex6 10.29#Ex6] || [[Item:Q3509|<math>\modBesselK{0}'@{z} = -\modBesselK{1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}'@{z} = -\modBesselK{1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff( BesselK(0, z), z$(1) ) = - BesselK(1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[BesselK[0, z], {z, 1}] == - BesselK[1, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.31.E1 10.31.E1] || [[Item:Q3518|<math>\modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(n, z) = (1)/(2)*((1)/(2)*z)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*(-(1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(- 1)^(n + 1)* ln((1)/(2)*z)*BesselI(n, z)+(- 1)^(n)*(1)/(2)*((1)/(2)*z)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[n, z] == Divide[1,2]*(Divide[1,2]*z)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*(-Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n + 1)* Log[Divide[1,2]*z]*BesselI[n, z]+(- 1)^(n)*Divide[1,2]*(Divide[1,2]*z)^(n)* Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.6666666666666666, Times[-0.6666666666666666, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.38888888888888906, Times[0.5, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.31.E2 10.31.E2] || [[Item:Q3519|<math>\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+((1)/(4)*(z)^(2))/((factorial(1))^(2))+(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]+(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-6.985673039111573*^-6, -1.2369744460005716*^-5], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-7.140527721077872*^-6, -1.2101549865001227*^-5], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.31.E3 10.31.E3] || [[Item:Q3520|<math>\modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z)*BesselI(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z]*BesselI[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E1 10.32.E1] || [[Item:Q3521|<math>\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(0, z) = (1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.32.E1 10.32.E1] || [[Item:Q3521|<math>\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(0, z) = (1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.32.E1 10.32.E1] || [[Item:Q3521|<math>\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.32.E1 10.32.E1] || [[Item:Q3521|<math>\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.32.E2 10.32.E2] || [[Item:Q3522|<math>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 35]
|-
| [https://dlmf.nist.gov/10.32.E2 10.32.E2] || [[Item:Q3522|<math>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 35]
|-
| [https://dlmf.nist.gov/10.32.E2 10.32.E2] || [[Item:Q3522|<math>\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(+ z*t), t = - 1..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[+ z*t], {t, - 1, 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 35]
|-
| [https://dlmf.nist.gov/10.32.E2 10.32.E2] || [[Item:Q3522|<math>\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{- zt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{- zt}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(- z*t), t = - 1..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[- z*t], {t, - 1, 1}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || Skip - symbolical successful subtest || Successful [Tested: 35]
|-
| [https://dlmf.nist.gov/10.32.E3 10.32.E3] || [[Item:Q3523|<math>\modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(n, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(n*theta), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[n, z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 21] || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E4 10.32.E4] || [[Item:Q3524|<math>\modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*cosh(t)- nu*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[\[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Cosh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E5 10.32.E5] || [[Item:Q3525|<math>\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(0, z) = -(1)/(Pi)*int(exp(+ z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E5 10.32.E5] || [[Item:Q3525|<math>\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(0, z) = -(1)/(Pi)*int(exp(- z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E6 10.32.E6] || [[Item:Q3526|<math>\modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>BesselK(0, x) = int(cos(x*sinh(t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[0, x] == Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E6 10.32.E6] || [[Item:Q3526|<math>\int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>int(cos(x*sinh(t)), t = 0..infinity) = int((cos(x*t))/(sqrt((t)^(2)+ 1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[Cos[x*t],Sqrt[(t)^(2)+ 1]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E7 10.32.E7] || [[Item:Q3527|<math>\modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, x > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, x) = sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], x] == Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || Manual Skip! || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E7 10.32.E7] || [[Item:Q3527|<math>\sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, x > 0</math> || <syntaxhighlight lang=mathematica>sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity) = csc((1)/(2)*nu*Pi)*int(sin(x*sinh(t))*sinh(nu*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] == Csc[Divide[1,2]*\[Nu]*Pi]*Integrate[Sin[x*Sinh[t]]*Sinh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E8 10.32.E8] || [[Item:Q3528|<math>\modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E8 10.32.E8] || [[Item:Q3528|<math>\frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || Skip - symbolical successful subtest || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E9 10.32.E9] || [[Item:Q3529|<math>\modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = int(exp(- z*cosh(t))*cosh(nu*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Integrate[Exp[- z*Cosh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E10 10.32.E10] || [[Item:Q3530|<math>\modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (1)/(2)*((1)/(2)*z)^(nu)* int(exp(- t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[1,2]*(Divide[1,2]*z)^\[Nu]* Integrate[Exp[- t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 40]
|-
| [https://dlmf.nist.gov/10.32.E11 10.32.E11] || [[Item:Q3531|<math>\modBesselK{\nu}@{xz} = \frac{\EulerGamma@{\nu+\frac{1}{2}}(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{xz} = \frac{\EulerGamma@{\nu+\frac{1}{2}}(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, x > 0, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, x*(x + y*I)) = (GAMMA(nu +(1)/(2))*(2*(x + y*I))^(nu))/((Pi)^((1)/(2))* (x)^(nu))*int((cos(x*t))/(((t)^(2)+(x + y*I)^(2))^(nu +(1)/(2))), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], x*(x + y*I)] == Divide[Gamma[\[Nu]+Divide[1,2]]*(2*(x + y*I))^\[Nu],(Pi)^(Divide[1,2])* (x)^\[Nu]]*Integrate[Divide[Cos[x*t],((t)^(2)+(x + y*I)^(2))^(\[Nu]+Divide[1,2])], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E12 10.32.E12] || [[Item:Q3532|<math>\modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2*Pi*I)*int(exp(z*cosh(t)- nu*t), t = infinity - I*Pi..infinity + I*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Exp[z*Cosh[t]- \[Nu]*t], {t, Infinity - I*Pi, Infinity + I*Pi}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [50 / 50]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5303418993681409, 0.010453999760907294]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.7664848208906112, 0.1468422559210476]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.32.E13 10.32.E13] || [[Item:Q3533|<math>\modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t}</syntaxhighlight> || <math>c > \max(\realpart@@{\nu}, 0) < \frac{1}{2}\pi, |\phase@@{z}| < \frac{1}{2}\pi, \realpart@@{t} > 0, \realpart@@{(t-\nu)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (((1)/(2)*z)^(nu))/(4*Pi*I)*int(GAMMA(t)*GAMMA(t - nu)*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],4*Pi*I]*Integrate[Gamma[t]*Gamma[t - \[Nu]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5663982443-.3181066824*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.434992817-2.759712160*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E14 10.32.E14] || [[Item:Q3534|<math>\modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t}</syntaxhighlight> || <math>\nu-\tfrac{1}{2}\notin\Integers < \tfrac{3}{2}\pi, |\phase@@{z}| < \tfrac{3}{2}\pi, \realpart@@{t} > 0, \realpart@@{(\tfrac{1}{2}-t-\nu)} > 0, \realpart@@{(\tfrac{1}{2}-t+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (1)/(2*(Pi)^(2)* I)*((Pi)/(2*z))^((1)/(2))* exp(- z)*cos(nu*Pi)* int(GAMMA(t)*GAMMA((1)/(2)- t - nu)*GAMMA((1)/(2)- t + nu)*(2*z)^(t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[1,2*(Pi)^(2)* I]*(Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*Cos[\[Nu]*Pi]* Integrate[Gamma[t]*Gamma[Divide[1,2]- t - \[Nu]]*Gamma[Divide[1,2]- t + \[Nu]]*(2*z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E15 10.32.E15] || [[Item:Q3535|<math>\modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(mu, z)*BesselI(nu, z) = (2)/(Pi)*int(BesselI(mu + nu, 2*z*cos(theta))*cos((mu - nu)*theta), theta = 0..(1)/(2)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Mu], z]*BesselI[\[Nu], z] == Divide[2,Pi]*Integrate[BesselI[\[Mu]+ \[Nu], 2*z*Cos[\[Theta]]]*Cos[(\[Mu]- \[Nu])*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E16 10.32.E16] || [[Item:Q3536|<math>\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu+\nu}@{2x\sinh@@{t}}e^{(-\mu+\nu)t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu+\nu}@{2x\sinh@@{t}}e^{(-\mu+\nu)t}\diff{t}</syntaxhighlight> || <math>\realpart@{\mu-\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, x > 0, \realpart@@{((\mu+\nu)+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu + nu, 2*x*sinh(t))*exp((- mu + nu)*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]+ \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E16 10.32.E16] || [[Item:Q3536|<math>\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu-\nu}@{2x\sinh@@{t}}e^{(-\mu-\nu)t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu-\nu}@{2x\sinh@@{t}}e^{(-\mu-\nu)t}\diff{t}</syntaxhighlight> || <math>\realpart@{\mu-\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, x > 0, \realpart@@{((\mu+\nu)+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu - nu, 2*x*sinh(t))*exp((- mu - nu)*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]- \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E17 10.32.E17] || [[Item:Q3537|<math>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu + nu, 2*z*cosh(t))*cosh((mu - nu)*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]+ \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E17 10.32.E17] || [[Item:Q3537|<math>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu - nu, 2*z*cosh(t))*cosh((mu + nu)*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]- \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.32.E18 10.32.E18] || [[Item:Q3538|<math>\modBesselK{\nu}@{z}\modBesselK{\nu}@{\zeta} = \frac{1}{2}\int_{0}^{\infty}\exp@{-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselK{\nu}\left(\frac{z\zeta}{t}\right)\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z}\modBesselK{\nu}@{\zeta} = \frac{1}{2}\int_{0}^{\infty}\exp@{-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselK{\nu}\left(\frac{z\zeta}{t}\right)\frac{\diff{t}}{t}</syntaxhighlight> || <math>|\phase@@{z}| < \pi, |\phase@@{\zeta}| < \pi, |\phase@{z+\zeta}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z)*BesselK(nu, zeta) = (1)/(2)*int(exp(-(t)/(2)-((z)^(2)+ (zeta)^(2))/(2*t))*BesselK(nu, (z*zeta)/(t))*(1)/(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z]*BesselK[\[Nu], \[Zeta]] == Divide[1,2]*Integrate[Exp[-Divide[t,2]-Divide[(z)^(2)+ \[Zeta]^(2),2*t]]*BesselK[\[Nu], Divide[z*\[Zeta],t]]*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-
| [https://dlmf.nist.gov/10.32.E19 10.32.E19] || [[Item:Q3539|<math>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = \frac{1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{t+\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t+\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu-\frac{1}{2}\nu}}{\EulerGamma@{2t}}(\tfrac{1}{2}z)^{-2t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = \frac{1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{t+\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t+\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu-\frac{1}{2}\nu}}{\EulerGamma@{2t}}(\tfrac{1}{2}z)^{-2t}\diff{t}</syntaxhighlight> || <math>c > \tfrac{1}{2}(|\realpart@@{\mu}|+|\realpart@@{\nu}|), |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(t+\frac{1}{2}\mu+\frac{1}{2}\nu)} > 0, \realpart@@{(t+\frac{1}{2}\mu-\frac{1}{2}\nu)} > 0, \realpart@@{(t-\frac{1}{2}\mu+\frac{1}{2}\nu)} > 0, \realpart@@{(t-\frac{1}{2}\mu-\frac{1}{2}\nu)} > 0, \realpart@@{(2t)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(mu, z)*BesselK(nu, z) = (1)/(8*Pi*I)*int((GAMMA(t +(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t +(1)/(2)*mu -(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu -(1)/(2)*nu))/(GAMMA(2*t))*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Mu], z]*BesselK[\[Nu], z] == Divide[1,8*Pi*I]*Integrate[Divide[Gamma[t +Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t +Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]],Gamma[2*t]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/10.34.E1 10.34.E1] || [[Item:Q3542|<math>\modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselI[\[Nu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [132 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.206479866-1.131319388*I
| [https://dlmf.nist.gov/10.34.E1 10.34.E1] || [[Item:Q3542|<math>\modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselI[\[Nu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [132 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.206479866-1.131319388*I
Line 238: Line 503:
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]], Times[Complex[-0.8660254037844387, 0.49999999999999994], DifferenceRoot[Function[{, }, {Equal[Plus[Times[-1, Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[-1, , Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.001928095904955185, 0.0030033056761246957], Times[-1.0, NSum[Times[Power[k, -1], Power[Plus[2, k], -1], Plus[2, Times[2, k]], BesselI[Plus[2, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]], Times[Complex[-0.8660254037844387, 0.49999999999999994], DifferenceRoot[Function[{, }, {Equal[Plus[Times[-1, Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[-1, , Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.001928095904955185, 0.0030033056761246957], Times[-1.0, NSum[Times[Power[k, -1], Power[Plus[2, k], -1], Plus[2, Times[2, k]], BesselI[Plus[2, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.45.E1 10.45.E1] || [[Item:Q3655|<math>x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(\nu^{2}-x^{2})w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(\nu^{2}-x^{2})w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((nu)^(2)- (x)^(2))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+(\[Nu]^(2)- (x)^(2))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [240 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.948557159-.1249999996*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2165063507+.8750000006*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [240 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.948557158514987, -0.12499999999999989]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.9485571585149875, -2.125]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.45.E2 10.45.E2] || [[Item:Q3657|<math>\displaystyle\modBesselIimag{\nu}@{x} = \realpart@{\modBesselI{i\nu}@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\displaystyle\modBesselIimag{\nu}@{x} = \realpart@{\modBesselI{i\nu}@{x}}</syntaxhighlight> || <math>\realpart@@{((\iunit \nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Re(BesselI(I*(nu), x)) = Re(BesselI(I*nu, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Re[BesselI[I*\[Nu], x]] == Re[BesselI[I*\[Nu], x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.45.E2 10.45.E2] || [[Item:Q3657|<math>\displaystyle\modBesselKimag{\nu}@{x} = \modBesselK{i\nu}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\displaystyle\modBesselKimag{\nu}@{x} = \modBesselK{i\nu}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(I*(nu), x) = BesselK(I*nu, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[I*\[Nu], x] == BesselK[I*\[Nu], x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 30]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.45.E3 10.45.E3] || [[Item:Q3659|<math>\displaystyle\modBesselIimag{-\nu}@{x} = \modBesselIimag{\nu}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\displaystyle\modBesselIimag{-\nu}@{x} = \modBesselIimag{\nu}@{x}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Re(BesselI(I*(- nu), x)) = Re(BesselI(I*(nu), x))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Re[BesselI[I*- \[Nu], x]] == Re[BesselI[I*\[Nu], x]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.45.E3 10.45.E3] || [[Item:Q3659|<math>\displaystyle\modBesselKimag{-\nu}@{x} = \modBesselKimag{\nu}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\displaystyle\modBesselKimag{-\nu}@{x} = \modBesselKimag{\nu}@{x}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">BesselK(I*(- nu), x) = BesselK(I*(nu), x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">BesselK[I*- \[Nu], x] == BesselK[I*\[Nu], x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/10.45.E4 10.45.E4] || [[Item:Q3660|<math>\Wronskian@{\modBesselKimag{\nu}@{x},\modBesselIimag{\nu}@{x}} = 1/x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modBesselKimag{\nu}@{x},\modBesselIimag{\nu}@{x}} = 1/x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(BesselK(I*(nu), x))*diff(Re(BesselI(I*(nu), x)), x)-diff(BesselK(I*(nu), x), x)*(Re(BesselI(I*(nu), x))) = 1/x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselK[I*\[Nu], x], Re[BesselI[I*\[Nu], x]]}, x] == 1/x</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.6666666666666666, Times[0.5, Plus[Complex[1.0700115379721733, -0.3754447148158467], Times[Complex[0.1636629185333998, 0.09141848176750039], Derivative[1][Re][Complex[2.445786867824693, 0.6492150843755028]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.6666666666666666, Times[0.5, Plus[Complex[0.8415452902387464, 0.2726729041814867], Times[Complex[0.3412924192180222, 0.19179892830603273], Derivative[1][Re][Complex[1.3137906770541619, -0.7251169608509622]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.45.E8 10.45.E8] || [[Item:Q3665|<math>\modBesselKimag{0}@{x} = \modBesselK{0}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselKimag{0}@{x} = \modBesselK{0}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(I*(0), x) = BesselK(0, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[I*0, x] == BesselK[0, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.47.E1 10.47.E1] || [[Item:Q3669|<math>z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}+\left(z^{2}-n(n+1)\right)w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}+\left(z^{2}-n(n+1)\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(2)* diff(w, [z$(2)])+ 2*z*diff(w, z)+((z)^(2)- n*(n + 1))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(2)* D[w, {z, 2}]+ 2*z*D[w, z]+((z)^(2)- n*(n + 1))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.732050808+.3733632160e-9*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.196152424-2.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.7320508075688772, 1.1102230246251565*^-16]
Test Values: {Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-5.196152422706633, -1.9999999999999996]
Test Values: {Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.47.E2 10.47.E2] || [[Item:Q3670|<math>z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}-\left(z^{2}+n(n+1)\right)w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}-\left(z^{2}+n(n+1)\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(2)* diff(w, [z$(2)])+ 2*z*diff(w, z)-((z)^(2)+ n*(n + 1))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(2)* D[w, {z, 2}]+ 2*z*D[w, z]-((z)^(2)+ n*(n + 1))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.732050808-2.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.196152424-4.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.7320508075688776, -1.9999999999999998]
Test Values: {Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-5.196152422706632, -3.9999999999999996]
Test Values: {Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.47.E3 10.47.E3] || [[Item:Q3671|<math>\sphBesselJ{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Sqrt[Divide[1,2]*Pi/z]*BesselJ[n +Divide[1,2], z]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E3 10.47.E3] || [[Item:Q3671|<math>\sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z} = (-1)^{n}\sqrt{\tfrac{1}{2}\pi/z}\BesselY{-n-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z} = (-1)^{n}\sqrt{\tfrac{1}{2}\pi/z}\BesselY{-n-\frac{1}{2}}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt((1)/(2)*Pi/z)*BesselJ(n +(1)/(2), z) = (- 1)^(n)*sqrt((1)/(2)*Pi/z)*BesselY(- n -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[1,2]*Pi/z]*BesselJ[n +Divide[1,2], z] == (- 1)^(n)*Sqrt[Divide[1,2]*Pi/z]*BesselY[- n -Divide[1,2], z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E4 10.47.E4] || [[Item:Q3672|<math>\sphBesselY{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[n, z] == Sqrt[Divide[1,2]*Pi/z]*BesselY[n +Divide[1,2], z]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E4 10.47.E4] || [[Item:Q3672|<math>\sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z} = (-1)^{n+1}\sqrt{\tfrac{1}{2}\pi/z}\BesselJ{-n-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z} = (-1)^{n+1}\sqrt{\tfrac{1}{2}\pi/z}\BesselJ{-n-\frac{1}{2}}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt((1)/(2)*Pi/z)*BesselY(n +(1)/(2), z) = (- 1)^(n + 1)*sqrt((1)/(2)*Pi/z)*BesselJ(- n -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[1,2]*Pi/z]*BesselY[n +Divide[1,2], z] == (- 1)^(n + 1)*Sqrt[Divide[1,2]*Pi/z]*BesselJ[- n -Divide[1,2], z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E5 10.47.E5] || [[Item:Q3673|<math>\sphHankelh{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH1[n, z] == Sqrt[Divide[1,2]*Pi/z]*HankelH1[n +Divide[1,2], z]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E5 10.47.E5] || [[Item:Q3673|<math>\sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z} = (-1)^{n+1}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{-n-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z} = (-1)^{n+1}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{-n-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt((1)/(2)*Pi/z)*HankelH1(n +(1)/(2), z) = (- 1)^(n + 1)* I*sqrt((1)/(2)*Pi/z)*HankelH1(- n -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[1,2]*Pi/z]*HankelH1[n +Divide[1,2], z] == (- 1)^(n + 1)* I*Sqrt[Divide[1,2]*Pi/z]*HankelH1[- n -Divide[1,2], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E6 10.47.E6] || [[Item:Q3674|<math>\sphHankelh{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH2[n, z] == Sqrt[Divide[1,2]*Pi/z]*HankelH2[n +Divide[1,2], z]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E6 10.47.E6] || [[Item:Q3674|<math>\sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z} = (-1)^{n}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{-n-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z} = (-1)^{n}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{-n-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt((1)/(2)*Pi/z)*HankelH2(n +(1)/(2), z) = (- 1)^(n)* I*sqrt((1)/(2)*Pi/z)*HankelH2(- n -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[1,2]*Pi/z]*HankelH2[n +Divide[1,2], z] == (- 1)^(n)* I*Sqrt[Divide[1,2]*Pi/z]*HankelH2[- n -Divide[1,2], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E7 10.47.E7] || [[Item:Q3675|<math>\modsphBesseli{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{n+\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{n+\frac{1}{2}}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == Sqrt[Divide[1,2]*Pi/z]*BesselI[n +Divide[1,2], z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.06771919180965624, -0.29579816936516184]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4498252419402129, -0.19064547195046921]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.47.E8 10.47.E8] || [[Item:Q3676|<math>\modsphBesseli{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{-n-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{-n-\frac{1}{2}}@{z}</syntaxhighlight> || <math>\realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Sqrt[Divide[1,2]*Pi/z]*BesselI[- n -Divide[1,2], z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.41419719140728084, -0.8850762711170854]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1065867555175597, 2.4569570135519543]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.47.E9 10.47.E9] || [[Item:Q3677|<math>\modsphBesselK{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Sqrt[Divide[1,2]*Pi/z]*BesselK[n +Divide[1,2], z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E9 10.47.E9] || [[Item:Q3677|<math>\sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{-n-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{-n-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt((1)/(2)*Pi/z)*BesselK(n +(1)/(2), z) = sqrt((1)/(2)*Pi/z)*BesselK(- n -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[1,2]*Pi/z]*BesselK[n +Divide[1,2], z] == Sqrt[Divide[1,2]*Pi/z]*BesselK[- n -Divide[1,2], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47#Ex1 10.47#Ex1] || [[Item:Q3678|<math>\sphHankelh{1}{n}@{z} = \sphBesselJ{n}@{z}+i\sphBesselY{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{1}{n}@{z} = \sphBesselJ{n}@{z}+i\sphBesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH1[n, z] == SphericalBesselJ[n, z]+ I*SphericalBesselY[n, z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47#Ex2 10.47#Ex2] || [[Item:Q3679|<math>\sphHankelh{2}{n}@{z} = \sphBesselJ{n}@{z}-i\sphBesselY{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{2}{n}@{z} = \sphBesselJ{n}@{z}-i\sphBesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH2[n, z] == SphericalBesselJ[n, z]- I*SphericalBesselY[n, z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E11 10.47.E11] || [[Item:Q3680|<math>\modsphBesselK{n}@{z} = (-1)^{n+1}\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}-\modsphBesseli{2}{n}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{z} = (-1)^{n+1}\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}-\modsphBesseli{2}{n}@{z}\right)</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == (- 1)^(n + 1)*Divide[1,2]*Pi*(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]- Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n])</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.7569924845794465, -0.925635877692591]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.0316385731075524, -4.1588442590402455]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.47#Ex3 10.47#Ex3] || [[Item:Q3681|<math>\modsphBesseli{1}{n}@{z} = i^{-n}\sphBesselJ{n}@{iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{n}@{z} = i^{-n}\sphBesselJ{n}@{iz}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (I)^(- n)* SphericalBesselJ[n, I*z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.06771919180965624, -0.2957981693651618]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.44982524194021284, -0.19064547195046921]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.47#Ex4 10.47#Ex4] || [[Item:Q3682|<math>\modsphBesseli{2}{n}@{z} = i^{-n-1}\sphBesselY{n}@{iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{n}@{z} = i^{-n-1}\sphBesselY{n}@{iz}</syntaxhighlight> || <math>\realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == (I)^(- n - 1)* SphericalBesselY[n, I*z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.41419719140728045, -0.8850762711170859]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1065867555175588, 2.456957013551956]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.47.E13 10.47.E13] || [[Item:Q3683|<math>\modsphBesselK{n}@{z} = -\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{z} = -\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == -Divide[1,2]*Pi*(I)^(n)* SphericalHankelH1[n, I*z]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.47.E13 10.47.E13] || [[Item:Q3683|<math>-\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz} = -\tfrac{1}{2}\pi i^{-n}\sphHankelh{2}{n}@{-iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz} = -\tfrac{1}{2}\pi i^{-n}\sphHankelh{2}{n}@{-iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>-Divide[1,2]*Pi*(I)^(n)* SphericalHankelH1[n, I*z] == -Divide[1,2]*Pi*(I)^(- n)* SphericalHankelH2[n, - I*z]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.47.E14 10.47.E14] || [[Item:Q3685|<math>\displaystyle\sphBesselJ{n}@{-z} = (-1)^{n}\sphBesselJ{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\displaystyle\sphBesselJ{n}@{-z} = (-1)^{n}\sphBesselJ{n}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Error</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">SphericalBesselJ[n, - z] == (- 1)^(n)* SphericalBesselJ[n, z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.47.E14 10.47.E14] || [[Item:Q3685|<math>\displaystyle\sphBesselY{n}@{-z} = (-1)^{n+1}\sphBesselY{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\displaystyle\sphBesselY{n}@{-z} = (-1)^{n+1}\sphBesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Error</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">SphericalBesselY[n, - z] == (- 1)^(n + 1)* SphericalBesselY[n, z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.47.E15 10.47.E15] || [[Item:Q3687|<math>\displaystyle\sphHankelh{1}{n}@{-z} = (-1)^{n}\sphHankelh{2}{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\displaystyle\sphHankelh{1}{n}@{-z} = (-1)^{n}\sphHankelh{2}{n}@{z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Error</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">SphericalHankelH1[n, - z] == (- 1)^(n)* SphericalHankelH2[n, z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.47.E15 10.47.E15] || [[Item:Q3687|<math>\displaystyle\sphHankelh{2}{n}@{-z} = (-1)^{n}\sphHankelh{1}{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\displaystyle\sphHankelh{2}{n}@{-z} = (-1)^{n}\sphHankelh{1}{n}@{z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Error</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">SphericalHankelH2[n, - z] == (- 1)^(n)* SphericalHankelH1[n, z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.47.E16 10.47.E16] || [[Item:Q3689|<math>\displaystyle\modsphBesseli{1}{n}@{-z} = (-1)^{n}\modsphBesseli{1}{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\displaystyle\modsphBesseli{1}{n}@{-z} = (-1)^{n}\modsphBesseli{1}{n}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Error</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sqrt[Divide[Pi, - z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (- 1)^(n)* Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.47.E16 10.47.E16] || [[Item:Q3689|<math>\displaystyle\modsphBesseli{2}{n}@{-z} = (-1)^{n+1}\modsphBesseli{2}{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\displaystyle\modsphBesseli{2}{n}@{-z} = (-1)^{n+1}\modsphBesseli{2}{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Error</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sqrt[Divide[Pi, - z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == (- 1)^(n + 1)* Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/10.47.E17 10.47.E17] || [[Item:Q3690|<math>\modsphBesselK{n}@{-z} = -\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}+\modsphBesseli{2}{n}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{-z} = -\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}+\modsphBesseli{2}{n}@{z}\right)</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /- z] BesselK[n + 1/2, - z] == -Divide[1,2]*Pi*(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]+ Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n])</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5442463690831921, -1.8549132335154932]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.444806248586177, 3.5599138449204935]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49.E2 10.49.E2] || [[Item:Q3692|<math>\sphBesselJ{n}@{z} = \sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Sin[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 1)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Cos[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.49#Ex1 10.49#Ex1] || [[Item:Q3693|<math>\sphBesselJ{0}@{z} = \frac{\sin@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{0}@{z} = \frac{\sin@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-0-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[0, z] == Divide[Sin[z],z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex2 10.49#Ex2] || [[Item:Q3694|<math>\sphBesselJ{1}@{z} = \frac{\sin@@{z}}{z^{2}}-\frac{\cos@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{1}@{z} = \frac{\sin@@{z}}{z^{2}}-\frac{\cos@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((1+\frac{1}{2})+k+1)} > 0, \realpart@@{((-1-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-1-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[1, z] == Divide[Sin[z],(z)^(2)]-Divide[Cos[z],z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex3 10.49#Ex3] || [[Item:Q3695|<math>\sphBesselJ{2}@{z} = \left(-\frac{1}{z}+\frac{3}{z^{3}}\right)\sin@@{z}-\frac{3}{z^{2}}\cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{2}@{z} = \left(-\frac{1}{z}+\frac{3}{z^{3}}\right)\sin@@{z}-\frac{3}{z^{2}}\cos@@{z}</syntaxhighlight> || <math>\realpart@@{((2+\frac{1}{2})+k+1)} > 0, \realpart@@{((-2-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-2-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[2, z] == (-Divide[1,z]+Divide[3,(z)^(3)])*Sin[z]-Divide[3,(z)^(2)]*Cos[z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49.E4 10.49.E4] || [[Item:Q3696|<math>\sphBesselY{n}@{z} = -\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{n}@{z} = -\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[n, z] == - Cos[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 1)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Sin[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.49#Ex4 10.49#Ex4] || [[Item:Q3697|<math>\sphBesselY{0}@{z} = -\frac{\cos@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{0}@{z} = -\frac{\cos@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(0+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[0, z] == -Divide[Cos[z],z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex5 10.49#Ex5] || [[Item:Q3698|<math>\sphBesselY{1}@{z} = -\frac{\cos@@{z}}{z^{2}}-\frac{\sin@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{1}@{z} = -\frac{\cos@@{z}}{z^{2}}-\frac{\sin@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((1+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(1+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-1-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[1, z] == -Divide[Cos[z],(z)^(2)]-Divide[Sin[z],z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex6 10.49#Ex6] || [[Item:Q3699|<math>\sphBesselY{2}@{z} = \left(\frac{1}{z}-\frac{3}{z^{3}}\right)\cos@@{z}-\frac{3}{z^{2}}\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{2}@{z} = \left(\frac{1}{z}-\frac{3}{z^{3}}\right)\cos@@{z}-\frac{3}{z^{2}}\sin@@{z}</syntaxhighlight> || <math>\realpart@@{((2+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(2+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-2-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[2, z] == (Divide[1,z]-Divide[3,(z)^(3)])*Cos[z]-Divide[3,(z)^(2)]*Sin[z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49.E6 10.49.E6] || [[Item:Q3700|<math>\sphHankelh{1}{n}@{z} = e^{iz}\sum_{k=0}^{n}i^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{1}{n}@{z} = e^{iz}\sum_{k=0}^{n}i^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</syntaxhighlight> || <math>k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH1[n, z] == Exp[I*z]*Sum[(I)^(k - n - 1)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3966692432410339, 0.7497610210111748]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.3157223500929769, 0.5313692545383957]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49.E7 10.49.E7] || [[Item:Q3701|<math>\sphHankelh{2}{n}@{z} = e^{-iz}\sum_{k=0}^{n}(-i)^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{2}{n}@{z} = e^{-iz}\sum_{k=0}^{n}(-i)^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</syntaxhighlight> || <math>k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH2[n, z] == Exp[- I*z]*Sum[(- I)^(k - n - 1)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.49.E8 10.49.E8] || [[Item:Q3702|<math>\modsphBesseli{1}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n+1}\*\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n+1}\*\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == Divide[1,2]*Exp[z]*Sum[(- 1)^(k)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]+(- 1)^(n + 1)*Divide[1,2]*(E)^(- z)* Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.49#Ex7 10.49#Ex7] || [[Item:Q3703|<math>\modsphBesseli{1}{0}@{z} = \frac{\sinh@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{0}@{z} = \frac{\sinh@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((0+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(0 + 1/2), 0] == Divide[Sinh[z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.0789668887893185, -0.15155203743332835]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.9126970224666039, 0.13712305377128448]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex8 10.49#Ex8] || [[Item:Q3704|<math>\modsphBesseli{1}{1}@{z} = -\frac{\sinh@@{z}}{z^{2}}+\frac{\cosh@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{1}@{z} = -\frac{\sinh@@{z}}{z^{2}}+\frac{\cosh@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((1+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(1 + 1/2), 1] == -Divide[Sinh[z],(z)^(2)]+Divide[Cosh[z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.06771919180965646, -0.2957981693651617]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.3178790653897484, -0.6062561841669247]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex9 10.49#Ex9] || [[Item:Q3705|<math>\modsphBesseli{1}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\sinh@@{z}-\frac{3}{z^{2}}\cosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\sinh@@{z}-\frac{3}{z^{2}}\cosh@@{z}</syntaxhighlight> || <math>\realpart@@{((2+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(2 + 1/2), 2] == (Divide[1,z]+Divide[3,(z)^(3)])*Sinh[z]-Divide[3,(z)^(2)]*Cosh[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.44982524194021334, -0.19064547195046933]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.2843828483915114, -0.37732112452647515]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49.E10 10.49.E10] || [[Item:Q3706|<math>\modsphBesseli{2}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n}\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n}\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</syntaxhighlight> || <math>\realpart@@{((-n-\frac{1}{2})+k+1)} > 0, k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[1,2]*Exp[z]*Sum[(- 1)^(k)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]+(- 1)^(n)*Divide[1,2]*(E)^(- z)* Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.49#Ex10 10.49#Ex10] || [[Item:Q3707|<math>\modsphBesseli{2}{0}@{z} = \frac{\cosh@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{0}@{z} = \frac{\cosh@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((-0-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(0 + 1/2), 0] == Divide[Cosh[z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex11 10.49#Ex11] || [[Item:Q3708|<math>\modsphBesseli{2}{1}@{z} = -\frac{\cosh@@{z}}{z^{2}}+\frac{\sinh@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{1}@{z} = -\frac{\cosh@@{z}}{z^{2}}+\frac{\sinh@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((-1-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(1 + 1/2), 1] == -Divide[Cosh[z],(z)^(2)]+Divide[Sinh[z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.41419719140728073, -0.8850762711170859]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.1181398580617885, 1.2868595835312289]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex12 10.49#Ex12] || [[Item:Q3709|<math>\modsphBesseli{2}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\cosh@@{z}-\frac{3}{z^{2}}\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\cosh@@{z}-\frac{3}{z^{2}}\sinh@@{z}</syntaxhighlight> || <math>\realpart@@{((-2-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(2 + 1/2), 2] == (Divide[1,z]+Divide[3,(z)^(3)])*Cosh[z]-Divide[3,(z)^(2)]*Sinh[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.106586755517561, 2.456957013551956]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.803584197807803, -1.2408087832280956]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49.E12 10.49.E12] || [[Item:Q3710|<math>\modsphBesselK{n}@{z} = \tfrac{1}{2}\pi e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{z} = \tfrac{1}{2}\pi e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}</syntaxhighlight> || <math>k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.0260307573251746, 0.0967341401667452]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.907697530268464, -0.43148595883398677]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex13 10.49#Ex13] || [[Item:Q3711|<math>\modsphBesselK{0}@{z} = \tfrac{1}{2}\pi\frac{e^{-z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{0}@{z} = \tfrac{1}{2}\pi\frac{e^{-z}}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[0 + 1/2, z] == Divide[1,2]*Pi*Divide[Exp[- z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex14 10.49#Ex14] || [[Item:Q3712|<math>\modsphBesselK{1}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{1}{z^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{1}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{1}{z^{2}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[1 + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*(Divide[1,z]+Divide[1,(z)^(2)])</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex15 10.49#Ex15] || [[Item:Q3713|<math>\modsphBesselK{2}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{3}{z^{2}}+\frac{3}{z^{3}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{2}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{3}{z^{2}}+\frac{3}{z^{3}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[2 + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*(Divide[1,z]+Divide[3,(z)^(2)]+Divide[3,(z)^(3)])</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex16 10.49#Ex16] || [[Item:Q3714|<math>\sphBesselJ{n}@{z} = z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sin@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sin@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(-Divide[1,z]*D[(z)^(n)*-Divide[1,z], z])^(n)*Divide[Sin[z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.28766324258243325, 0.13393934480402792]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.302013441049254, 0.9125931496973667]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex17 10.49#Ex17] || [[Item:Q3715|<math>\sphBesselY{n}@{z} = -z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cos@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{n}@{z} = -z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cos@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[n, z] (-Divide[1,z]*D[(z)^(n)*-Divide[1,z], z])^(n)*Divide[Cos[z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.9342001374760677, 0.968266641946737]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.14357960272401077, 3.9384338499123404]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex18 10.49#Ex18] || [[Item:Q3716|<math>\modsphBesseli{1}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sinh@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sinh@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] (Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Sinh[z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.35534425318828616, -0.09521420567684166]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.19008700336701606, 0.7298484499303669]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex19 10.49#Ex19] || [[Item:Q3717|<math>\modsphBesseli{2}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cosh@@{z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cosh@@{z}}{z}</syntaxhighlight> || <math>\realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] (Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Cosh[z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3553442531882861, 0.09521420567684165]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.31198506093225176, 1.0184810034762684]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49.E16 10.49.E16] || [[Item:Q3718|<math>\modsphBesselK{n}@{z} = (-1)^{n}\tfrac{1}{2}\pi z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{e^{-z}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{z} = (-1)^{n}\tfrac{1}{2}\pi z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{e^{-z}}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == (- 1)^(n)*Divide[1,2]*(Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Exp[- z],z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3593544107322247, -1.2247601267643444]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.45891810409859557, -4.100723067341411]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49.E18 10.49.E18] || [[Item:Q3720|<math>\sphBesselJ{n}^{2}@{z}+\sphBesselY{n}^{2}@{z} = \sum_{k=0}^{n}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}^{2}@{z}+\sphBesselY{n}^{2}@{z} = \sum_{k=0}^{n}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(SphericalBesselJ[n, z])^(2)+ (SphericalBesselY[n, z])^(2) == Sum[Divide[Subscript[s, k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.2990381056766571, 0.5179491924311224]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-9.999999999999996, 1.5358983848622398]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.49#Ex20 10.49#Ex20] || [[Item:Q3721|<math>\sphBesselJ{0}^{2}@{z}+\sphBesselY{0}^{2}@{z} = z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{0}^{2}@{z}+\sphBesselY{0}^{2}@{z} = z^{-2}</syntaxhighlight> || <math>\realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-0-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(0+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(SphericalBesselJ[0, z])^(2)+ (SphericalBesselY[0, z])^(2) == (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex21 10.49#Ex21] || [[Item:Q3722|<math>\sphBesselJ{1}^{2}@{z}+\sphBesselY{1}^{2}@{z} = z^{-2}+z^{-4}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{1}^{2}@{z}+\sphBesselY{1}^{2}@{z} = z^{-2}+z^{-4}</syntaxhighlight> || <math>\realpart@@{((1+\frac{1}{2})+k+1)} > 0, \realpart@@{((-1-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-1-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(1+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(SphericalBesselJ[1, z])^(2)+ (SphericalBesselY[1, z])^(2) == (z)^(- 2)+ (z)^(- 4)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49#Ex22 10.49#Ex22] || [[Item:Q3723|<math>\sphBesselJ{2}^{2}@{z}+\sphBesselY{2}^{2}@{z} = z^{-2}+3z^{-4}+9z^{-6}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{2}^{2}@{z}+\sphBesselY{2}^{2}@{z} = z^{-2}+3z^{-4}+9z^{-6}</syntaxhighlight> || <math>\realpart@@{((2+\frac{1}{2})+k+1)} > 0, \realpart@@{((-2-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-2-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(2+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(SphericalBesselJ[2, z])^(2)+ (SphericalBesselY[2, z])^(2) == (z)^(- 2)+ 3*(z)^(- 4)+ 9*(z)^(- 6)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.49.E20 10.49.E20] || [[Item:Q3724|<math>\left(\modsphBesseli{1}{n}@{z}\right)^{2}-\left(\modsphBesseli{2}{n}@{z}\right)^{2} = (-1)^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\modsphBesseli{1}{n}@{z}\right)^{2}-\left(\modsphBesseli{2}{n}@{z}\right)^{2} = (-1)^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n])^(2)-(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n])^(2) == (- 1)^(n + 1)* Sum[(- 1)^(k)*Divide[Subscript[s, k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.299038105676658, -0.7500000000000001]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.35182282028742856, 0.20312500000000058]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.50#Ex1 10.50#Ex1] || [[Item:Q3728|<math>\Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{SphericalBesselJ[n, z], SphericalBesselY[n, z]}, z] == (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.50#Ex2 10.50#Ex2] || [[Item:Q3729|<math>\Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{SphericalHankelH1[n, z], SphericalHankelH2[n, z]}, z] == - 2*I*(z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.50#Ex3 10.50#Ex3] || [[Item:Q3730|<math>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]}, z] == (- 1)^(n + 1)* (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5000000000000001, 0.8660254037844386]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5000000000000001, -0.8660254037844386]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.50#Ex4 10.50#Ex4] || [[Item:Q3731|<math>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5384915109869794, 1.7026856201657974]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.6544302063904848, -2.4451654315616667]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.50#Ex4 10.50#Ex4] || [[Item:Q3731|<math>\Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == -Divide[1,2]*Pi*(z)^(- 2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5161524079039588, -2.211692333258562]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[7.686727830477982, 4.996906619076774]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.50#Ex5 10.50#Ex5] || [[Item:Q3732|<math>\sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}</syntaxhighlight> || <math>\realpart@@{(((n+1)+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+1)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n+1)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n+1)+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n + 1, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 1, z] == (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.50#Ex6 10.50#Ex6] || [[Item:Q3733|<math>\sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}</syntaxhighlight> || <math>\realpart@@{(((n+2)+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+2)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n+2)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n+2)+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n + 2, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 2, z] == (2*n + 3)*(z)^(- 3)</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.50.E4 10.50.E4] || [[Item:Q3734|<math>\sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}</syntaxhighlight> || <math>\realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-0-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(0+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[0, z]*SphericalBesselJ[n, z]+ SphericalBesselY[0, z]*SphericalBesselY[n, z] == Cos[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Sin[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 3)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.51#Ex1 10.51#Ex1] || [[Item:Q3735|<math>f_{n-1}(z)+f_{n+1}(z) = ((2n+1)/z)f_{n}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>f_{n-1}(z)+f_{n+1}(z) = ((2n+1)/z)f_{n}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">f[n - 1](z)+ f[n + 1](z) = ((2*n + 1)/z)*f[n](z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[f, n - 1][z]+ Subscript[f, n + 1][z] == ((2*n + 1)/z)*Subscript[f, n][z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/10.51#Ex5 10.51#Ex5] || [[Item:Q3739|<math>\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}f_{n}(z)) = z^{n-m+1}f_{n-m}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}f_{n}(z)) = z^{n-m+1}f_{n-m}(z)</syntaxhighlight> || <math>m = 0</math> || <syntaxhighlight lang=mathematica>(diff((1)/(z), z))^(m)*((z)^(n + 1)* f[n](z)) = (z)^(n - m + 1)* f[n - m](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[Divide[1,z], z])^(m)*((z)^(n + 1)* Subscript[f, n][z]) == (z)^(n - m + 1)* Subscript[f, n - m][z]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.49999999999999994, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.49999999999999994, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.51#Ex6 10.51#Ex6] || [[Item:Q3740|<math>\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}f_{n}(z)) = (-1)^{m}z^{-n-m}f_{n+m}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}f_{n}(z)) = (-1)^{m}z^{-n-m}f_{n+m}(z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff((1)/(z), z))^(m)*((z)^(- n)* f[n](z)) = (- 1)^(m)* (z)^(- n - m)* f[n + m](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[Divide[1,z], z])^(m)*((z)^(- n)* Subscript[f, n][z]) == (- 1)^(m)* (z)^(- n - m)* Subscript[f, n + m][z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.366025403-.3660254033*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, f[n] = 1/2*3^(1/2)+1/2*I, f[n+m] = 1/2*3^(1/2)+1/2*I, n = 1, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9999999993-.9999999984*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, f[n] = 1/2*3^(1/2)+1/2*I, f[n+m] = 1/2*3^(1/2)+1/2*I, n = 2, m = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.1339745962155613, 0.49999999999999994]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.3660254037844386, 0.36602540378443865]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.51#Ex7 10.51#Ex7] || [[Item:Q3741|<math>g_{n-1}(z)-g_{n+1}(z) = ((2n+1)/z)g_{n}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>g_{n-1}(z)-g_{n+1}(z) = ((2n+1)/z)g_{n}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">g[n - 1](z)- g[n + 1](z) = ((2*n + 1)/z)*g[n](z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[g, n - 1][z]- Subscript[g, n + 1][z] == ((2*n + 1)/z)*Subscript[g, n][z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/10.51#Ex11 10.51#Ex11] || [[Item:Q3745|<math>\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}g_{n}(z)) = z^{n-m+1}g_{n-m}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}g_{n}(z)) = z^{n-m+1}g_{n-m}(z)</syntaxhighlight> || <math>m = 0</math> || <syntaxhighlight lang=mathematica>(diff((1)/(z), z))^(m)*((z)^(n + 1)* g[n](z)) = (z)^(n - m + 1)* g[n - m](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[Divide[1,z], z])^(m)*((z)^(n + 1)* Subscript[g, n][z]) == (z)^(n - m + 1)* Subscript[g, n - m][z]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.49999999999999994, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.49999999999999994, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.51#Ex12 10.51#Ex12] || [[Item:Q3746|<math>\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}g_{n}(z)) = z^{-n-m}g_{n+m}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}g_{n}(z)) = z^{-n-m}g_{n+m}(z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff((1)/(z), z))^(m)*((z)^(- n)* g[n](z)) = (z)^(- n - m)* g[n + m](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[Divide[1,z], z])^(m)*((z)^(- n)* Subscript[g, n][z]) == (z)^(- n - m)* Subscript[g, n + m][z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3660254028+1.366025403*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, g[n] = 1/2*3^(1/2)+1/2*I, g[n+m] = 1/2*3^(1/2)+1/2*I, n = 1, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9999999987+.9999999996*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, g[n] = 1/2*3^(1/2)+1/2*I, g[n+m] = 1/2*3^(1/2)+1/2*I, n = 2, m = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.8660254037844388, 0.49999999999999994]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.3660254037844388, 1.3660254037844386]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.53.E1 10.53.E1] || [[Item:Q3755|<math>\sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</syntaxhighlight> || <math>|z| < \infty, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == (z)^(n)* Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.53.E2 10.53.E2] || [[Item:Q3756|<math>\sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</syntaxhighlight> || <math>0 < |z|, |z| < \infty., \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[n, z] == -Divide[1,(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[(- 1)^(n + 1),(z)^(n + 1)]*Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.53.E3 10.53.E3] || [[Item:Q3757|<math>\modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</syntaxhighlight> || <math>|z| < \infty, \realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (z)^(n)* Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.06771919180965624, -0.29579816936516184]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4498252419402129, -0.19064547195046921]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.53.E4 10.53.E4] || [[Item:Q3758|<math>\modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</syntaxhighlight> || <math>0 < |z|, |z| < \infty., \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[(- 1)^(n),(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(-Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[1,(z)^(n + 1)]*Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4141971914072808, -0.8850762711170854]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1065867555175597, 2.456957013551954]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.54.E1 10.54.E1] || [[Item:Q3759|<math>\sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(z)^(n),(2)^(n + 1)* (n)!]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*n + 1), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.54.E2 10.54.E2] || [[Item:Q3760|<math>\sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(- I)^(n),2]*Integrate[Exp[I*z*Cos[\[Theta]]]*LegendreP[n, 0, 3, Cos[\[Theta]]]*Sin[\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/10.54.E3 10.54.E3] || [[Item:Q3761|<math>\modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi.</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Divide[Pi,2]*Integrate[Exp[- z*t]*LegendreP[n, 0, 3, t], {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.54.E4 10.54.E4] || [[Item:Q3762|<math>\sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi., \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(- I)^(n + 1),2*Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 + , 1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/10.54#Ex1 10.54#Ex1] || [[Item:Q3763|<math>\sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH1[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/10.54#Ex2 10.54#Ex2] || [[Item:Q3764|<math>\sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi.</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH2[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/10.56.E1 10.56.E1] || [[Item:Q3765|<math>\frac{\cos@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\cos@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselJ{n-1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\cos@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\cos@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselJ{n-1}@{z}</syntaxhighlight> || <math>\realpart@@{(((n-1)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n-1)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n-1)-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cos[Sqrt[(z)^(2)- 2*z*t]],z] == Divide[Cos[z],z]+ Sum[Divide[(t)^(n),(n)!]*SphericalBesselJ[n - 1, z], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.0653161526495918, 0.32810386977400907], Times[-1.0, NSum[Times[Power[-1.5, n], Power[Factorial[n], -1], SphericalBesselJ[Plus[-1, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.8246723112251149, 0.13108435615091096], Times[-1.0, NSum[Times[Power[-1.5, n], Power[Factorial[n], -1], SphericalBesselJ[Plus[-1, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.56.E2 10.56.E2] || [[Item:Q3766|<math>\frac{\sin@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\sin@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselY{n-1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\sin@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselY{n-1}@{z}</syntaxhighlight> || <math>\realpart@@{(((n-1)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-((n-1)+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n-1)-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[Sqrt[(z)^(2)- 2*z*t]],z] == Divide[Sin[z],z]+ Sum[Divide[(t)^(n),(n)!]*SphericalBesselY[n - 1, z], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.56.E3 10.56.E3] || [[Item:Q3767|<math>\frac{\cosh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\cosh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{1}{n-1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\cosh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\cosh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{1}{n-1}@{z}</syntaxhighlight> || <math>\realpart@@{(((n-1)+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cosh[Sqrt[(z)^(2)+ 2*I*z*t]],z] == Divide[Cosh[z],z]+ Sum[Divide[(I*t)^(n),(n)!]*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n - 1 + 1/2), n - 1], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.13108435615091052, -1.8246723112251153], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[-1, 2], n], Plus[-1, n]], Power[Factorial[n], -1]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.022834987510423566, -1.7127448295681993], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[-1, 2], n], Plus[-1, n]], Power[Factorial[n], -1]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.56.E4 10.56.E4] || [[Item:Q3768|<math>\frac{\sinh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\sinh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{2}{n-1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sinh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\sinh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{2}{n-1}@{z}</syntaxhighlight> || <math>\realpart@@{((-(n-1)-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sinh[Sqrt[(z)^(2)+ 2*I*z*t]],z] == Divide[Sinh[z],z]+ Sum[Divide[(I*t)^(n),(n)!]*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n - 1 + 1/2), n - 1], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.12983798012989667, -2.1935922908985273], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[-1, n]], Plus[-1, n]], Power[Factorial[n], -1]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.4886830119296848, -1.839102010336905], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[-1, n]], Plus[-1, n]], Power[Factorial[n], -1]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.56.E5 10.56.E5] || [[Item:Q3769|<math>\frac{\exp@{-\sqrt{z^{2}+2izt}}}{z} = \frac{e^{-z}}{z}+\frac{2}{\pi}\sum_{n=1}^{\infty}\frac{(-it)^{n}}{n!}\modsphBesselK{n-1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\exp@{-\sqrt{z^{2}+2izt}}}{z} = \frac{e^{-z}}{z}+\frac{2}{\pi}\sum_{n=1}^{\infty}\frac{(-it)^{n}}{n!}\modsphBesselK{n-1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Exp[-Sqrt[(z)^(2)+ 2*I*z*t]],z] == Divide[Exp[- z],z]+Divide[2,Pi]*Sum[Divide[(- I*t)^(n),(n)!]*Sqrt[1/2 Pi /z] BesselK[n - 1 + 1/2, z], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.57.E1 10.57.E1] || [[Item:Q3770|<math>\sphBesselJ{n}'@{(n+\tfrac{1}{2})z} = \frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{1}{2}}}\BesselJ{n+\frac{1}{2}}'@{(n+\tfrac{1}{2})z}-\frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{3}{2}}}\BesselJ{n+\frac{1}{2}}@{(n+\tfrac{1}{2})z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}'@{(n+\tfrac{1}{2})z} = \frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{1}{2}}}\BesselJ{n+\frac{1}{2}}'@{(n+\tfrac{1}{2})z}-\frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{3}{2}}}\BesselJ{n+\frac{1}{2}}@{(n+\tfrac{1}{2})z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[SphericalBesselJ[n, (n +Divide[1,2])*z], {(n +Divide[1,2])*z, 1}] == Divide[(Pi)^(Divide[1,2]),((2*n + 1)*z)^(Divide[1,2])]*D[BesselJ[n +Divide[1,2], (n +Divide[1,2])*z], {(n +Divide[1,2])*z, 1}]-Divide[(Pi)^(Divide[1,2]),((2*n + 1)*z)^(Divide[3,2])]*BesselJ[n +Divide[1,2], (n +Divide[1,2])*z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.14653389603833195, -0.029869009956249915], Times[Complex[-0.988457695936884, 0.2648564413786163], D[Complex[0.36567703182522004, 0.24184221354059504]
Test Values: {Complex[1.299038105676658, 0.7499999999999999], 1.0}]], D[Complex[0.425509744388485, 0.14219887983348967], {Complex[1.299038105676658, 0.7499999999999999], 1.0}]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.06710374092328811, 0.007963502819859997], Times[Complex[-0.7656560389588212, 0.20515691731902835], D[Complex[0.2637838125883578, 0.3348231997381719]
Test Values: {Complex[2.165063509461097, 1.2499999999999998], 1.0}]], D[Complex[0.27065896459303473, 0.20224233103375913], {Complex[2.165063509461097, 1.2499999999999998], 1.0}]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E1 10.60.E1] || [[Item:Q3776|<math>\frac{\cos@@{w}}{w} = -\sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselY{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\cos@@{w}}{w} = -\sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselY{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}</syntaxhighlight> || <math>|ve^{+ i\alpha}| < |u|, |ve^{- i\alpha}| < |u|, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cos[w],w] == - Sum[(2*n + 1)*SphericalBesselJ[n, v]*SphericalBesselY[n, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.43419403794642014, -0.7090399040477617], NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], SphericalBesselJ[n, -0.5], SphericalBesselY[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.43419403794642014, -0.7090399040477617], NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], SphericalBesselJ[n, -0.5], SphericalBesselY[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E2 10.60.E2] || [[Item:Q3777|<math>\frac{\sin@@{w}}{w} = \sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselJ{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@@{w}}{w} = \sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselJ{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[w],w] == Sum[(2*n + 1)*SphericalBesselJ[n, v]*SphericalBesselJ[n, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.912697022466604, -0.13712305377128448], Times[-1.0, NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.912697022466604, -0.13712305377128448], Times[-1.0, NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E3 10.60.E3] || [[Item:Q3778|<math>\frac{e^{-w}}{w} = \frac{2}{\pi}\sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{v}\modsphBesselK{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{e^{-w}}{w} = \frac{2}{\pi}\sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{v}\modsphBesselK{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}</syntaxhighlight> || <math>|ve^{+ i\alpha}| < |u|, |ve^{- i\alpha}| < |u|, \realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Exp[- w],w] == Divide[2,Pi]*Sum[(2*n + 1)*Sqrt[Divide[Pi, v]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*Sqrt[1/2 Pi /u] BesselK[n + 1/2, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.60.E4 10.60.E4] || [[Item:Q3779|<math>\sphBesselJ{n}@{2z} = -n!z^{n+1}\sum_{k=0}^{n}\frac{2n-2k+1}{k!(2n-k+1)!}\sphBesselJ{n-k}@{z}\sphBesselY{n-k}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{2z} = -n!z^{n+1}\sum_{k=0}^{n}\frac{2n-2k+1}{k!(2n-k+1)!}\sphBesselJ{n-k}@{z}\sphBesselY{n-k}@{z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{(((n-k)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n-k)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-(n-k)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n-k)+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, 2*z] == - (n)!*(z)^(n + 1)* Sum[Divide[2*n - 2*k + 1,(k)!*(2*n - k + 1)!]*SphericalBesselJ[n - k, z]*SphericalBesselY[n - k, z], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.3456774997623559, Times[2.25, Plus[Times[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 1]], Plus[-1, Times[-1, ], Times[2, 1]], Plus[Times[-1, ], Times[2, 1]], Plus[1, Times[-1, ], Times[2, 1]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 1]], Plus[Times[-1, ], Times[2, 1]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 1], Times[40, Power[, 2], 1], Times[24, Power[, 3], 1], Times[-20, , Power[1, 2]], Times[-24, Power[, 2], Power[1, 2]], Times[8, , Power[1, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 1, Power[1.5, 2]], Times[-8, , 1, Power[1.5, 2]], Times[4, Power[1, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 1]], Plus[3, Times[4, ], Times[4, , 1], Times[-4, Power[1, 2]]], Plus[3, Times[8, ], Times[4, Power[<syntaxhighlight lang=mathematica>Result: Plus[0.2986374970757335, Times[6.75, Plus[Times[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 2], Times[40, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, , Power[2, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 2]], Plus[3, Times[4, ], Times[4, , 2], Times[-4, Power[2, 2]]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, , Plus[1, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-5, Power[1.5, 2]], Times[-10, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[12, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[-1, , Plus[1, ], Plus[2, ], Plus[1, Times[2, ], Times[-2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[1], 0], Equal[[2], Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]]], Equal[[3], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]]]], Equal[[4], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]], Times[Rational[1, 12], Power[1.5, -2], Plus[Times[12, Plus[-1, Times[-2, 2]], 2, Plus[-1, Times[2, 2]], 1.5, Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-12, Plus[-1, Times[-2, 2]], 2, Plus[-3, Times[2, 2]], Plus[-1, Times[2, 2]], Power[1.5, -1], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]]]], Plus[Times[-1, 1.5, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-3, Power[1.5, -1], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]], Times[2, 2, Power[1.5, -1], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]]]]]]}]][3.0]], Times[5.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[-3, Times[-17, ], Times[-34, Power[, 2]], Times[-28, Power[, 3]], Times[-8, Power[, 4]], Times[14, 2], Times[54, , 2], Times[64, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, Power[2, 2]], Times[-44, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, Power[2, 3]], Times[8, , Power[2, 3]], Times[-2, Power[1.5, 2]], Times[4, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-6, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[-1, Times[-1, ], 2], Plus[3, Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, Plus[1, ], Plus[2, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-6, Power[1.5, 2]], Times[-12, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[14, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[Plus[1, ], Plus[2, ], Plus[3, ], Plus[-1, Times[-2, ], Times[2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5], SphericalBesselY[2, 1.5]]], Equal[[2], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5], SphericalBesselY[2, 1.5]]]], Equal[[3], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5], SphericalBesselY[2, 1.5]], Times[Rational[1, 2], Power[1.5, -2], Plus[Times[2, Plus[-1, Times[-2, 2]], 2, Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-4, Plus[-1, Times[-2, 2]], Power[2, 2], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-2, 2, 1.5, Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5]], Times[-4, Power[2, 2], 1.5, Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5]]], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]]]]}]][3.0]]]]], {Rule[n, 2], Rule[z, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E5 10.60.E5] || [[Item:Q3780|<math>\sphBesselY{n}@{2z} = n!z^{n+1}\sum_{k=0}^{n}\frac{n-k+\frac{1}{2}}{k!(2n-k+1)!}{\left(\sphBesselJ{n-k}^{2}@{z}-\sphBesselY{n-k}^{2}@{z}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{n}@{2z} = n!z^{n+1}\sum_{k=0}^{n}\frac{n-k+\frac{1}{2}}{k!(2n-k+1)!}{\left(\sphBesselJ{n-k}^{2}@{z}-\sphBesselY{n-k}^{2}@{z}\right)}</syntaxhighlight> || <math>\realpart@@{(((n-k)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n-k)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n-k)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n-k)+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[n, 2*z] == (n)!*(z)^(n + 1)* Sum[Divide[n - k +Divide[1,2],(k)!*(2*n - k + 1)!]*((SphericalBesselJ[n - k, z])^(2)- (SphericalBesselY[n - k, z])^(2)), {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.06295916360231597, Times[-1.125, Plus[Times[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 1]], Plus[-1, Times[-1, ], Times[2, 1]], Plus[Times[-1, ], Times[2, 1]], Plus[1, Times[-1, ], Times[2, 1]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 1]], Plus[Times[-1, ], Times[2, 1]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 1], Times[40, Power[, 2], 1], Times[24, Power[, 3], 1], Times[-20, , Power[1, 2]], Times[-24, Power[, 2], Power[1, 2]], Times[8, , Power[1, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 1, Power[1.5, 2]], Times[-8, , 1, Power[1.5, 2]], Times[4, Power[1, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 1]], Plus[3, Times[4, ], Times[4, , 1], Times[-4, Power[1, 2]]], Plus[3, Times[8, ], Times[4, Pow<syntaxhighlight lang=mathematica>Result: Plus[-0.26703833526449916, Times[-3.375, Plus[Times[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 2], Times[40, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, , Power[2, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 2]], Plus[3, Times[4, ], Times[4, , 2], Times[-4, Power[2, 2]]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, , Plus[1, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-5, Power[1.5, 2]], Times[-10, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[12, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[-1, , Plus[1, ], Plus[2, ], Plus[1, Times[2, ], Times[-2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[1], 0], Equal[[2], Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]]], Equal[[3], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], 2]]]], Equal[[4], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], 2]], Times[-1, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, Plus[-1, Times[2, 2]], Plus[3, Times[-8, 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[Plus[-3, Times[2, 2]], Power[1.5, 2], Power[SphericalBesselJ[2, 1.5], 2]], Times[Plus[-3, Times[2, 2]], Power[1.5, -2], Plus[3, Times[-8, 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], Power[Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], 2]]]]]]}]][3.0]], Times[2.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 2], Times[40, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, , Power[2, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 2]], Plus[3, Times[4, ], Times[4, , 2], Times[-4, Power[2, 2]]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, , Plus[1, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-5, Power[1.5, 2]], Times[-10, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[12, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[-1, , Plus[1, ], Plus[2, ], Plus[1, Times[2, ], Times[-2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[1], 0], Equal[[2], Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]]], Equal[[3], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]], 2]]]], Equal[[4], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]], 2]], Times[-1, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, Plus[-1, Times[2, 2]], Plus[3, Times[-8, 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[Plus[-3, Times[2, 2]], Power[1.5, 2], Power[SphericalBesselY[2, 1.5], 2]], Times[Plus[-3, Times[2, 2]], Power[1.5, -2], Plus[3, Times[-8, 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], Power[Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]], 2]]]]]]}]][3.0]], Times[5.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[-3, Times[-17, ], Times[-34, Power[, 2]], Times[-28, Power[, 3]], Times[-8, Power[, 4]], Times[14, 2], Times[54, , 2], Times[64, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, Power[2, 2]], Times[-44, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, Power[2, 3]], Times[8, , Power[2, 3]], Times[-2, Power[1.5, 2]], Times[4, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-6, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[-1, Times[-1, ], 2], Plus[3, Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, Plus[1, ], Plus[2, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-6, Power[1.5, 2]], Times[-12, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[14, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[Plus[1, ], Plus[2, ], Plus[3, ], Plus[-1, Times[-2, ], Times[2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[2, 1.5], 2]]], Equal[[2], Plus[Times[Plus[1, Times[2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[2, 1.5], 2]]]], Equal[[3], Plus[Times[Plus[1, Times[2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[2, 1.5], 2]], Times[2, Plus[1, Times[2, 2]], Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], 2]]]]}]][3.0]], Times[-5.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[-3, Times[-17, ], Times[-34, Power[, 2]], Times[-28, Power[, 3]], Times[-8, Power[, 4]], Times[14, 2], Times[54, , 2], Times[64, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, Power[2, 2]], Times[-44, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, Power[2, 3]], Times[8, , Power[2, 3]], Times[-2, Power[1.5, 2]], Times[4, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-6, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[-1, Times[-1, ], 2], Plus[3, Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, Plus[1, ], Plus[2, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-6, Power[1.5, 2]], Times[-12, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[14, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[Plus[1, ], Plus[2, ], Plus[3, ], Plus[-1, Times[-2, ], Times[2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[2, 1.5], 2]]], Equal[[2], Plus[Times[Plus[1, Times[2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[2, 1.5], 2]]]], Equal[[3], Plus[Times[Plus[1, Times[2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[2, 1.5], 2]], Times[2, Plus[1, Times[2, 2]], Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]], 2]]]]}]][3.0]]]]], {Rule[n, 2], Rule[z, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E6 10.60.E6] || [[Item:Q3781|<math>\modsphBesselK{n}@{2z} = \frac{1}{\pi}n!z^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{2n-2k+1}{k!(2n-k+1)!}\modsphBesselK{n-k}^{2}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{2z} = \frac{1}{\pi}n!z^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{2n-2k+1}{k!(2n-k+1)!}\modsphBesselK{n-k}^{2}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /2*z] BesselK[n + 1/2, 2*z] == Divide[1,Pi]*(n)!*(z)^(n + 1)* Sum[(- 1)^(k)*Divide[2*n - 2*k + 1,(k)!*(2*n - k + 1)!]*(Sqrt[1/2 Pi /z] BesselK[n - k + 1/2, z])^(2), {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.10365998143807895, 0.01421463603104145]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.21384035370849797, -0.0374061947505589]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E7 10.60.E7] || [[Item:Q3782|<math>e^{iz\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)i^{n}\sphBesselJ{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{iz\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)i^{n}\sphBesselJ{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*z*Cos[\[Alpha]]] == Sum[(2*n + 1)*(I)^(n)* SphericalBesselJ[n, z]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.9634389243184156, 0.05909441627762202], Times[-1.0, NSum[Times[Power[Complex[0, 1], n], Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.46738148067268087, 0.44423123280344756], Times[-1.0, NSum[Times[Power[Complex[0, 1], n], Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E8 10.60.E8] || [[Item:Q3783|<math>e^{z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z*Cos[\[Alpha]]] == Sum[(2*n + 1)*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0625106169893304, 0.037595191618525974], Times[-1.0, NSum[Times[Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.0707372016677029]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.935725445820811, 0.9084451535292719], Times[-1.0, NSum[Times[Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.8775825618903728]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E9 10.60.E9] || [[Item:Q3784|<math>e^{-z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(-1)^{n}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(-1)^{n}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z*Cos[\[Alpha]]] == Sum[(- 1)^(n)*(2*n + 1)*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.939990215282077, -0.03326000860415312], Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.0707372016677029]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.4233587200353881, -0.19868425982147583], Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.8775825618903728]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E10 10.60.E10] || [[Item:Q3785|<math>\BesselJ{0}@{z\sin@@{\alpha}} = \sum_{n=0}^{\infty}(4n+1)\frac{(2n)!}{2^{2n}(n!)^{2}}\sphBesselJ{2n}@{z}\assLegendreP[]{2n}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{0}@{z\sin@@{\alpha}} = \sum_{n=0}^{\infty}(4n+1)\frac{(2n)!}{2^{2n}(n!)^{2}}\sphBesselJ{2n}@{z}\assLegendreP[]{2n}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(((2n)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(2n)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(2n)-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[0, z*Sin[\[Alpha]]] == Sum[(4*n + 1)*Divide[(2*n)!,(2)^(2*n)*((n)!)^(2)]*SphericalBesselJ[2*n, z]*LegendreP[2*n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.8683151459050518, -0.20203213835937428], Times[-1.0, NSum[Times[Power[2, Times[-2, n]], Plus[1, Times[4, n]], Power[Factorial[n], -2], Factorial[Times[2, n]], LegendreP[Times[2, n], 0.0707372016677029], SphericalBesselJ[Times[2, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.9708614168197589, -0.04904886793011446], Times[-1.0, NSum[Times[Power[2, Times[-2, n]], Plus[1, Times[4, n]], Power[Factorial[n], -2], Factorial[Times[2, n]], LegendreP[Times[2, n], 0.8775825618903728], SphericalBesselJ[Times[2, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E11 10.60.E11] || [[Item:Q3786|<math>\sum_{n=0}^{\infty}\sphBesselJ{n}^{2}@{z} = \frac{\sinint@{2z}}{2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\sphBesselJ{n}^{2}@{z} = \frac{\sinint@{2z}}{2z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == Divide[SinIntegral[2*z],2*z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/10.60.E12 10.60.E12] || [[Item:Q3787|<math>\sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}^{2}@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}^{2}@{z} = 1</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(2*n + 1)*(SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-1.0, NSum[Times[Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-1.0, NSum[Times[Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E13 10.60.E13] || [[Item:Q3788|<math>\sum_{n=0}^{\infty}(-1)^{n}(2n+1)\sphBesselJ{n}^{2}@{z} = \frac{\sin@{2z}}{2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}(-1)^{n}(2n+1)\sphBesselJ{n}^{2}@{z} = \frac{\sin@{2z}}{2z}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(n)*(2*n + 1)*(SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == Divide[Sin[2*z],2*z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6123335037567501, 0.46246896224791606], NSum[Times[Power[-1, n], Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.2536290109103816, -0.6921871649112455], NSum[Times[Power[-1, n], Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.60.E14 10.60.E14] || [[Item:Q3789|<math>\sum_{n=0}^{\infty}(2n+1)(\sphBesselJ{n}'@{z})^{2} = \tfrac{1}{3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}(2n+1)(\sphBesselJ{n}'@{z})^{2} = \tfrac{1}{3}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(2*n + 1)*(D[SphericalBesselJ[n, z], {z, 1}])^(2), {n, 0, Infinity}, GenerateConditions->None] == Divide[1,3]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.61.E1 10.61.E1] || [[Item:Q3790|<math>\Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \BesselJ{\nu}@{xe^{3\pi i/4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \BesselJ{\nu}@{xe^{3\pi i/4}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(nu, x)+ I*KelvinBei(nu, x) = BesselJ(nu, x*exp(3*Pi*I/4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == BesselJ[\[Nu], x*Exp[3*Pi*I/4]]</syntaxhighlight> || Successful || Failure || Skip - symbolical successful subtest || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61.E1 10.61.E1] || [[Item:Q3790|<math>\BesselJ{\nu}@{xe^{3\pi i/4}} = e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{xe^{3\pi i/4}} = e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, x*exp(3*Pi*I/4)) = exp(nu*Pi*I)*BesselJ(nu, x*exp(- Pi*I/4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], x*Exp[3*Pi*I/4]] == Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], x*Exp[- Pi*I/4]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61.E1 10.61.E1] || [[Item:Q3790|<math>e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}} = e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}} = e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp(nu*Pi*I)*BesselJ(nu, x*exp(- Pi*I/4)) = exp(nu*Pi*I/2)*BesselI(nu, x*exp(Pi*I/4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], x*Exp[- Pi*I/4]] == Exp[\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[Pi*I/4]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61.E1 10.61.E1] || [[Item:Q3790|<math>e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}} = e^{3\nu\pi i/2}\modBesselI{\nu}@{xe^{-3\pi i/4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}} = e^{3\nu\pi i/2}\modBesselI{\nu}@{xe^{-3\pi i/4}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp(nu*Pi*I/2)*BesselI(nu, x*exp(Pi*I/4)) = exp(3*nu*Pi*I/2)*BesselI(nu, x*exp(- 3*Pi*I/4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[Pi*I/4]] == Exp[3*\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[- 3*Pi*I/4]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61.E2 10.61.E2] || [[Item:Q3791|<math>\Kelvinker{\nu}@@{x}+i\Kelvinkei{\nu}@@{x} = e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinker{\nu}@@{x}+i\Kelvinkei{\nu}@@{x} = e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKer(nu, x)+ I*KelvinKei(nu, x) = exp(- nu*Pi*I/2)*BesselK(nu, x*exp(Pi*I/4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKer[\[Nu], x]+ I*KelvinKei[\[Nu], x] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], x*Exp[Pi*I/4]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61.E2 10.61.E2] || [[Item:Q3791|<math>e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}} = \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}} = \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- nu*Pi*I/2)*BesselK(nu, x*exp(Pi*I/4)) = (1)/(2)*Pi*I*HankelH1(nu, x*exp(3*Pi*I/4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], x*Exp[Pi*I/4]] == Divide[1,2]*Pi*I*HankelH1[\[Nu], x*Exp[3*Pi*I/4]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61.E2 10.61.E2] || [[Item:Q3791|<math>\tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}} = -\tfrac{1}{2}\pi ie^{-\nu\pi i}\HankelH{2}{\nu}@{xe^{-\pi i/4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}} = -\tfrac{1}{2}\pi ie^{-\nu\pi i}\HankelH{2}{\nu}@{xe^{-\pi i/4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(2)*Pi*I*HankelH1(nu, x*exp(3*Pi*I/4)) = -(1)/(2)*Pi*I*exp(- nu*Pi*I)*HankelH2(nu, x*exp(- Pi*I/4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*Pi*I*HankelH1[\[Nu], x*Exp[3*Pi*I/4]] == -Divide[1,2]*Pi*I*Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], x*Exp[- Pi*I/4]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61.E3 10.61.E3] || [[Item:Q3792|<math>x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}-(ix^{2}+\nu^{2})w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}-(ix^{2}+\nu^{2})w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)-(I*(x)^(2)+ (nu)^(2))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(x)^(2)* D[w, {x, 2}]+ x*D[w, x]-(I*(x)^(2)+ \[Nu]^(2))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.125000000-2.948557160*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1249999997-1.216506352*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1249999999999996, -2.948557158514987]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1249999999999996, -0.9485571585149869]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.61.E4 10.61.E4] || [[Item:Q3793|<math>x^{4}\deriv[4]{w}{x}+2x^{3}\deriv[3]{w}{x}-(1+2\nu^{2})\left(x^{2}\deriv[2]{w}{x}-x\deriv{w}{x}\right)+(\nu^{4}-4\nu^{2}+x^{4})w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x^{4}\deriv[4]{w}{x}+2x^{3}\deriv[3]{w}{x}-(1+2\nu^{2})\left(x^{2}\deriv[2]{w}{x}-x\deriv{w}{x}\right)+(\nu^{4}-4\nu^{2}+x^{4})w = 0</syntaxhighlight> || <math>w = \Kelvinber{+\nu}@@{x}, w = \Kelvinber{-\nu}@@{x}</math> || <syntaxhighlight lang=mathematica>(x)^(4)* diff(w, [x$(4)])+ 2*(x)^(3)* diff(w, [x$(3)])-(1 + 2*(nu)^(2))*((x)^(2)* diff(w, [x$(2)])- x*diff(w, x))+((nu)^(4)- 4*(nu)^(2)+ (x)^(4))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(x)^(4)* D[w, {x, 4}]+ 2*(x)^(3)* D[w, {x, 3}]-(1 + 2*\[Nu]^(2))*((x)^(2)* D[w, {x, 2}]- x*D[w, x])+(\[Nu]^(4)- 4*\[Nu]^(2)+ (x)^(4))*w == 0</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|-
| [https://dlmf.nist.gov/10.61#Ex1 10.61#Ex1] || [[Item:Q3794|<math>\Kelvinber{n}@{-x} = (-1)^{n}\Kelvinber{n}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{n}@{-x} = (-1)^{n}\Kelvinber{n}@@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(n, - x) = (- 1)^(n)* KelvinBer(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[n, - x] == (- 1)^(n)* KelvinBer[n, x]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/10.61#Ex2 10.61#Ex2] || [[Item:Q3795|<math>\Kelvinbei{n}@{-x} = (-1)^{n}\Kelvinbei{n}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{n}@{-x} = (-1)^{n}\Kelvinbei{n}@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinBei(n, - x) = (- 1)^(n)* KelvinBei(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[n, - x] == (- 1)^(n)* KelvinBei[n, x]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/10.61#Ex3 10.61#Ex3] || [[Item:Q3796|<math>\Kelvinber{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinber{\nu}@@{x}+\sin@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinker{\nu}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinber{\nu}@@{x}+\sin@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinker{\nu}@@{x}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(- nu, x) = cos(nu*Pi)*KelvinBer(nu, x)+ sin(nu*Pi)*KelvinBei(nu, x)+(2/Pi)*sin(nu*Pi)*KelvinKer(nu, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[- \[Nu], x] == Cos[\[Nu]*Pi]*KelvinBer[\[Nu], x]+ Sin[\[Nu]*Pi]*KelvinBei[\[Nu], x]+(2/Pi)*Sin[\[Nu]*Pi]*KelvinKer[\[Nu], x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61#Ex4 10.61#Ex4] || [[Item:Q3797|<math>\Kelvinbei{-\nu}@@{x} = -\sin@{\nu\pi}\Kelvinber{\nu}@@{x}+\cos@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{-\nu}@@{x} = -\sin@{\nu\pi}\Kelvinber{\nu}@@{x}+\cos@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBei(- nu, x) = - sin(nu*Pi)*KelvinBer(nu, x)+ cos(nu*Pi)*KelvinBei(nu, x)+(2/Pi)*sin(nu*Pi)*KelvinKei(nu, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[- \[Nu], x] == - Sin[\[Nu]*Pi]*KelvinBer[\[Nu], x]+ Cos[\[Nu]*Pi]*KelvinBei[\[Nu], x]+(2/Pi)*Sin[\[Nu]*Pi]*KelvinKei[\[Nu], x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61#Ex5 10.61#Ex5] || [[Item:Q3798|<math>\Kelvinker{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinker{\nu}@@{x}-\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinker{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinker{\nu}@@{x}-\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKer(- nu, x) = cos(nu*Pi)*KelvinKer(nu, x)- sin(nu*Pi)*KelvinKei(nu, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKer[- \[Nu], x] == Cos[\[Nu]*Pi]*KelvinKer[\[Nu], x]- Sin[\[Nu]*Pi]*KelvinKei[\[Nu], x]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61#Ex6 10.61#Ex6] || [[Item:Q3799|<math>\Kelvinkei{-\nu}@@{x} = \sin@{\nu\pi}\Kelvinker{\nu}@@{x}+\cos@{\nu\pi}\Kelvinkei{\nu}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinkei{-\nu}@@{x} = \sin@{\nu\pi}\Kelvinker{\nu}@@{x}+\cos@{\nu\pi}\Kelvinkei{\nu}@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKei(- nu, x) = sin(nu*Pi)*KelvinKer(nu, x)+ cos(nu*Pi)*KelvinKei(nu, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKei[- \[Nu], x] == Sin[\[Nu]*Pi]*KelvinKer[\[Nu], x]+ Cos[\[Nu]*Pi]*KelvinKei[\[Nu], x]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.61#Ex7 10.61#Ex7] || [[Item:Q3800|<math>\Kelvinber{-n}@@{x} = (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{-n}@@{x} = (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(- n, x) = (- 1)^(n)* KelvinBer(n, x); *KelvinBei(- n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[- n, x] == (- 1)^(n)* KelvinBer[n, x]
*KelvinBei[- n, x]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/10.61#Ex7 10.61#Ex7] || [[Item:Q3800|<math>(-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x} = (-1)^{n}\Kelvinbei{n}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x} = (-1)^{n}\Kelvinbei{n}@@{x}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(- 1)^(n)* KelvinBer(n, x),*KelvinBei(- n, x) = (- 1)^(n)* KelvinBei(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n)* KelvinBer[n, x],*KelvinBei[- n, x] == (- 1)^(n)* KelvinBei[n, x]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/10.61#Ex8 10.61#Ex8] || [[Item:Q3801|<math>\Kelvinker{-n}@@{x} = (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinker{-n}@@{x} = (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKer(- n, x) = (- 1)^(n)* KelvinKer(n, x); *KelvinKei(- n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKer[- n, x] == (- 1)^(n)* KelvinKer[n, x]
*KelvinKei[- n, x]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/10.61#Ex8 10.61#Ex8] || [[Item:Q3801|<math>(-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x} = (-1)^{n}\Kelvinkei{n}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x} = (-1)^{n}\Kelvinkei{n}@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n)* KelvinKer(n, x),*KelvinKei(- n, x) = (- 1)^(n)* KelvinKei(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n)* KelvinKer[n, x],*KelvinKei[- n, x] == (- 1)^(n)* KelvinKei[n, x]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/10.61#Ex9 10.61#Ex9] || [[Item:Q3802|<math>\Kelvinber{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}-e^{-x}\cos@{x-\frac{\pi}{8}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}-e^{-x}\cos@{x-\frac{\pi}{8}}\right)</syntaxhighlight> || <math>\realpart@@{((\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer((1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*cos(x +(Pi)/(8))- exp(- x)*cos(x -(Pi)/(8)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Cos[x +Divide[Pi,8]]- Exp[- x]*Cos[x -Divide[Pi,8]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.61#Ex10 10.61#Ex10] || [[Item:Q3803|<math>\Kelvinbei{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}+\,e^{-x}\sin@{x-\frac{\pi}{8}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}+\,e^{-x}\sin@{x-\frac{\pi}{8}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinBei((1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*sin(x +(Pi)/(8))+ exp(- x)*sin(x -(Pi)/(8)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Sin[x +Divide[Pi,8]]+ Exp[- x]*Sin[x -Divide[Pi,8]])</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.61#Ex11 10.61#Ex11] || [[Item:Q3804|<math>\Kelvinber{-\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}-e^{-x}\sin@{x-\frac{\pi}{8}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{-\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}-e^{-x}\sin@{x-\frac{\pi}{8}}\right)</syntaxhighlight> || <math>\realpart@@{((-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(-(1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*sin(x +(Pi)/(8))- exp(- x)*sin(x -(Pi)/(8)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[-Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Sin[x +Divide[Pi,8]]- Exp[- x]*Sin[x -Divide[Pi,8]])</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.61#Ex12 10.61#Ex12] || [[Item:Q3805|<math>\Kelvinbei{-\frac{1}{2}}@{x\sqrt{2}} = -\frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}+e^{-x}\cos@{x-\frac{\pi}{8}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{-\frac{1}{2}}@{x\sqrt{2}} = -\frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}+e^{-x}\cos@{x-\frac{\pi}{8}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinBei(-(1)/(2), x*sqrt(2)) = -((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*cos(x +(Pi)/(8))+ exp(- x)*cos(x -(Pi)/(8)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[-Divide[1,2], x*Sqrt[2]] == -Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Cos[x +Divide[Pi,8]]+ Exp[- x]*Cos[x -Divide[Pi,8]])</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.61.E11 10.61.E11] || [[Item:Q3806|<math>\Kelvinker{\frac{1}{2}}@{x\sqrt{2}} = \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinker{\frac{1}{2}}@{x\sqrt{2}} = \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKer((1)/(2), x*sqrt(2)) = KelvinKei(-(1)/(2), x*sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKer[Divide[1,2], x*Sqrt[2]] == KelvinKei[-Divide[1,2], x*Sqrt[2]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.61.E11 10.61.E11] || [[Item:Q3806|<math>\Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\sin@{x-\frac{\pi}{8}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\sin@{x-\frac{\pi}{8}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKei(-(1)/(2), x*sqrt(2)) = - (2)^(-(3)/(4))*sqrt((Pi)/(x))*exp(- x)*sin(x -(Pi)/(8))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKei[-Divide[1,2], x*Sqrt[2]] == - (2)^(-Divide[3,4])*Sqrt[Divide[Pi,x]]*Exp[- x]*Sin[x -Divide[Pi,8]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.61.E12 10.61.E12] || [[Item:Q3807|<math>\Kelvinkei{\frac{1}{2}}@{x\sqrt{2}} = -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinkei{\frac{1}{2}}@{x\sqrt{2}} = -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKei((1)/(2), x*sqrt(2)) = - KelvinKer(-(1)/(2), x*sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKei[Divide[1,2], x*Sqrt[2]] == - KelvinKer[-Divide[1,2], x*Sqrt[2]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/10.61.E12 10.61.E12] || [[Item:Q3807|<math>-\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\cos@{x-\frac{\pi}{8}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\cos@{x-\frac{\pi}{8}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- KelvinKer(-(1)/(2), x*sqrt(2)) = - (2)^(-(3)/(4))*sqrt((Pi)/(x))*exp(- x)*cos(x -(Pi)/(8))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- KelvinKer[-Divide[1,2], x*Sqrt[2]] == - (2)^(-Divide[3,4])*Sqrt[Divide[Pi,x]]*Exp[- x]*Cos[x -Divide[Pi,8]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.63#Ex5 10.63#Ex5] || [[Item:Q3812|<math>f_{\nu-1}(x)+f_{\nu+1}(x) = -(\nu\sqrt{2}/x)\left(f_{\nu}(x)-g_{\nu}(x)\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>f_{\nu-1}(x)+f_{\nu+1}(x) = -(\nu\sqrt{2}/x)\left(f_{\nu}(x)-g_{\nu}(x)\right)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">f[nu - 1](x)+ f[nu + 1](x) = -(nu*sqrt(2)/x)*(f[nu](x)- g[nu](x))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[f, \[Nu]- 1][x]+ Subscript[f, \[Nu]+ 1][x] == -(\[Nu]*Sqrt[2]/x)*(Subscript[f, \[Nu]][x]- Subscript[g, \[Nu]][x])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/10.63#Ex9 10.63#Ex9] || [[Item:Q3816|<math>\sqrt{2}\Kelvinber{}'@@{x} = \Kelvinber{1}@@{x}+\Kelvinbei{1}@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\Kelvinber{}'@@{x} = \Kelvinber{1}@@{x}+\Kelvinbei{1}@@{x}</syntaxhighlight> || <math>\realpart@@{(1+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2)*diff( KelvinBer(, x), x$(1) ) = KelvinBer(1, x)+ KelvinBei(1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*D[KelvinBer[, x], {x, 1}] == KelvinBer[1, x]+ KelvinBei[1, x]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.297000428957679, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 1.5]], KelvinBei[Plus[1.0, Null], 1.5], Times[-1.0, KelvinBer[Plus[-1.0, Null], 1.5]], KelvinBer[Plus[1.0, Null], 1.5]]]]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.011047944038096752, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 0.5]], KelvinBei[Plus[1.0, Null], 0.5], Times[-1.0, KelvinBer[Plus[-1.0, Null], 0.5]], KelvinBer[Plus[1.0, Null], 0.5]]]]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.63#Ex10 10.63#Ex10] || [[Item:Q3817|<math>\sqrt{2}\Kelvinbei{}'@@{x} = -\Kelvinber{1}x+\Kelvinbei{1}x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\Kelvinbei{}'@@{x} = -\Kelvinber{1}x+\Kelvinbei{1}x</syntaxhighlight> || <math>\realpart@@{(1+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2)*diff( KelvinBei(, x), x$(1) ) = - KelvinBer(1, x)+ KelvinBei(1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*D[KelvinBei[, x], {x, 1}] == - KelvinBer[1, x]+ KelvinBei[1, x]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-1.0327304069618592, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 1.5]], KelvinBei[Plus[1.0, Null], 1.5], KelvinBer[Plus[-1.0, Null], 1.5], Times[-1.0, KelvinBer[Plus[1.0, Null], 1.5]]]]]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.35343830347212746, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 0.5]], KelvinBei[Plus[1.0, Null], 0.5], KelvinBer[Plus[-1.0, Null], 0.5], Times[-1.0, KelvinBer[Plus[1.0, Null], 0.5]]]]]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.63#Ex11 10.63#Ex11] || [[Item:Q3818|<math>\sqrt{2}\Kelvinker{}'@@{x} = \Kelvinker{1}x+\Kelvinkei{1}x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\Kelvinker{}'@@{x} = \Kelvinker{1}x+\Kelvinkei{1}x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*diff( KelvinKer(, x), x$(1) ) = KelvinKer(1, x)+ KelvinKei(1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*D[KelvinKer[, x], {x, 1}] == KelvinKer[1, x]+ KelvinKei[1, x]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.4160356041812476, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 1.5]], KelvinKei[Plus[1.0, Null], 1.5], Times[-1.0, KelvinKer[Plus[-1.0, Null], 1.5]], KelvinKer[Plus[1.0, Null], 1.5]]]]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[2.5735854919446126, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 0.5]], KelvinKei[Plus[1.0, Null], 0.5], Times[-1.0, KelvinKer[Plus[-1.0, Null], 0.5]], KelvinKer[Plus[1.0, Null], 0.5]]]]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.63#Ex12 10.63#Ex12] || [[Item:Q3819|<math>\sqrt{2}\Kelvinkei{}'@@{x} = -\Kelvinker{1}x+\Kelvinkei{1}x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\Kelvinkei{}'@@{x} = -\Kelvinker{1}x+\Kelvinkei{1}x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*diff( KelvinKei(, x), x$(1) ) = - KelvinKer(1, x)+ KelvinKei(1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*D[KelvinKei[, x], {x, 1}] == - KelvinKer[1, x]+ KelvinKei[1, x]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.418052966151267, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 1.5]], KelvinKei[Plus[1.0, Null], 1.5], KelvinKer[Plus[-1.0, Null], 1.5], Times[-1.0, KelvinKer[Plus[1.0, Null], 1.5]]]]]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.47122132111956727, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 0.5]], KelvinKei[Plus[1.0, Null], 0.5], KelvinKer[Plus[-1.0, Null], 0.5], Times[-1.0, KelvinKer[Plus[1.0, Null], 0.5]]]]]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.63#Ex17 10.63#Ex17] || [[Item:Q3824|<math>p_{\nu+1} = p_{\nu-1}-(4\nu/x)r_{\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{\nu+1} = p_{\nu-1}-(4\nu/x)r_{\nu}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[nu + 1] = p[nu - 1]-(4*nu/x)*r[nu]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, \[Nu]+ 1] == Subscript[p, \[Nu]- 1]-(4*\[Nu]/x)*Subscript[r, \[Nu]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.63#Ex18 10.63#Ex18] || [[Item:Q3825|<math>q_{\nu+1} = -(\nu/x)p_{\nu}+r_{\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{\nu+1} = -(\nu/x)p_{\nu}+r_{\nu}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[nu + 1] = -(nu/x)*p[nu]+ r[nu]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, \[Nu]+ 1] == -(\[Nu]/x)*Subscript[p, \[Nu]]+ Subscript[r, \[Nu]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.63#Ex19 10.63#Ex19] || [[Item:Q3826|<math>r_{\nu+1} = -((\nu+1)/x)p_{\nu+1}+q_{\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>r_{\nu+1} = -((\nu+1)/x)p_{\nu+1}+q_{\nu}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r[nu + 1] = -((nu + 1)/x)*p[nu + 1]+ q[nu]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[r, \[Nu]+ 1] == -((\[Nu]+ 1)/x)*Subscript[p, \[Nu]+ 1]+ Subscript[q, \[Nu]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.63#Ex20 10.63#Ex20] || [[Item:Q3827|<math>s_{\nu} = \tfrac{1}{2}p_{\nu+1}+\tfrac{1}{2}p_{\nu-1}-(\nu^{2}/x^{2})p_{\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>s_{\nu} = \tfrac{1}{2}p_{\nu+1}+\tfrac{1}{2}p_{\nu-1}-(\nu^{2}/x^{2})p_{\nu}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((diff( KelvinBer(nu, x), x$(1) ))^(2)+(diff( KelvinBei(nu, x), x$(1) ))^(2)) = (1)/(2)*p[nu + 1]+(1)/(2)*p[nu - 1]-((nu)^(2)/(x)^(2))*p[nu]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((D[KelvinBer[\[Nu], x], {x, 1}])^(2)+(D[KelvinBei[\[Nu], x], {x, 1}])^(2)) == Divide[1,2]*Subscript[p, \[Nu]+ 1]+Divide[1,2]*Subscript[p, \[Nu]- 1]-(\[Nu]^(2)/(x)^(2))*Subscript[p, \[Nu]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.63.E7 10.63.E7] || [[Item:Q3828|<math>p_{\nu}s_{\nu} = r_{\nu}^{2}+q_{\nu}^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{\nu}s_{\nu} = r_{\nu}^{2}+q_{\nu}^{2}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[nu]*((diff( KelvinBer(nu, x), x$(1) ))^(2)+(diff( KelvinBei(nu, x), x$(1) ))^(2)) = (r[nu])^(2)+ (q[nu])^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, \[Nu]]*((D[KelvinBer[\[Nu], x], {x, 1}])^(2)+(D[KelvinBei[\[Nu], x], {x, 1}])^(2)) == (Subscript[r, \[Nu]])^(2)+ (Subscript[q, \[Nu]])^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/10.64.E1 10.64.E1] || [[Item:Q3829|<math>\Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(cos(x*sin(t)- n*t)*cosh(x*sin(t)), t = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Cos[x*Sin[t]- n*t]*Cosh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.64.E2 10.64.E2] || [[Item:Q3830|<math>\Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinBei(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(sin(x*sin(t)- n*t)*sinh(x*sin(t)), t = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Sin[x*Sin[t]- n*t]*Sinh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.65#Ex1 10.65#Ex1] || [[Item:Q3831|<math>\Kelvinber{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\cos@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\cos@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(nu, x) = ((1)/(2)*x)^(nu)* sum((cos((3)/(4)*nu*Pi +(1)/(2)*k*Pi))/(factorial(k)*GAMMA(nu + k + 1))*((1)/(4)*(x)^(2))^(k), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[\[Nu], x] == (Divide[1,2]*x)^\[Nu]* Sum[Divide[Cos[Divide[3,4]*\[Nu]*Pi +Divide[1,2]*k*Pi],(k)!*Gamma[\[Nu]+ k + 1]]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.65#Ex2 10.65#Ex2] || [[Item:Q3832|<math>\Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\sin@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\sin@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBei(nu, x) = ((1)/(2)*x)^(nu)* sum((sin((3)/(4)*nu*Pi +(1)/(2)*k*Pi))/(factorial(k)*GAMMA(nu + k + 1))*((1)/(4)*(x)^(2))^(k), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[\[Nu], x] == (Divide[1,2]*x)^\[Nu]* Sum[Divide[Sin[Divide[3,4]*\[Nu]*Pi +Divide[1,2]*k*Pi],(k)!*Gamma[\[Nu]+ k + 1]]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.65#Ex3 10.65#Ex3] || [[Item:Q3833|<math>\Kelvinber{}@@{x} = 1-\frac{(\frac{1}{4}x^{2})^{2}}{(2!)^{2}}+\frac{(\frac{1}{4}x^{2})^{4}}{(4!)^{2}}-\dotsb</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{}@@{x} = 1-\frac{(\frac{1}{4}x^{2})^{2}}{(2!)^{2}}+\frac{(\frac{1}{4}x^{2})^{4}}{(4!)^{2}}-\dotsb</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinBer(, x) = 1 -(((1)/(4)*(x)^(2))^(2))/((factorial(2))^(2))+(((1)/(4)*(x)^(2))^(4))/((factorial(4))^(2))- ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[, x] == 1 -Divide[(Divide[1,4]*(x)^(2))^(2),((2)!)^(2)]+Divide[(Divide[1,4]*(x)^(2))^(4),((4)!)^(2)]- \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.921072244644165, …, KelvinBer[Null, 1.5]]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.9990234639909532, …, KelvinBer[Null, 0.5]]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.65#Ex4 10.65#Ex4] || [[Item:Q3834|<math>\Kelvinbei{}@@{x} = \tfrac{1}{4}x^{2}-\frac{(\frac{1}{4}x^{2})^{3}}{(3!)^{2}}+\frac{(\frac{1}{4}x^{2})^{5}}{(5!)^{2}}-\dotsi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{}@@{x} = \tfrac{1}{4}x^{2}-\frac{(\frac{1}{4}x^{2})^{3}}{(3!)^{2}}+\frac{(\frac{1}{4}x^{2})^{5}}{(5!)^{2}}-\dotsi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinBei(, x) = (1)/(4)*(x)^(2)-(((1)/(4)*(x)^(2))^(3))/((factorial(3))^(2))+(((1)/(4)*(x)^(2))^(5))/((factorial(5))^(2))- ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[, x] == Divide[1,4]*(x)^(2)-Divide[(Divide[1,4]*(x)^(2))^(3),((3)!)^(2)]+Divide[(Divide[1,4]*(x)^(2))^(5),((5)!)^(2)]- \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.5575600630044937, …, KelvinBei[Null, 1.5]]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.06249321838219961, …, KelvinBei[Null, 0.5]]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.65.E3 10.65.E3] || [[Item:Q3835|<math>\Kelvinker{n}@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\cos@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}-\ln@{\tfrac{1}{2}x}\Kelvinber{n}@@{x}+\tfrac{1}{4}\pi\Kelvinbei{n}@@{x}+\tfrac{1}{2}(\tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\digamma@{k+1}+\digamma@{n+k+1}}{k!(n+k)!}\cos@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinker{n}@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\cos@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}-\ln@{\tfrac{1}{2}x}\Kelvinber{n}@@{x}+\tfrac{1}{4}\pi\Kelvinbei{n}@@{x}+\tfrac{1}{2}(\tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\digamma@{k+1}+\digamma@{n+k+1}}{k!(n+k)!}\cos@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinKer(n, x) = (1)/(2)*((1)/(2)*x)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*cos((3)/(4)*n*Pi +(1)/(2)*k*Pi)*((1)/(4)*(x)^(2))^(k), k = 0..n - 1)- ln((1)/(2)*x)*KelvinBer(n, x)+(1)/(4)*Pi*KelvinBei(n, x)+(1)/(2)*((1)/(2)*x)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))/(factorial(k)*factorial(n + k))*cos((3)/(4)*n*Pi +(1)/(2)*k*Pi)*((1)/(4)*(x)^(2))^(k), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKer[n, x] == Divide[1,2]*(Divide[1,2]*x)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*Cos[Divide[3,4]*n*Pi +Divide[1,2]*k*Pi]*(Divide[1,4]*(x)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]- Log[Divide[1,2]*x]*KelvinBer[n, x]+Divide[1,4]*Pi*KelvinBei[n, x]+Divide[1,2]*(Divide[1,2]*x)^(n)* Sum[Divide[PolyGamma[k + 1]+ PolyGamma[n + k + 1],(k)!*(n + k)!]*Cos[Divide[3,4]*n*Pi +Divide[1,2]*k*Pi]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.65.E4 10.65.E4] || [[Item:Q3836|<math>\Kelvinkei{n}@@{x} = -\tfrac{1}{2}(\tfrac{1}{2}x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\sin@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}-\ln@{\tfrac{1}{2}x}\Kelvinbei{n}@@{x}-\tfrac{1}{4}\pi\Kelvinber{n}@@{x}+\tfrac{1}{2}(\tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\digamma@{k+1}+\digamma@{n+k+1}}{k!(n+k)!}\sin@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinkei{n}@@{x} = -\tfrac{1}{2}(\tfrac{1}{2}x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\sin@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}-\ln@{\tfrac{1}{2}x}\Kelvinbei{n}@@{x}-\tfrac{1}{4}\pi\Kelvinber{n}@@{x}+\tfrac{1}{2}(\tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\digamma@{k+1}+\digamma@{n+k+1}}{k!(n+k)!}\sin@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinKei(n, x) = -(1)/(2)*((1)/(2)*x)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*sin((3)/(4)*n*Pi +(1)/(2)*k*Pi)*((1)/(4)*(x)^(2))^(k), k = 0..n - 1)- ln((1)/(2)*x)*KelvinBei(n, x)-(1)/(4)*Pi*KelvinBer(n, x)+(1)/(2)*((1)/(2)*x)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))/(factorial(k)*factorial(n + k))*sin((3)/(4)*n*Pi +(1)/(2)*k*Pi)*((1)/(4)*(x)^(2))^(k), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKei[n, x] == -Divide[1,2]*(Divide[1,2]*x)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*Sin[Divide[3,4]*n*Pi +Divide[1,2]*k*Pi]*(Divide[1,4]*(x)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]- Log[Divide[1,2]*x]*KelvinBei[n, x]-Divide[1,4]*Pi*KelvinBer[n, x]+Divide[1,2]*(Divide[1,2]*x)^(n)* Sum[Divide[PolyGamma[k + 1]+ PolyGamma[n + k + 1],(k)!*(n + k)!]*Sin[Divide[3,4]*n*Pi +Divide[1,2]*k*Pi]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.65#Ex5 10.65#Ex5] || [[Item:Q3837|<math>\Kelvinker{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinber{}@@{x}+\tfrac{1}{4}\pi\Kelvinbei{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+1}}{((2k)!)^{2}}(\tfrac{1}{4}x^{2})^{2k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinker{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinber{}@@{x}+\tfrac{1}{4}\pi\Kelvinbei{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+1}}{((2k)!)^{2}}(\tfrac{1}{4}x^{2})^{2k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKer(, x) = - ln((1)/(2)*x)*KelvinBer(, x)+(1)/(4)*Pi*KelvinBei(, x)+ sum((- 1)^(k)*(Psi(2*k + 1))/((factorial(2*k))^(2))*((1)/(4)*(x)^(2))^(2*k), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKer[, x] == - Log[Divide[1,2]*x]*KelvinBer[, x]+Divide[1,4]*Pi*KelvinBei[, x]+ Sum[(- 1)^(k)*Divide[PolyGamma[2*k + 1],((2*k)!)^(2)]*(Divide[1,4]*(x)^(2))^(2*k), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.65#Ex6 10.65#Ex6] || [[Item:Q3838|<math>\Kelvinkei{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinbei{}@@{x}-\tfrac{1}{4}\pi\Kelvinber{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+2}}{((2k+1)!)^{2}}(\tfrac{1}{4}x^{2})^{2k+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinkei{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinbei{}@@{x}-\tfrac{1}{4}\pi\Kelvinber{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+2}}{((2k+1)!)^{2}}(\tfrac{1}{4}x^{2})^{2k+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinKei(, x) = - ln((1)/(2)*x)*KelvinBei(, x)-(1)/(4)*Pi*KelvinBer(, x)+ sum((- 1)^(k)*(Psi(2*k + 2))/((factorial(2*k + 1))^(2))*((1)/(4)*(x)^(2))^(2*k + 1), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinKei[, x] == - Log[Divide[1,2]*x]*KelvinBei[, x]-Divide[1,4]*Pi*KelvinBer[, x]+ Sum[(- 1)^(k)*Divide[PolyGamma[2*k + 2],((2*k + 1)!)^(2)]*(Divide[1,4]*(x)^(2))^(2*k + 1), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.23161280473545226, Times[-1.0, KelvinBer[Null, 1.5]], KelvinKei[Null, 1.5]]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.02641550246351669, Times[-1.0, KelvinBer[Null, 0.5]], KelvinKei[Null, 0.5]]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.65.E6 10.65.E6] || [[Item:Q3839|<math>\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x} = (\tfrac{1}{2}x)^{2\nu}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x} = (\tfrac{1}{2}x)^{2\nu}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu+2k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(KelvinBer(nu, x))^(2)+ (KelvinBei(nu, x))^(2) = ((1)/(2)*x)^(2*nu)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 1))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(KelvinBer[\[Nu], x])^(2)+ (KelvinBei[\[Nu], x])^(2) == (Divide[1,2]*x)^(2*\[Nu])* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 1]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.65.E7 10.65.E7] || [[Item:Q3840|<math>\Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{2\nu+1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+2}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{2\nu+1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+2}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu+2k+2)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(nu, x)*diff( KelvinBei(nu, x), x$(1) )- diff( KelvinBer(nu, x), x$(1) )*KelvinBei(nu, x) = ((1)/(2)*x)^(2*nu + 1)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 2))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}]- D[KelvinBer[\[Nu], x], {x, 1}]*KelvinBei[\[Nu], x] == (Divide[1,2]*x)^(2*\[Nu]+ 1)* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 2]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7271930e-3+.45983036e-2*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.41528503e-2+.322695404e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[ν, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.65.E8 10.65.E8] || [[Item:Q3841|<math>\Kelvinber{\nu}@@{x}\Kelvinber{\nu}'@@{x}+\Kelvinbei{\nu}@@{x}\Kelvinbei{\nu}'@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{2\nu-1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{\nu}@@{x}\Kelvinber{\nu}'@@{x}+\Kelvinbei{\nu}@@{x}\Kelvinbei{\nu}'@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{2\nu-1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu+2k)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(nu, x)*diff( KelvinBer(nu, x), x$(1) )+ KelvinBei(nu, x)*diff( KelvinBei(nu, x), x$(1) ) = (1)/(2)*((1)/(2)*x)^(2*nu - 1)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[\[Nu], x]*D[KelvinBer[\[Nu], x], {x, 1}]+ KelvinBei[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}] == Divide[1,2]*(Divide[1,2]*x)^(2*\[Nu]- 1)* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .71978298e-2-.3037583875e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .607273780e-1-.1071579728*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[ν, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.65.E9 10.65.E9] || [[Item:Q3842|<math>\left(\Kelvinber{\nu}'@@{x}\right)^{2}+\left(\Kelvinbei{\nu}'@@{x}\right)^{2} = (\tfrac{1}{2}x)^{2\nu-2}\sum_{k=0}^{\infty}\frac{2k^{2}+2\nu k+\frac{1}{4}\nu^{2}}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\Kelvinber{\nu}'@@{x}\right)^{2}+\left(\Kelvinbei{\nu}'@@{x}\right)^{2} = (\tfrac{1}{2}x)^{2\nu-2}\sum_{k=0}^{\infty}\frac{2k^{2}+2\nu k+\frac{1}{4}\nu^{2}}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu+2k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(diff( KelvinBer(nu, x), x$(1) ))^(2)+(diff( KelvinBei(nu, x), x$(1) ))^(2) = ((1)/(2)*x)^(2*nu - 2)* sum((2*(k)^(2)+ 2*nu*k +(1)/(4)*(nu)^(2))/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 1))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[KelvinBer[\[Nu], x], {x, 1}])^(2)+(D[KelvinBei[\[Nu], x], {x, 1}])^(2) == (Divide[1,2]*x)^(2*\[Nu]- 2)* Sum[Divide[2*(k)^(2)+ 2*\[Nu]*k +Divide[1,4]*\[Nu]^(2),Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 1]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[ν, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.66.E1 10.66.E1] || [[Item:Q3843|<math>\Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!}</syntaxhighlight> || <math>\realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(nu, x)+ I*KelvinBei(nu, x) = sum((exp((3*nu + k)*Pi*I/4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == Sum[Divide[Exp[(3*\[Nu]+ k)*Pi*I/4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.12257968900025018, 0.2735107661041647], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.3467793075651209, -0.08562995402477025], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.66.E1 10.66.E1] || [[Item:Q3843|<math>\sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/4}x^{k}\modBesselI{\nu+k}@{x}}{2^{k/2}k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/4}x^{k}\modBesselI{\nu+k}@{x}}{2^{k/2}k!}</syntaxhighlight> || <math>\realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum((exp((3*nu + k)*Pi*I/4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity) = sum((exp((3*nu + 3*k)*Pi*I/4)*(x)^(k)* BesselI(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[Exp[(3*\[Nu]+ k)*Pi*I/4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None] == Sum[Divide[Exp[(3*\[Nu]+ 3*k)*Pi*I/4]*(x)^(k)* BesselI[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.66#Ex1 10.66#Ex1] || [[Item:Q3844|<math>\Kelvinber{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k}@{x}\modBesselI{2k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k}@{x}\modBesselI{2k}@{x}</syntaxhighlight> || <math>\realpart@@{((n+2k)+k+1)} > 0, \realpart@@{(n+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k, x)*BesselI(2*k, x), k = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k, x]*BesselI[2*k, x], {k, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.66#Ex2 10.66#Ex2] || [[Item:Q3845|<math>\Kelvinbei{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k+1}@{x}\modBesselI{2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k+1}@{x}\modBesselI{2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{((n+2k+1)+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBei(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k + 1, x)*BesselI(2*k + 1, x), k = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k + 1, x]*BesselI[2*k + 1, x], {k, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.68#Ex5 10.68#Ex5] || [[Item:Q3868|<math>\HankelmodM{\nu}@{x} = (\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x})^{\ifrac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelmodM{\nu}@{x} = (\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x})^{\ifrac{1}{2}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2] == ((KelvinBer[\[Nu], x])^(2)+ (KelvinBei[\[Nu], x])^(2))^(Divide[1,2])</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.68#Ex6 10.68#Ex6] || [[Item:Q3869|<math>\HankelmodderivN{\nu}@{x} = (\Kelvinker{\nu}^{2}@@{x}+\Kelvinkei{\nu}^{2}@@{x})^{\ifrac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelmodderivN{\nu}@{x} = (\Kelvinker{\nu}^{2}@@{x}+\Kelvinkei{\nu}^{2}@@{x})^{\ifrac{1}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2] == ((KelvinKer[\[Nu], x])^(2)+ (KelvinKei[\[Nu], x])^(2))^(Divide[1,2])</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.68#Ex9 10.68#Ex9] || [[Item:Q3872|<math>\HankelmodM{-n}@{x} = \HankelmodM{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelmodM{-n}@{x} = \HankelmodM{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[KelvinBer[- n, x]^2 + KelvinBei[- n, x]^2] == Sqrt[KelvinBer[n, x]^2 + KelvinBei[n, x]^2]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/10.68#Ex17 10.68#Ex17] || [[Item:Q3884|<math>\HankelmodderivN{-\nu}@{x} = \HankelmodderivN{\nu}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelmodderivN{-\nu}@{x} = \HankelmodderivN{\nu}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[KelvinKer[- \[Nu], x]^2 + KelvinKei[- \[Nu], x]^2] == Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.71.E1 10.71.E1] || [[Item:Q3902|<math>\int x^{1+\nu}f_{\nu}\diff{x} = -\frac{x^{1+\nu}}{\sqrt{2}}(f_{\nu+1}-g_{\nu+1})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x^{1+\nu}f_{\nu}\diff{x} = -\frac{x^{1+\nu}}{\sqrt{2}}(f_{\nu+1}-g_{\nu+1})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((x)^(1 + nu)* f[nu], x) = -((x)^(1 + nu))/(sqrt(2))*(f[nu + 1]- g[nu + 1])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(x)^(1 + \[Nu])* Subscript[f, \[Nu]], x, GenerateConditions->None] == -Divide[(x)^(1 + \[Nu]),Sqrt[2]]*(Subscript[f, \[Nu]+ 1]- Subscript[g, \[Nu]+ 1])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9346151411+.5776724966*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.061934630+.4518721345*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9346151408625077, 0.5776724967688012]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.061934629891139, 0.45187213490403344]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.71.E2 10.71.E2] || [[Item:Q3903|<math>\int x^{1-\nu}f_{\nu}\diff{x} = \frac{x^{1-\nu}}{\sqrt{2}}(f_{\nu-1}-g_{\nu-1})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x^{1-\nu}f_{\nu}\diff{x} = \frac{x^{1-\nu}}{\sqrt{2}}(f_{\nu-1}-g_{\nu-1})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((x)^(1 - nu)* f[nu], x) = ((x)^(1 - nu))/(sqrt(2))*(f[nu - 1]- g[nu - 1])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(x)^(1 - \[Nu])* Subscript[f, \[Nu]], x, GenerateConditions->None] == Divide[(x)^(1 - \[Nu]),Sqrt[2]]*(Subscript[f, \[Nu]- 1]- Subscript[g, \[Nu]- 1])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9470105611+.8580421171*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu-1] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .30703090e-2+1.331056152*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu-1] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9470105613079453, 0.8580421172974921]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0030703089818392426, 1.3310561520338196]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/10.71.E6 10.71.E6] || [[Item:Q3907|<math>\int xf_{\nu}g_{\nu}\diff{x} = \tfrac{1}{4}x^{2}\left(2f_{\nu}g_{\nu}-f_{\nu-1}g_{\nu+1}-f_{\nu+1}g_{\nu-1}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int xf_{\nu}g_{\nu}\diff{x} = \tfrac{1}{4}x^{2}\left(2f_{\nu}g_{\nu}-f_{\nu-1}g_{\nu+1}-f_{\nu+1}g_{\nu-1}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(x*f[nu]*g[nu], x) = (1)/(4)*(x)^(2)*(2*f[nu]*g[nu]- f[nu - 1]*g[nu + 1]- f[nu + 1]*g[nu - 1])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*Subscript[f, \[Nu]]*Subscript[g, \[Nu]], x, GenerateConditions->None] == Divide[1,4]*(x)^(2)*(2*Subscript[f, \[Nu]]*Subscript[g, \[Nu]]- Subscript[f, \[Nu]- 1]*Subscript[g, \[Nu]+ 1]- Subscript[f, \[Nu]+ 1]*Subscript[g, \[Nu]- 1])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [270 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5625000004+.9742785795*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I, g[nu-1] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2058892896+.7683892900*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I, g[nu-1] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/10.71.E7 10.71.E7] || [[Item:Q3908|<math>\int x(f_{\nu}^{2}-g_{\nu}^{2})\diff{x} = \tfrac{1}{2}x^{2}\left(f_{\nu}^{2}-f_{\nu-1}f_{\nu+1}-g_{\nu}^{2}+g_{\nu-1}g_{\nu+1}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x(f_{\nu}^{2}-g_{\nu}^{2})\diff{x} = \tfrac{1}{2}x^{2}\left(f_{\nu}^{2}-f_{\nu-1}f_{\nu+1}-g_{\nu}^{2}+g_{\nu-1}g_{\nu+1}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(x*((f[nu])^(2)- (g[nu])^(2)), x) = (1)/(2)*(x)^(2)*((f[nu])^(2)- f[nu - 1]*f[nu + 1]- (g[nu])^(2)+ g[nu - 1]*g[nu + 1])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*((Subscript[f, \[Nu]])^(2)- (Subscript[g, \[Nu]])^(2)), x, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((Subscript[f, \[Nu]])^(2)- Subscript[f, \[Nu]- 1]*Subscript[f, \[Nu]+ 1]- (Subscript[g, \[Nu]])^(2)+ Subscript[g, \[Nu]- 1]*Subscript[g, \[Nu]+ 1])</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/10.71#Ex1 10.71#Ex1] || [[Item:Q3909|<math>\int x\HankelmodM{\nu}^{2}@{x}\diff{x} = x(\Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\HankelmodM{\nu}^{2}@{x}\diff{x} = x(\Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x})</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*(Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2])^(2), x, GenerateConditions->None] == x*(KelvinBer[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}]- D[KelvinBer[\[Nu], x], {x, 1}]*KelvinBei[\[Nu], x])</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.71#Ex2 10.71#Ex2] || [[Item:Q3910|<math>\int x\HankelmodderivN{\nu}^{2}@{x}\diff{x} = x(\Kelvinker{\nu}@@{x}\Kelvinkei{\nu}'@@{x}-\Kelvinker{\nu}'@@{x}\Kelvinkei{\nu}@@{x})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\HankelmodderivN{\nu}^{2}@{x}\diff{x} = x(\Kelvinker{\nu}@@{x}\Kelvinkei{\nu}'@@{x}-\Kelvinker{\nu}'@@{x}\Kelvinkei{\nu}@@{x})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*(Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2])^(2), x, GenerateConditions->None] == x*(KelvinKer[\[Nu], x]*D[KelvinKei[\[Nu], x], {x, 1}]- D[KelvinKer[\[Nu], x], {x, 1}]*KelvinKei[\[Nu], x])</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/10.73.E1 10.73.E1] || [[Item:Q3912|<math>\frac{1}{r}\pderiv{}{r}\left(r\pderiv{V}{r}\right)+\frac{1}{r^{2}}\pderiv[2]{V}{\phi}+\pderiv[2]{V}{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{r}\pderiv{}{r}\left(r\pderiv{V}{r}\right)+\frac{1}{r^{2}}\pderiv[2]{V}{\phi}+\pderiv[2]{V}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(r)*diff((r*diff(V, r))+(1)/((r)^(2))*diff(V, [phi$(2)]), r)+ diff(V, [z$(2)]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,r]*D[(r*D[V, r])+Divide[1,(r)^(2)]*D[V, {\[Phi], 2}], r]+ D[V, {z, 2}] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
|}
|}
</div>
</div>

Latest revision as of 07:02, 25 May 2021

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.22.E38 0 1 t J ν ( α t ) J ν ( α m t ) d t = ( a 2 b 2 + α 2 - ν 2 ) ( J ν ( α ) ) 2 2 α 2 δ , m superscript subscript 0 1 𝑡 Bessel-J 𝜈 subscript 𝛼 𝑡 Bessel-J 𝜈 subscript 𝛼 𝑚 𝑡 𝑡 superscript 𝑎 2 superscript 𝑏 2 superscript subscript 𝛼 2 superscript 𝜈 2 superscript Bessel-J 𝜈 subscript 𝛼 2 2 superscript subscript 𝛼 2 Kronecker 𝑚 {\displaystyle{\displaystyle\int_{0}^{1}tJ_{\nu}\left(\alpha_{\ell}t\right)J_{% \nu}\left(\alpha_{m}t\right)\mathrm{d}t=\left(\frac{a^{2}}{b^{2}}+\alpha_{\ell% }^{2}-\nu^{2}\right)\frac{(J_{\nu}\left(\alpha_{\ell}\right))^{2}}{2\alpha_{% \ell}^{2}}\delta_{\ell,m}}}
\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) = (((a)^(2))/((b)^(2))+ (alpha[ell])^(2)- (nu)^(2))*((BesselJ(nu, alpha[ell]))^(2))/(2*(alpha[ell])^(2))*KroneckerDelta[ell, m]
Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] == (Divide[(a)^(2),(b)^(2)]+ (Subscript[\[Alpha], \[ScriptL]])^(2)- \[Nu]^(2))*Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*(Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m]
Failure Failure Error
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.22.E39 x J 0 ( t ) t d t + γ + ln ( 1 2 x ) = 0 x 1 - J 0 ( t ) t d t superscript subscript 𝑥 Bessel-J 0 𝑡 𝑡 𝑡 1 2 𝑥 superscript subscript 0 𝑥 1 Bessel-J 0 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle\int_{x}^{\infty}\frac{J_{0}\left(t\right)}{t}% \mathrm{d}t+\gamma+\ln\left(\tfrac{1}{2}x\right)=\int_{0}^{x}\frac{1-J_{0}% \left(t\right)}{t}\mathrm{d}t}}
\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x)
Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None]
Successful Successful - Successful [Tested: 3]
10.22.E39 0 x 1 - J 0 ( t ) t d t = k = 1 ( - 1 ) k - 1 ( 1 2 x ) 2 k 2 k ( k ! ) 2 superscript subscript 0 𝑥 1 Bessel-J 0 𝑡 𝑡 𝑡 superscript subscript 𝑘 1 superscript 1 𝑘 1 superscript 1 2 𝑥 2 𝑘 2 𝑘 superscript 𝑘 2 {\displaystyle{\displaystyle\int_{0}^{x}\frac{1-J_{0}\left(t\right)}{t}\mathrm% {d}t=\sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}}}
\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 3]
10.22.E40 x Y 0 ( t ) t d t = - 1 π ( ln ( 1 2 x ) + γ ) 2 + π 6 + 2 π k = 1 ( - 1 ) k ( ψ ( k + 1 ) + 1 2 k - ln ( 1 2 x ) ) ( 1 2 x ) 2 k 2 k ( k ! ) 2 superscript subscript 𝑥 Bessel-Y-Weber 0 𝑡 𝑡 𝑡 1 𝜋 superscript 1 2 𝑥 2 𝜋 6 2 𝜋 superscript subscript 𝑘 1 superscript 1 𝑘 digamma 𝑘 1 1 2 𝑘 1 2 𝑥 superscript 1 2 𝑥 2 𝑘 2 𝑘 superscript 𝑘 2 {\displaystyle{\displaystyle\int_{x}^{\infty}\frac{Y_{0}\left(t\right)}{t}% \mathrm{d}t=-\frac{1}{\pi}\left(\ln\left(\tfrac{1}{2}x\right)+\gamma\right)^{2% }+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\psi\left(k+1% \right)+\frac{1}{2k}-\ln\left(\tfrac{1}{2}x\right)\right)\frac{(\tfrac{1}{2}x)% ^{2k}}{2k(k!)^{2}}}}
\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}
( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((-0)+k+1)>0}}
int((BesselY(0, t))/(t), t = x..infinity) = -(1)/(Pi)*(ln((1)/(2)*x)+ gamma)^(2)+(Pi)/(6)+(2)/(Pi)*sum((- 1)^(k)*(Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
Integrate[Divide[BesselY[0, t],t], {t, x, Infinity}, GenerateConditions->None] == -Divide[1,Pi]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[Pi,6]+Divide[2,Pi]*Sum[(- 1)^(k)*(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
10.22.E41 0 J ν ( t ) d t = 1 superscript subscript 0 Bessel-J 𝜈 𝑡 𝑡 1 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\nu}\left(t\right)\mathrm{d}t=% 1}}
\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1
ν > - 1 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re(\nu+k+1)>0}}
int(BesselJ(nu, t), t = 0..infinity) = 1
Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 8]
10.22.E42 0 Y ν ( t ) d t = - tan ( 1 2 ν π ) superscript subscript 0 Bessel-Y-Weber 𝜈 𝑡 𝑡 1 2 𝜈 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}Y_{\nu}\left(t\right)\mathrm{d}t=% -\tan\left(\tfrac{1}{2}\nu\pi\right)}}
\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}
| ν | < 1 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\Re\nu|<1,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi)
Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi]
Successful Aborted - Successful [Tested: 6]
10.22.E43 0 t μ J ν ( t ) d t = 2 μ Γ ( 1 2 ν + 1 2 μ + 1 2 ) Γ ( 1 2 ν - 1 2 μ + 1 2 ) superscript subscript 0 superscript 𝑡 𝜇 Bessel-J 𝜈 𝑡 𝑡 superscript 2 𝜇 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu}J_{\nu}\left(t\right)% \mathrm{d}t=2^{\mu}\frac{\Gamma\left(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}% {2}\right)}{\Gamma\left(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}\right)}}}
\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}
( μ + ν ) > - 1 , ( ν + k + 1 ) > 0 , ( 1 2 ν + 1 2 μ + 1 2 ) > 0 , ( 1 2 ν - 1 2 μ + 1 2 ) > 0 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 0 1 2 𝜈 1 2 𝜇 1 2 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>-1,\Re(\nu+k+1)>0,\Re(% \tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}\nu-\tfrac{1}{% 2}\mu+\tfrac{1}{2})>0}}
int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))
Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]
Successful Successful - Successful [Tested: 10]
10.22.E44 0 t μ Y ν ( t ) d t = 2 μ π Γ ( 1 2 μ + 1 2 ν + 1 2 ) Γ ( 1 2 μ - 1 2 ν + 1 2 ) sin ( 1 2 μ - 1 2 ν ) π superscript subscript 0 superscript 𝑡 𝜇 Bessel-Y-Weber 𝜈 𝑡 𝑡 superscript 2 𝜇 𝜋 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 1 2 𝜇 1 2 𝜈 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu}Y_{\nu}\left(t\right)% \mathrm{d}t=\frac{2^{\mu}}{\pi}\Gamma\left(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+% \tfrac{1}{2}\right)\Gamma\left(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}% \right)\sin\left(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu\right)\pi}}
\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi
( μ + ν ) > - 1 , ( μ - ν ) > - 1 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( 1 2 μ + 1 2 ν + 1 2 ) > 0 , ( 1 2 μ - 1 2 ν + 1 2 ) > 0 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 0 1 2 𝜇 1 2 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>-1,\Re\left(\mu-\nu\right)% >-1,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+% \tfrac{1}{2})>0,\Re(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})>0}}
int((t)^(mu)* BesselY(nu, t), t = 0..infinity) = ((2)^(mu))/(Pi)*GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*sin((1)/(2)*mu -(1)/(2)*nu)*Pi
Integrate[(t)^\[Mu]* BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2)^\[Mu],Pi]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Sin[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Pi
Error Aborted -
Failed [10 / 10]
Result: Complex[-0.5512405929316078, 0.2551977660147906]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.26217720344291356, -0.18052742798771904]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E45 0 1 - J 0 ( t ) t μ d t = - π sec ( 1 2 μ π ) 2 μ Γ 2 ( 1 2 μ + 1 2 ) superscript subscript 0 1 Bessel-J 0 𝑡 superscript 𝑡 𝜇 𝑡 𝜋 1 2 𝜇 𝜋 superscript 2 𝜇 Euler-Gamma 2 1 2 𝜇 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{1-J_{0}\left(t\right)}{t^{% \mu}}\mathrm{d}t=-\frac{\pi\sec\left(\frac{1}{2}\mu\pi\right)}{2^{\mu}{\Gamma^% {2}}\left(\frac{1}{2}\mu+\frac{1}{2}\right)}}}
\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}
1 < μ , μ < 3 , ( 0 + k + 1 ) > 0 , ( 1 2 μ + 1 2 ) > 0 formulae-sequence 1 𝜇 formulae-sequence 𝜇 3 formulae-sequence 0 𝑘 1 0 1 2 𝜇 1 2 0 {\displaystyle{\displaystyle 1<\Re\mu,\Re\mu<3,\Re(0+k+1)>0,\Re(\frac{1}{2}\mu% +\frac{1}{2})>0}}
int((1 - BesselJ(0, t))/((t)^(mu)), t = 0..infinity) = -(Pi*sec((1)/(2)*mu*Pi))/((2)^(mu)* (GAMMA((1)/(2)*mu +(1)/(2)))^(2))
Integrate[Divide[1 - BesselJ[0, t],(t)^\[Mu]], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Pi*Sec[Divide[1,2]*\[Mu]*Pi],(2)^\[Mu]* (Gamma[Divide[1,2]*\[Mu]+Divide[1,2]])^(2)]
Error Aborted - Successful [Tested: 10]
10.22.E46 0 t ν + 1 J ν ( a t ) ( t 2 + b 2 ) μ + 1 d t = a μ b ν - μ 2 μ Γ ( μ + 1 ) K ν - μ ( a b ) superscript subscript 0 superscript 𝑡 𝜈 1 Bessel-J 𝜈 𝑎 𝑡 superscript superscript 𝑡 2 superscript 𝑏 2 𝜇 1 𝑡 superscript 𝑎 𝜇 superscript 𝑏 𝜈 𝜇 superscript 2 𝜇 Euler-Gamma 𝜇 1 modified-Bessel-second-kind 𝜈 𝜇 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{t^{\nu+1}J_{\nu}\left(at% \right)}{(t^{2}+b^{2})^{\mu+1}}\mathrm{d}t=\frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}% \Gamma\left(\mu+1\right)}K_{\nu-\mu}\left(ab\right)}}
\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}
a > 0 , b > 0 , - 1 < ν , ν < 2 μ + 3 2 , ( ν + k + 1 ) > 0 , ( μ + 1 ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 formulae-sequence 1 𝜈 formulae-sequence 𝜈 2 𝜇 3 2 formulae-sequence 𝜈 𝑘 1 0 𝜇 1 0 {\displaystyle{\displaystyle a>0,\Re b>0,-1<\Re\nu,\Re\nu<2\Re\mu+\tfrac{3}{2}% ,\Re(\nu+k+1)>0,\Re(\mu+1)>0}}
int(((t)^(nu + 1)* BesselJ(nu, a*t))/(((t)^(2)+ (b)^(2))^(mu + 1)), t = 0..infinity) = ((a)^(mu)* (b)^(nu - mu))/((2)^(mu)* GAMMA(mu + 1))*BesselK(nu - mu, a*b)
Integrate[Divide[(t)^(\[Nu]+ 1)* BesselJ[\[Nu], a*t],((t)^(2)+ (b)^(2))^(\[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* (b)^(\[Nu]- \[Mu]),(2)^\[Mu]* Gamma[\[Mu]+ 1]]*BesselK[\[Nu]- \[Mu], a*b]
Error Aborted - Skipped - Because timed out
10.22.E47 0 t ν Y ν ( a t ) t 2 + b 2 d t = - b ν - 1 K ν ( a b ) superscript subscript 0 superscript 𝑡 𝜈 Bessel-Y-Weber 𝜈 𝑎 𝑡 superscript 𝑡 2 superscript 𝑏 2 𝑡 superscript 𝑏 𝜈 1 modified-Bessel-second-kind 𝜈 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{t^{\nu}Y_{\nu}\left(at% \right)}{t^{2}+b^{2}}\mathrm{d}t=-b^{\nu-1}K_{\nu}\left(ab\right)}}
\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}
a > 0 , b > 0 , - 1 2 < ν , ν < 5 2 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 formulae-sequence 1 2 𝜈 formulae-sequence 𝜈 5 2 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle a>0,\Re b>0,-\tfrac{1}{2}<\Re\nu,\Re\nu<\tfrac{5}% {2},\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
int(((t)^(nu)* BesselY(nu, a*t))/((t)^(2)+ (b)^(2)), t = 0..infinity) = - (b)^(nu - 1)* BesselK(nu, a*b)
Integrate[Divide[(t)^\[Nu]* BesselY[\[Nu], a*t],(t)^(2)+ (b)^(2)], {t, 0, Infinity}, GenerateConditions->None] == - (b)^(\[Nu]- 1)* BesselK[\[Nu], a*b]
Error Aborted - Skipped - Because timed out
10.22.E48 0 J μ ( x cosh ϕ ) ( cosh ϕ ) 1 - μ ( sinh ϕ ) 2 ν + 1 d ϕ = 2 ν Γ ( ν + 1 ) x - ν - 1 J μ - ν - 1 ( x ) superscript subscript 0 Bessel-J 𝜇 𝑥 italic-ϕ superscript italic-ϕ 1 𝜇 superscript italic-ϕ 2 𝜈 1 italic-ϕ superscript 2 𝜈 Euler-Gamma 𝜈 1 superscript 𝑥 𝜈 1 Bessel-J 𝜇 𝜈 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\mu}\left(x\cosh\phi\right)(% \cosh\phi)^{1-\mu}(\sinh\phi)^{2\nu+1}\mathrm{d}\phi=2^{\nu}\Gamma\left(\nu+1% \right)x^{-\nu-1}J_{\mu-\nu-1}\left(x\right)}}
\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}
x > 0 , ν > - 1 , μ > 2 ν + 1 2 , ( ( μ ) + k + 1 ) > 0 , ( ( μ - ν - 1 ) + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝑥 0 formulae-sequence 𝜈 1 formulae-sequence 𝜇 2 𝜈 1 2 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜇 𝜈 1 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle x>0,\Re\nu>-1,\Re\mu>2\Re\nu+\tfrac{1}{2},\Re((% \mu)+k+1)>0,\Re((\mu-\nu-1)+k+1)>0,\Re(\nu+1)>0}}
int(BesselJ(mu, x*cosh(phi))*(cosh(phi))^(1 - mu)*(sinh(phi))^(2*nu + 1), phi = 0..infinity) = (2)^(nu)* GAMMA(nu + 1)*(x)^(- nu - 1)* BesselJ(mu - nu - 1, x)
Integrate[BesselJ[\[Mu], x*Cosh[\[Phi]]]*(Cosh[\[Phi]])^(1 - \[Mu])*(Sinh[\[Phi]])^(2*\[Nu]+ 1), {\[Phi], 0, Infinity}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(x)^(- \[Nu]- 1)* BesselJ[\[Mu]- \[Nu]- 1, x]
Error Aborted - Skipped - Because timed out
10.22.E49 0 t μ - 1 e - a t J ν ( b t ) d t = ( 1 2 b ) ν a μ + ν Γ ( μ + ν ) 𝐅 ( μ + ν 2 , μ + ν + 1 2 ; ν + 1 ; - b 2 a 2 ) superscript subscript 0 superscript 𝑡 𝜇 1 superscript 𝑒 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 𝑡 superscript 1 2 𝑏 𝜈 superscript 𝑎 𝜇 𝜈 Euler-Gamma 𝜇 𝜈 scaled-hypergeometric-bold-F 𝜇 𝜈 2 𝜇 𝜈 1 2 𝜈 1 superscript 𝑏 2 superscript 𝑎 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu-1}e^{-at}J_{\nu}\left(bt% \right)\mathrm{d}t=\frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\Gamma\left(\mu+% \nu\right)\*\mathbf{F}\left(\frac{\mu+\nu}{2},\frac{\mu+\nu+1}{2};\nu+1;-\frac% {b^{2}}{a^{2}}\right)}}
\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}
( μ + ν ) > 0 , ( a + i b ) > 0 , ( a - i b ) > 0 , ( ν + k + 1 ) > 0 , ( μ + ν ) > 0 formulae-sequence 𝜇 𝜈 0 formulae-sequence 𝑎 𝑖 𝑏 0 formulae-sequence 𝑎 𝑖 𝑏 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>0,\Re\left(a+ib\right)>0,% \Re\left(a-ib\right)>0,\Re(\nu+k+1)>0,\Re(\mu+\nu)>0}}
int((t)^(mu - 1)* exp(- a*t)*BesselJ(nu, b*t), t = 0..infinity) = (((1)/(2)*b)^(nu))/((a)^(mu + nu))*GAMMA(mu + nu)* hypergeom([(mu + nu)/(2), (mu + nu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)
Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b)^\[Nu],(a)^(\[Mu]+ \[Nu])]*Gamma[\[Mu]+ \[Nu]]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[\[Mu]+ \[Nu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]
Error Aborted - Successful [Tested: 0]
10.22.E50 0 t μ - 1 e - a t Y ν ( b t ) d t = cot ( ν π ) ( 1 2 b ) ν Γ ( μ + ν ) ( a 2 + b 2 ) 1 2 ( μ + ν ) 𝐅 ( μ + ν 2 , 1 - μ + ν 2 ; ν + 1 ; b 2 a 2 + b 2 ) - csc ( ν π ) ( 1 2 b ) - ν Γ ( μ - ν ) ( a 2 + b 2 ) 1 2 ( μ - ν ) 𝐅 ( μ - ν 2 , 1 - μ - ν 2 ; 1 - ν ; b 2 a 2 + b 2 ) superscript subscript 0 superscript 𝑡 𝜇 1 superscript 𝑒 𝑎 𝑡 Bessel-Y-Weber 𝜈 𝑏 𝑡 𝑡 𝜈 𝜋 superscript 1 2 𝑏 𝜈 Euler-Gamma 𝜇 𝜈 superscript superscript 𝑎 2 superscript 𝑏 2 1 2 𝜇 𝜈 scaled-hypergeometric-bold-F 𝜇 𝜈 2 1 𝜇 𝜈 2 𝜈 1 superscript 𝑏 2 superscript 𝑎 2 superscript 𝑏 2 𝜈 𝜋 superscript 1 2 𝑏 𝜈 Euler-Gamma 𝜇 𝜈 superscript superscript 𝑎 2 superscript 𝑏 2 1 2 𝜇 𝜈 scaled-hypergeometric-bold-F 𝜇 𝜈 2 1 𝜇 𝜈 2 1 𝜈 superscript 𝑏 2 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu-1}e^{-at}Y_{\nu}\left(bt% \right)\mathrm{d}t=\cot\left(\nu\pi\right)\frac{(\tfrac{1}{2}b)^{\nu}\Gamma% \left(\mu+\nu\right)}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\mathbf{F}\left(% \frac{\mu+\nu}{2},\frac{1-\mu+\nu}{2};\nu+1;\frac{b^{2}}{a^{2}+b^{2}}\right)-% \csc\left(\nu\pi\right)\frac{(\tfrac{1}{2}b)^{-\nu}\Gamma\left(\mu-\nu\right)}% {(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\mathbf{F}\left(\frac{\mu-\nu}{2},% \frac{1-\mu-\nu}{2};1-\nu;\frac{b^{2}}{a^{2}+b^{2}}\right)}}
\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}
μ > | ν | , ( a + i b ) > 0 , ( a - i b ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( μ + ν ) > 0 , ( μ - ν ) > 0 formulae-sequence 𝜇 𝜈 formulae-sequence 𝑎 𝑖 𝑏 0 formulae-sequence 𝑎 𝑖 𝑏 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝜈 0 𝜇 𝜈 0 {\displaystyle{\displaystyle\Re\mu>|\Re\nu|,\Re\left(a+ib\right)>0,\Re\left(a-% ib\right)>0,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re(\mu+\nu)>0,\Re(\mu-\nu)>0}}
int((t)^(mu - 1)* exp(- a*t)*BesselY(nu, b*t), t = 0..infinity) = cot(nu*Pi)*(((1)/(2)*b)^(nu)* GAMMA(mu + nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu + nu)))* hypergeom([(mu + nu)/(2), (1 - mu + nu)/(2)], [nu + 1], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(nu + 1)- csc(nu*Pi)*(((1)/(2)*b)^(- nu)* GAMMA(mu - nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu - nu)))* hypergeom([(mu - nu)/(2), (1 - mu - nu)/(2)], [1 - nu], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(1 - nu)
Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselY[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Cot[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[1 - \[Mu]+ \[Nu],2], \[Nu]+ 1, Divide[(b)^(2),(a)^(2)+ (b)^(2)]]- Csc[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^(- \[Nu])* Gamma[\[Mu]- \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]- \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]- \[Nu],2], Divide[1 - \[Mu]- \[Nu],2], 1 - \[Nu], Divide[(b)^(2),(a)^(2)+ (b)^(2)]]
Error Aborted - Skipped - Because timed out
10.22.E51 0 J ν ( b t ) exp ( - p 2 t 2 ) t ν + 1 d t = b ν ( 2 p 2 ) ν + 1 exp ( - b 2 4 p 2 ) superscript subscript 0 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 superscript 𝑡 𝜈 1 𝑡 superscript 𝑏 𝜈 superscript 2 superscript 𝑝 2 𝜈 1 superscript 𝑏 2 4 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\nu}\left(bt\right)\exp\left(-% p^{2}t^{2}\right)t^{\nu+1}\mathrm{d}t=\frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp% \left(-\frac{b^{2}}{4p^{2}}\right)}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0}}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(nu + 1), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(-((b)^(2))/(4*(p)^(2)))
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Nu]+ 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[-Divide[(b)^(2),4*(p)^(2)]]
Error Aborted -
Failed [151 / 300]
Result: Complex[-0.06577510728447342, -0.5886826409090221]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0556301041786353, -0.2359104145157832]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E52 0 J ν ( b t ) exp ( - p 2 t 2 ) d t = π 2 p exp ( - b 2 8 p 2 ) I ν / 2 ( b 2 8 p 2 ) superscript subscript 0 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 𝑡 𝜋 2 𝑝 superscript 𝑏 2 8 superscript 𝑝 2 modified-Bessel-first-kind 𝜈 2 superscript 𝑏 2 8 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\nu}\left(bt\right)\exp\left(-% p^{2}t^{2}\right)\mathrm{d}t=\frac{\sqrt{\pi}}{2p}\exp\left(-\frac{b^{2}}{8p^{% 2}}\right)I_{\ifrac{\nu}{2}}\left(\frac{b^{2}}{8p^{2}}\right)}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0}}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*BesselI((nu)/(2), ((b)^(2))/(8*(p)^(2)))
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[\[Nu],2], Divide[(b)^(2),8*(p)^(2)]]
Error Aborted - Skip - No test values generated
10.22.E53 0 Y 2 ν ( b t ) exp ( - p 2 t 2 ) d t = - π 2 p exp ( - b 2 8 p 2 ) ( I ν ( b 2 8 p 2 ) tan ( ν π ) + 1 π K ν ( b 2 8 p 2 ) sec ( ν π ) ) superscript subscript 0 Bessel-Y-Weber 2 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 𝑡 𝜋 2 𝑝 superscript 𝑏 2 8 superscript 𝑝 2 modified-Bessel-first-kind 𝜈 superscript 𝑏 2 8 superscript 𝑝 2 𝜈 𝜋 1 𝜋 modified-Bessel-second-kind 𝜈 superscript 𝑏 2 8 superscript 𝑝 2 𝜈 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}Y_{2\nu}\left(bt\right)\exp\left(% -p^{2}t^{2}\right)\mathrm{d}t=-\frac{\sqrt{\pi}}{2p}\exp\left(-\frac{b^{2}}{8p% ^{2}}\right)\left(I_{\nu}\left(\frac{b^{2}}{8p^{2}}\right)\tan\left(\nu\pi% \right)+\frac{1}{\pi}K_{\nu}\left(\frac{b^{2}}{8p^{2}}\right)\sec\left(\nu\pi% \right)\right)}}
\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)
| ν | < 1 2 , ( p 2 ) > 0 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( - ( 2 ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence superscript 𝑝 2 0 formulae-sequence 2 𝜈 𝑘 1 0 2 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\Re\nu|<\tfrac{1}{2},\Re\left(p^{2}\right)>0,\Re(% (2\nu)+k+1)>0,\Re((-(2\nu))+k+1)>0}}
int(BesselY(2*nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = -(sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*(BesselI(nu, ((b)^(2))/(8*(p)^(2)))*tan(nu*Pi)+(1)/(Pi)*BesselK(nu, ((b)^(2))/(8*(p)^(2)))*sec(nu*Pi))
Integrate[BesselY[2*\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*(BesselI[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Tan[\[Nu]*Pi]+Divide[1,Pi]*BesselK[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Sec[\[Nu]*Pi])
Error Aborted - Skipped - Because timed out
10.22.E54 0 J ν ( b t ) exp ( - p 2 t 2 ) t μ - 1 d t = ( 1 2 b / p ) ν Γ ( 1 2 ν + 1 2 μ ) 2 p μ exp ( - b 2 4 p 2 ) 𝐌 ( 1 2 ν - 1 2 μ + 1 , ν + 1 , b 2 4 p 2 ) superscript subscript 0 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 superscript 𝑡 𝜇 1 𝑡 superscript 1 2 𝑏 𝑝 𝜈 Euler-Gamma 1 2 𝜈 1 2 𝜇 2 superscript 𝑝 𝜇 superscript 𝑏 2 4 superscript 𝑝 2 Kummer-confluent-hypergeometric-bold-M 1 2 𝜈 1 2 𝜇 1 𝜈 1 superscript 𝑏 2 4 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\nu}\left(bt\right)\exp\left(-% p^{2}t^{2}\right)t^{\mu-1}\mathrm{d}t=\frac{(\tfrac{1}{2}b/p)^{\nu}\Gamma\left% (\tfrac{1}{2}\nu+\tfrac{1}{2}\mu\right)}{2p^{\mu}}\exp\left(-\frac{b^{2}}{4p^{% 2}}\right)\*{\mathbf{M}}\left(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1,\nu+1,\frac{b^% {2}}{4p^{2}}\right)}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}
( μ + ν ) > 0 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 ν + 1 2 μ ) > 0 formulae-sequence 𝜇 𝜈 0 formulae-sequence superscript 𝑝 2 0 formulae-sequence 𝜈 𝑘 1 0 1 2 𝜈 1 2 𝜇 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>0,\Re\left(p^{2}\right)>0,% \Re(\nu+k+1)>0,\Re(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu)>0}}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(mu - 1), t = 0..infinity) = (((1)/(2)*b/p)^(nu)* GAMMA((1)/(2)*nu +(1)/(2)*mu))/(2*(p)^(mu))*exp(-((b)^(2))/(4*(p)^(2)))* KummerM((1)/(2)*nu -(1)/(2)*mu + 1, nu + 1, ((b)^(2))/(4*(p)^(2)))/GAMMA(nu + 1)
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Mu]- 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b/p)^\[Nu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]],2*(p)^\[Mu]]*Exp[-Divide[(b)^(2),4*(p)^(2)]]* Hypergeometric1F1Regularized[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, \[Nu]+ 1, Divide[(b)^(2),4*(p)^(2)]]
Error Aborted -
Failed [246 / 300]
Result: Complex[0.07541885663346475, -0.6281916024632631]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1002850405400357, -0.7734416454563844]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E55 0 t - 1 J ν + 2 + 1 ( t ) J ν + 2 m + 1 ( t ) d t = δ , m 2 ( 2 + ν + 1 ) superscript subscript 0 superscript 𝑡 1 Bessel-J 𝜈 2 1 𝑡 Bessel-J 𝜈 2 𝑚 1 𝑡 𝑡 Kronecker 𝑚 2 2 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{-1}J_{\nu+2\ell+1}\left(t% \right)J_{\nu+2m+1}\left(t\right)\mathrm{d}t=\frac{\delta_{\ell,m}}{2(2\ell+% \nu+1)}}}
\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}
ν + + m > - 1 , ( ( ν + 2 + 1 ) + k + 1 ) > 0 , ( ( ν + 2 m + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑚 1 formulae-sequence 𝜈 2 1 𝑘 1 0 𝜈 2 𝑚 1 𝑘 1 0 {\displaystyle{\displaystyle\nu+\ell+m>-1,\Re((\nu+2\ell+1)+k+1)>0,\Re((\nu+2m% +1)+k+1)>0}}
int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1))
Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)]
Failure Failure Error
Failed [18 / 54]
Result: Indeterminate
Test Values: {Rule[m, 1], Rule[, 1], Rule[ν, Rational[-3, 2]]}

Result: Indeterminate
Test Values: {Rule[m, 2], Rule[, 2], Rule[ν, Rational[-3, 2]]}

... skip entries to safe data
10.22.E56 0 J μ ( a t ) J ν ( b t ) t λ d t = a μ Γ ( 1 2 ν + 1 2 μ - 1 2 λ + 1 2 ) 2 λ b μ - λ + 1 Γ ( 1 2 ν - 1 2 μ + 1 2 λ + 1 2 ) 𝐅 ( 1 2 ( μ + ν - λ + 1 ) , 1 2 ( μ - ν - λ + 1 ) ; μ + 1 ; a 2 b 2 ) superscript subscript 0 Bessel-J 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑡 𝜆 𝑡 superscript 𝑎 𝜇 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 𝜆 1 2 superscript 2 𝜆 superscript 𝑏 𝜇 𝜆 1 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 𝜆 1 2 scaled-hypergeometric-bold-F 1 2 𝜇 𝜈 𝜆 1 1 2 𝜇 𝜈 𝜆 1 𝜇 1 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{J_{\mu}\left(at\right)J_{% \nu}\left(bt\right)}{t^{\lambda}}\mathrm{d}t=\frac{a^{\mu}\Gamma\left(\frac{1}% {2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}\right)}{2^{\lambda}b^{\mu% -\lambda+1}\Gamma\left(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{% 1}{2}\right)}\*\mathbf{F}\left(\tfrac{1}{2}(\mu+\nu-\lambda+1),\tfrac{1}{2}(% \mu-\nu-\lambda+1);\mu+1;\frac{a^{2}}{b^{2}}\right)}}
\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}
0 < a , a < b , ( μ + ν + 1 ) > λ , λ > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 ν + 1 2 μ - 1 2 λ + 1 2 ) > 0 , ( 1 2 ν - 1 2 μ + 1 2 λ + 1 2 ) > 0 formulae-sequence 0 𝑎 formulae-sequence 𝑎 𝑏 formulae-sequence 𝜇 𝜈 1 𝜆 formulae-sequence 𝜆 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 𝜆 1 2 0 1 2 𝜈 1 2 𝜇 1 2 𝜆 1 2 0 {\displaystyle{\displaystyle 0<a,a<b,\Re\left(\mu+\nu+1\right)>\Re\lambda,\Re% \lambda>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0,\Re(\frac{1}{2}\nu+\frac{1}{2}\mu-% \frac{1}{2}\lambda+\frac{1}{2})>0,\Re(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2% }\lambda+\frac{1}{2})>0}}
int((BesselJ(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)* (b)^(mu - lambda + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)*lambda +(1)/(2)))* hypergeom([(1)/(2)*(mu + nu - lambda + 1), (1)/(2)*(mu - nu - lambda + 1)], [mu + 1], ((a)^(2))/((b)^(2)))/GAMMA(mu + 1)
Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]* (b)^(\[Mu]- \[Lambda]+ 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]*\[Lambda]+Divide[1,2]]]* Hypergeometric2F1Regularized[Divide[1,2]*(\[Mu]+ \[Nu]- \[Lambda]+ 1), Divide[1,2]*(\[Mu]- \[Nu]- \[Lambda]+ 1), \[Mu]+ 1, Divide[(a)^(2),(b)^(2)]]
Error Aborted -
Failed [300 / 300]
Result: Complex[0.12507202091813296, -0.11002587193353452]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.017959797138118128, 0.3252875517547388]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E57 0 J μ ( a t ) J ν ( a t ) t λ d t = ( 1 2 a ) λ - 1 Γ ( 1 2 μ + 1 2 ν - 1 2 λ + 1 2 ) Γ ( λ ) 2 Γ ( 1 2 λ + 1 2 ν - 1 2 μ + 1 2 ) Γ ( 1 2 λ + 1 2 μ - 1 2 ν + 1 2 ) Γ ( 1 2 λ + 1 2 μ + 1 2 ν + 1 2 ) superscript subscript 0 Bessel-J 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑎 𝑡 superscript 𝑡 𝜆 𝑡 superscript 1 2 𝑎 𝜆 1 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 𝜆 1 2 Euler-Gamma 𝜆 2 Euler-Gamma 1 2 𝜆 1 2 𝜈 1 2 𝜇 1 2 Euler-Gamma 1 2 𝜆 1 2 𝜇 1 2 𝜈 1 2 Euler-Gamma 1 2 𝜆 1 2 𝜇 1 2 𝜈 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{J_{\mu}\left(at\right)J_{% \nu}\left(at\right)}{t^{\lambda}}\mathrm{d}t=\frac{(\frac{1}{2}a)^{\lambda-1}% \Gamma\left(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\right% )\Gamma\left(\lambda\right)}{2\Gamma\left(\frac{1}{2}\lambda+\frac{1}{2}\nu-% \frac{1}{2}\mu+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\lambda+\frac{1}{2}\mu% -\frac{1}{2}\nu+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\lambda+\frac{1}{2}% \mu+\frac{1}{2}\nu+\frac{1}{2}\right)}}}
\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}
( μ + ν + 1 ) > λ , λ > 0 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 μ + 1 2 ν - 1 2 λ + 1 2 ) > 0 , ( λ ) > 0 , ( 1 2 λ + 1 2 ν - 1 2 μ + 1 2 ) > 0 , ( 1 2 λ + 1 2 μ - 1 2 ν + 1 2 ) > 0 , ( 1 2 λ + 1 2 μ + 1 2 ν + 1 2 ) > 0 formulae-sequence 𝜇 𝜈 1 𝜆 formulae-sequence 𝜆 0 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 𝜆 1 2 0 formulae-sequence 𝜆 0 formulae-sequence 1 2 𝜆 1 2 𝜈 1 2 𝜇 1 2 0 formulae-sequence 1 2 𝜆 1 2 𝜇 1 2 𝜈 1 2 0 1 2 𝜆 1 2 𝜇 1 2 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu+1\right)>\Re\lambda,\Re\lambda>0,% \Re((\mu)+k+1)>0,\Re(\nu+k+1)>0,\Re(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}% \lambda+\frac{1}{2})>0,\Re(\lambda)>0,\Re(\frac{1}{2}\lambda+\frac{1}{2}\nu-% \frac{1}{2}\mu+\frac{1}{2})>0,\Re(\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2% }\nu+\frac{1}{2})>0,\Re(\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac% {1}{2})>0}}
int((BesselJ(mu, a*t)*BesselJ(nu, a*t))/((t)^(lambda)), t = 0..infinity) = (((1)/(2)*a)^(lambda - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu -(1)/(2)*lambda +(1)/(2))*GAMMA(lambda))/(2*GAMMA((1)/(2)*lambda +(1)/(2)*nu -(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu +(1)/(2)*nu +(1)/(2)))
Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], a*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*a)^(\[Lambda]- 1)* Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]]*Gamma[\[Lambda]],2*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]]
Error Aborted - Skipped - Because timed out
10.22.E58 0 J ν ( a t ) J ν ( b t ) t λ d t = ( a b ) ν Γ ( ν - 1 2 λ + 1 2 ) 2 λ ( a 2 + b 2 ) ν - 1 2 λ + 1 2 Γ ( 1 2 λ + 1 2 ) 𝐅 ( 2 ν + 1 - λ 4 , 2 ν + 3 - λ 4 ; ν + 1 ; 4 a 2 b 2 ( a 2 + b 2 ) 2 ) superscript subscript 0 Bessel-J 𝜈 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑡 𝜆 𝑡 superscript 𝑎 𝑏 𝜈 Euler-Gamma 𝜈 1 2 𝜆 1 2 superscript 2 𝜆 superscript superscript 𝑎 2 superscript 𝑏 2 𝜈 1 2 𝜆 1 2 Euler-Gamma 1 2 𝜆 1 2 scaled-hypergeometric-bold-F 2 𝜈 1 𝜆 4 2 𝜈 3 𝜆 4 𝜈 1 4 superscript 𝑎 2 superscript 𝑏 2 superscript superscript 𝑎 2 superscript 𝑏 2 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{J_{\nu}\left(at\right)J_{% \nu}\left(bt\right)}{t^{\lambda}}\mathrm{d}t=\frac{(ab)^{\nu}\Gamma\left(\nu-% \frac{1}{2}\lambda+\frac{1}{2}\right)}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{% 2}\lambda+\frac{1}{2}}\Gamma\left(\frac{1}{2}\lambda+\frac{1}{2}\right)}% \mathbf{F}\left(\frac{2\nu+1-\lambda}{4},\frac{2\nu+3-\lambda}{4};\nu+1;\frac{% 4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}\right)}}
\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}
a b , ( 2 ν + 1 ) > λ , λ > - 1 , ( ν + k + 1 ) > 0 , ( ν - 1 2 λ + 1 2 ) > 0 , ( 1 2 λ + 1 2 ) > 0 formulae-sequence 𝑎 𝑏 formulae-sequence 2 𝜈 1 𝜆 formulae-sequence 𝜆 1 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 2 𝜆 1 2 0 1 2 𝜆 1 2 0 {\displaystyle{\displaystyle a\neq b,\Re\left(2\nu+1\right)>\Re\lambda,\Re% \lambda>-1,\Re(\nu+k+1)>0,\Re(\nu-\frac{1}{2}\lambda+\frac{1}{2})>0,\Re(\frac{% 1}{2}\lambda+\frac{1}{2})>0}}
int((BesselJ(nu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a*b)^(nu)* GAMMA(nu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)*((a)^(2)+ (b)^(2))^(nu -(1)/(2)*lambda +(1)/(2))* GAMMA((1)/(2)*lambda +(1)/(2)))*hypergeom([(2*nu + 1 - lambda)/(4), (2*nu + 3 - lambda)/(4)], [nu + 1], (4*(a)^(2)* (b)^(2))/(((a)^(2)+ (b)^(2))^(2)))/GAMMA(nu + 1)
Integrate[Divide[BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a*b)^\[Nu]* Gamma[\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]*((a)^(2)+ (b)^(2))^(\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2])* Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]]]*Hypergeometric2F1Regularized[Divide[2*\[Nu]+ 1 - \[Lambda],4], Divide[2*\[Nu]+ 3 - \[Lambda],4], \[Nu]+ 1, Divide[4*(a)^(2)* (b)^(2),((a)^(2)+ (b)^(2))^(2)]]
Error Aborted -
Failed [209 / 300]
Result: Complex[-0.13393539357334844, 0.1322614378889556]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.07230690300251369, -0.15068591568973605]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
10.22.E66 0 e - a t J ν ( b t ) J ν ( c t ) d t = 1 π ( b c ) 1 2 Q ν - 1 2 ( a 2 + b 2 + c 2 2 b c ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 Bessel-J 𝜈 𝑐 𝑡 𝑡 1 𝜋 superscript 𝑏 𝑐 1 2 shorthand-Legendre-Q-second-kind 𝜈 1 2 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 2 𝑏 𝑐 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}J_{\nu}\left(bt\right)J_{% \nu}\left(ct\right)\mathrm{d}t=\frac{1}{\pi(bc)^{\frac{1}{2}}}\*Q_{\nu-\frac{1% }{2}}\left(\frac{a^{2}+b^{2}+c^{2}}{2bc}\right)}}
\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}
ν > - 1 2 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 2 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+k+1)>0}}
int(exp(- a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t), t = 0..infinity) = (1)/(Pi*(b*c)^((1)/(2)))* LegendreQ(nu -(1)/(2), ((a)^(2)+ (b)^(2)+ (c)^(2))/(2*b*c))
Integrate[Exp[- a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Pi*(b*c)^(Divide[1,2])]* LegendreQ[\[Nu]-Divide[1,2], 0, 3, Divide[(a)^(2)+ (b)^(2)+ (c)^(2),2*b*c]]
Error Aborted - Skipped - Because timed out
10.22.E67 0 t exp ( - p 2 t 2 ) J ν ( a t ) J ν ( b t ) d t = 1 2 p 2 exp ( - a 2 + b 2 4 p 2 ) I ν ( a b 2 p 2 ) superscript subscript 0 𝑡 superscript 𝑝 2 superscript 𝑡 2 Bessel-J 𝜈 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 𝑡 1 2 superscript 𝑝 2 superscript 𝑎 2 superscript 𝑏 2 4 superscript 𝑝 2 modified-Bessel-first-kind 𝜈 𝑎 𝑏 2 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t\exp\left(-p^{2}t^{2}\right)J_{% \nu}\left(at\right)J_{\nu}\left(bt\right)\mathrm{d}t=\frac{1}{2p^{2}}\exp\left% (-\frac{a^{2}+b^{2}}{4p^{2}}\right)I_{\nu}\left(\frac{ab}{2p^{2}}\right)}}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0}}
int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(nu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(-((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[-Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]
Translation Error Translation Error - -
10.22.E68 0 t exp ( - p 2 t 2 ) J 0 ( a t ) Y 0 ( a t ) d t = - 1 2 π p 2 exp ( - a 2 2 p 2 ) K 0 ( a 2 2 p 2 ) superscript subscript 0 𝑡 superscript 𝑝 2 superscript 𝑡 2 Bessel-J 0 𝑎 𝑡 Bessel-Y-Weber 0 𝑎 𝑡 𝑡 1 2 𝜋 superscript 𝑝 2 superscript 𝑎 2 2 superscript 𝑝 2 modified-Bessel-second-kind 0 superscript 𝑎 2 2 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t\exp\left(-p^{2}t^{2}\right)J_{0% }\left(at\right)Y_{0}\left(at\right)\mathrm{d}t=-\frac{1}{2\pi p^{2}}\exp\left% (-\frac{a^{2}}{2p^{2}}\right)K_{0}\left(\frac{a^{2}}{2p^{2}}\right)}}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)
( p 2 ) > 0 , ( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence superscript 𝑝 2 0 formulae-sequence 0 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(p^{2}\right)>0,\Re(0+k+1)>0,\Re((-0)+k+1)% >0}}
int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(0, a*t)*BesselY(0, a*t), t = 0..infinity) = -(1)/(2*Pi*(p)^(2))*exp(-((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[0, a*t]*BesselY[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == -Divide[1,2*Pi*(p)^(2)]*Exp[-Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]
Translation Error Translation Error - -
10.22.E70 0 Y ν ( a t ) J ν + 1 ( b t ) t d t t 2 - z 2 = 1 2 π J ν + 1 ( b z ) H ν ( 1 ) ( a z ) superscript subscript 0 Bessel-Y-Weber 𝜈 𝑎 𝑡 Bessel-J 𝜈 1 𝑏 𝑡 𝑡 𝑡 superscript 𝑡 2 superscript 𝑧 2 1 2 𝜋 Bessel-J 𝜈 1 𝑏 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑎 𝑧 {\displaystyle{\displaystyle\int_{0}^{\infty}Y_{\nu}\left(at\right)J_{\nu+1}% \left(bt\right)\frac{t\mathrm{d}t}{t^{2}-z^{2}}=\frac{1}{2}\pi J_{\nu+1}\left(% bz\right){H^{(1)}_{\nu}}\left(az\right)}}
\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}
a b , b > 0 , ν > - 3 2 , z > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝑎 𝑏 formulae-sequence 𝑏 0 formulae-sequence 𝜈 3 2 formulae-sequence 𝑧 0 formulae-sequence 𝜈 1 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle a\geq b,b>0,\Re\nu>-\tfrac{3}{2},\Im z>0,\Re((\nu% +1)+k+1)>0,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
int(BesselY(nu, a*t)*BesselJ(nu + 1, b*t)*(t)/((t)^(2)- (z)^(2)), t = 0..infinity) = (1)/(2)*Pi*BesselJ(nu + 1, b*z)*HankelH1(nu, a*z)
Integrate[BesselY[\[Nu], a*t]*BesselJ[\[Nu]+ 1, b*t]*Divide[t,(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ 1, b*z]*HankelH1[\[Nu], a*z]
Error Aborted - Skipped - Because timed out
10.22.E71 0 J μ ( a t ) J ν ( b t ) J ν ( c t ) t 1 - μ d t = ( b c ) μ - 1 ( sin ϕ ) μ - 1 2 ( 2 π ) 1 2 a μ 𝖯 ν - 1 2 1 2 - μ ( cos ϕ ) superscript subscript 0 Bessel-J 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 Bessel-J 𝜈 𝑐 𝑡 superscript 𝑡 1 𝜇 𝑡 superscript 𝑏 𝑐 𝜇 1 superscript italic-ϕ 𝜇 1 2 superscript 2 𝜋 1 2 superscript 𝑎 𝜇 Ferrers-Legendre-P-first-kind 1 2 𝜇 𝜈 1 2 italic-ϕ {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\mu}\left(at\right)J_{\nu}% \left(bt\right)J_{\nu}\left(ct\right)t^{1-\mu}\mathrm{d}t=\frac{(bc)^{\mu-1}(% \sin\phi)^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\mathsf{P}^{\frac{1}{% 2}-\mu}_{\nu-\frac{1}{2}}(\cos\phi)}}
\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})
μ > - 1 2 , ν > - 1 , | b - c | < a , a < b + c , cos ϕ = ( b 2 + c 2 - a 2 ) / ( 2 b c ) , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜈 1 formulae-sequence 𝑏 𝑐 𝑎 formulae-sequence 𝑎 𝑏 𝑐 formulae-sequence italic-ϕ superscript 𝑏 2 superscript 𝑐 2 superscript 𝑎 2 2 𝑏 𝑐 formulae-sequence 𝜇 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re\nu>-1,|b-c|<a,a<b+c,\cos% \phi=(b^{2}+c^{2}-a^{2})/(2bc),\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0}}
int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)*(sin(phi))^(mu -(1)/(2)))/((2*Pi)^((1)/(2))* (a)^(mu))*LegendreP(nu -(1)/(2), (1)/(2)- mu, cos(phi))
Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)*(Sin[\[Phi]])^(\[Mu]-Divide[1,2]),(2*Pi)^(Divide[1,2])* (a)^\[Mu]]*LegendreP[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], Cos[\[Phi]]]
Translation Error Translation Error - -
10.22.E72 0 J μ ( a t ) J ν ( b t ) J ν ( c t ) t 1 - μ d t = ( b c ) μ - 1 sin ( ( μ - ν ) π ) ( sinh χ ) μ - 1 2 ( 1 2 π 3 ) 1 2 a μ e ( μ - 1 2 ) i π Q ν - 1 2 1 2 - μ ( cosh χ ) superscript subscript 0 Bessel-J 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 Bessel-J 𝜈 𝑐 𝑡 superscript 𝑡 1 𝜇 𝑡 superscript 𝑏 𝑐 𝜇 1 𝜇 𝜈 superscript 𝜒 𝜇 1 2 superscript 1 2 superscript 𝜋 3 1 2 superscript 𝑎 𝜇 𝜇 1 2 imaginary-unit Legendre-Q-second-kind 1 2 𝜇 𝜈 1 2 𝜒 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\mu}\left(at\right)J_{\nu}% \left(bt\right)J_{\nu}\left(ct\right)t^{1-\mu}\mathrm{d}t=\frac{(bc)^{\mu-1}% \sin\left((\mu-\nu)\pi\right)(\sinh\chi)^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3% })^{\frac{1}{2}}a^{\mu}}{\mathrm{e}^{(\mu-\frac{1}{2})\mathrm{i}\pi}}Q^{\frac{% 1}{2}-\mu}_{\nu-\frac{1}{2}}\left(\cosh\chi\right)}}
\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}
μ > - 1 2 , ν > - 1 , a > b + c , cosh χ = ( a 2 - b 2 - c 2 ) / ( 2 b c ) , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜈 1 formulae-sequence 𝑎 𝑏 𝑐 formulae-sequence 𝜒 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 2 𝑏 𝑐 formulae-sequence 𝜇 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re\nu>-1,a>b+c,\cosh\chi=(a^% {2}-b^{2}-c^{2})/(2bc),\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0}}
int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)* sin((mu - nu)*Pi)*(sinh(chi))^(mu -(1)/(2)))/(((1)/(2)*(Pi)^(3))^((1)/(2))* (a)^(mu))*exp((mu -(1)/(2))*I*Pi)*LegendreQ(nu -(1)/(2), (1)/(2)- mu, cosh(chi))
Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)* Sin[(\[Mu]- \[Nu])*Pi]*(Sinh[\[Chi]])^(\[Mu]-Divide[1,2]),(Divide[1,2]*(Pi)^(3))^(Divide[1,2])* (a)^\[Mu]]*Exp[(\[Mu]-Divide[1,2])*I*Pi]*LegendreQ[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], 3, Cosh[\[Chi]]]
Error Aborted - Skip - No test values generated
10.23.E3 J 0 2 ( z ) + 2 k = 1 J k 2 ( z ) = 1 Bessel-J 0 2 𝑧 2 superscript subscript 𝑘 1 Bessel-J 𝑘 2 𝑧 1 {\displaystyle{\displaystyle{J_{0}^{2}}\left(z\right)+2\sum_{k=1}^{\infty}{J_{% k}^{2}}\left(z\right)=1}}
\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1
( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(k+k+1)>0}}
(BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1
(BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1
Aborted Successful Successful [Tested: 7] Successful [Tested: 7]
10.23.E4 k = 0 2 n ( - 1 ) k J k ( z ) J 2 n - k ( z ) + 2 k = 1 J k ( z ) J 2 n + k ( z ) = 0 superscript subscript 𝑘 0 2 𝑛 superscript 1 𝑘 Bessel-J 𝑘 𝑧 Bessel-J 2 𝑛 𝑘 𝑧 2 superscript subscript 𝑘 1 Bessel-J 𝑘 𝑧 Bessel-J 2 𝑛 𝑘 𝑧 0 {\displaystyle{\displaystyle\sum_{k=0}^{2n}(-1)^{k}J_{k}\left(z\right)J_{2n-k}% \left(z\right)\\ +2\sum_{k=1}^{\infty}J_{k}\left(z\right)J_{2n+k}\left(z\right)=0}}
\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0
n 1 , ( k + k + 1 ) > 0 , ( ( 2 n - k ) + k + 1 ) > 0 , ( ( 2 n + k ) + k + 1 ) > 0 formulae-sequence 𝑛 1 formulae-sequence 𝑘 𝑘 1 0 formulae-sequence 2 𝑛 𝑘 𝑘 1 0 2 𝑛 𝑘 𝑘 1 0 {\displaystyle{\displaystyle n\geq 1,\Re(k+k+1)>0,\Re((2n-k)+k+1)>0,\Re((2n+k)% +k+1)>0}}
sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z)*; , k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0
Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z]*, {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0
Error Failure -
Failed [21 / 21]
Result: Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.23.E5 k = 0 n J k ( z ) J n - k ( z ) + 2 k = 1 ( - 1 ) k J k ( z ) J n + k ( z ) = J n ( 2 z ) superscript subscript 𝑘 0 𝑛 Bessel-J 𝑘 𝑧 Bessel-J 𝑛 𝑘 𝑧 2 superscript subscript 𝑘 1 superscript 1 𝑘 Bessel-J 𝑘 𝑧 Bessel-J 𝑛 𝑘 𝑧 Bessel-J 𝑛 2 𝑧 {\displaystyle{\displaystyle\sum_{k=0}^{n}J_{k}\left(z\right)J_{n-k}\left(z% \right)+2\sum_{k=1}^{\infty}(-1)^{k}J_{k}\left(z\right)J_{n+k}\left(z\right)=J% _{n}\left(2z\right)}}
\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}
( k + k + 1 ) > 0 , ( ( n - k ) + k + 1 ) > 0 , ( ( n + k ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 formulae-sequence 𝑘 𝑘 1 0 formulae-sequence 𝑛 𝑘 𝑘 1 0 formulae-sequence 𝑛 𝑘 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(k+k+1)>0,\Re((n-k)+k+1)>0,\Re((n+k)+k+1)>0,\Re% (n+k+1)>0}}
sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z)
Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z]
Aborted Failure Skipped - Because timed out
Failed [21 / 21]
Result: Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.23#Ex1 w = u 2 + v 2 - 2 u v cos α 𝑤 superscript 𝑢 2 superscript 𝑣 2 2 𝑢 𝑣 𝛼 {\displaystyle{\displaystyle w=\sqrt{u^{2}+v^{2}-2uv\cos\alpha}}}
w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}

w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha))
w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]]
Failure Failure
Failed [300 / 300]
Result: -.3146075610-.1816387601*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: -1.680632965+.1843866439*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.3146075609842255, -0.18163876002333418]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Complex[0.4375091763619045, 0.252596040745477]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.23#Ex2 u - v cos α = w cos χ 𝑢 𝑣 𝛼 𝑤 𝜒 {\displaystyle{\displaystyle u-v\cos\alpha=w\cos\chi}}
u-v\cos@@{\alpha} = w\cos@@{\chi}

u - v*cos(alpha) = w*cos(chi)
u - v*Cos[\[Alpha]] == w*Cos[\[Chi]]
Failure Failure
Failed [300 / 300]
Result: -.263783978e-1+.4431282844*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: .8262683052-.3665121890*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.026378398027867456, 0.44312828415668515]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.023973249213014358, -0.5554825514041751]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.23#Ex3 v sin α = w sin χ 𝑣 𝛼 𝑤 𝜒 {\displaystyle{\displaystyle v\sin\alpha=w\sin\chi}}
v\sin@@{\alpha} = w\sin@@{\chi}

v*sin(alpha) = w*sin(chi)
v*Sin[\[Alpha]] == w*Sin[\[Chi]]
Failure Failure
Failed [300 / 300]
Result: .2887554391-.2231097873*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: 1.585713279-.763530664e-1*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [294 / 300]
Result: Complex[0.2887554393029954, -0.22310978722682606]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.8740447527972026, 0.09051196331992012]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.23.E9 e i v cos α = Γ ( ν ) ( 1 2 v ) ν k = 0 ( ν + k ) i k J ν + k ( v ) C k ( ν ) ( cos α ) superscript 𝑒 𝑖 𝑣 𝛼 Euler-Gamma 𝜈 superscript 1 2 𝑣 𝜈 superscript subscript 𝑘 0 𝜈 𝑘 superscript 𝑖 𝑘 Bessel-J 𝜈 𝑘 𝑣 ultraspherical-Gegenbauer-polynomial 𝜈 𝑘 𝛼 {\displaystyle{\displaystyle e^{iv\cos\alpha}=\frac{\Gamma\left(\nu\right)}{(% \tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}J_{\nu+k}\left(v\right)C% ^{(\nu)}_{k}\left(\cos\alpha\right)}}
e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}
( ( ν + k ) + k + 1 ) > 0 , ( ν ) > 0 formulae-sequence 𝜈 𝑘 𝑘 1 0 𝜈 0 {\displaystyle{\displaystyle\Re((\nu+k)+k+1)>0,\Re(\nu)>0}}
exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)*(I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity)
Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)*(I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Failure Skipped - Because timed out Skipped - Because timed out
10.23.E15 ( 1 2 z ) ν = k = 0 ( ν + 2 k ) Γ ( ν + k ) k ! J ν + 2 k ( z ) superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 𝜈 2 𝑘 Euler-Gamma 𝜈 𝑘 𝑘 Bessel-J 𝜈 2 𝑘 𝑧 {\displaystyle{\displaystyle(\tfrac{1}{2}z)^{\nu}=\sum_{k=0}^{\infty}\frac{(% \nu+2k)\Gamma\left(\nu+k\right)}{k!}J_{\nu+2k}\left(z\right)}}
(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}
( ( ν + 2 k ) + k + 1 ) > 0 , ( ν + k ) > 0 formulae-sequence 𝜈 2 𝑘 𝑘 1 0 𝜈 𝑘 0 {\displaystyle{\displaystyle\Re((\nu+2k)+k+1)>0,\Re(\nu+k)>0}}
((1)/(2)*z)^(nu) = sum(((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity)
(Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 7]
10.23.E16 Y 0 ( z ) = 2 π ( ln ( 1 2 z ) + γ ) J 0 ( z ) - 4 π k = 1 ( - 1 ) k J 2 k ( z ) k Bessel-Y-Weber 0 𝑧 2 𝜋 1 2 𝑧 Bessel-J 0 𝑧 4 𝜋 superscript subscript 𝑘 1 superscript 1 𝑘 Bessel-J 2 𝑘 𝑧 𝑘 {\displaystyle{\displaystyle Y_{0}\left(z\right)=\frac{2}{\pi}\left(\ln\left(% \tfrac{1}{2}z\right)+\gamma\right)J_{0}\left(z\right)-\frac{4}{\pi}\sum_{k=1}^% {\infty}(-1)^{k}\frac{J_{2k}\left(z\right)}{k}}}
\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}
( 0 + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k)+k+1)>0,\Re((-0)+k+1)>0}}
BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity)
BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]
Aborted Successful Successful [Tested: 7] Successful [Tested: 7]
10.23.E17 Y n ( z ) = - n ! ( 1 2 z ) - n π k = 0 n - 1 ( 1 2 z ) k J k ( z ) k ! ( n - k ) + 2 π ( ln ( 1 2 z ) - ψ ( n + 1 ) ) J n ( z ) - 2 π k = 1 ( - 1 ) k ( n + 2 k ) J n + 2 k ( z ) k ( n + k ) Bessel-Y-Weber 𝑛 𝑧 𝑛 superscript 1 2 𝑧 𝑛 𝜋 superscript subscript 𝑘 0 𝑛 1 superscript 1 2 𝑧 𝑘 Bessel-J 𝑘 𝑧 𝑘 𝑛 𝑘 2 𝜋 1 2 𝑧 digamma 𝑛 1 Bessel-J 𝑛 𝑧 2 𝜋 superscript subscript 𝑘 1 superscript 1 𝑘 𝑛 2 𝑘 Bessel-J 𝑛 2 𝑘 𝑧 𝑘 𝑛 𝑘 {\displaystyle{\displaystyle Y_{n}\left(z\right)=-\frac{n!(\tfrac{1}{2}z)^{-n}% }{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}J_{k}\left(z\right)}{k!(n-k)}+% \frac{2}{\pi}\left(\ln\left(\tfrac{1}{2}z\right)-\psi\left(n+1\right)\right)J_% {n}\left(z\right)-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)J_{n+2k}% \left(z\right)}{k(n+k)}}}
\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}
( n + k + 1 ) > 0 , ( k + k + 1 ) > 0 , ( ( n + 2 k ) + k + 1 ) > 0 , ( ( - n ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑘 𝑘 1 0 formulae-sequence 𝑛 2 𝑘 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re(k+k+1)>0,\Re((n+2k)+k+1)>0,\Re((-% n)+k+1)>0}}
BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))*BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)*BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity)
BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)*BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]
Aborted Failure Manual Skip!
Failed [16 / 21]
Result: Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.24.E1 x 2 d 2 w d x 2 + x d w d x + ( x 2 + ν 2 ) w = 0 superscript 𝑥 2 derivative 𝑤 𝑥 2 𝑥 derivative 𝑤 𝑥 superscript 𝑥 2 superscript 𝜈 2 𝑤 0 {\displaystyle{\displaystyle x^{2}\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}x}^{2}}+% x\frac{\mathrm{d}w}{\mathrm{d}x}+(x^{2}+\nu^{2})w=0}}
x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0

(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((x)^(2)+ (nu)^(2))*w = 0
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+((x)^(2)+ \[Nu]^(2))*w == 0
Failure Failure
Failed [300 / 300]
Result: 1.948557159+2.125000000*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: .2165063513+1.125000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.9485571585149875, 2.125]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.948557158514987, 0.12499999999999989]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24#Ex1 J ~ ν ( x ) = sech ( 1 2 π ν ) ( J i ν ( x ) ) Bessel-J-imaginary-order 𝜈 𝑥 1 2 𝜋 𝜈 Bessel-J 𝑖 𝜈 𝑥 {\displaystyle{\displaystyle\widetilde{J}_{\nu}\left(x\right)=\operatorname{% sech}\left(\tfrac{1}{2}\pi\nu\right)\Re\left(J_{i\nu}\left(x\right)\right)}}
\BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}}
( ( i ν ) + k + 1 ) > 0 imaginary-unit 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((\mathrm{i}\nu)+k+1)>0}}
sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselJ(I*nu, x))
Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselJ[I*\[Nu], x]]
Successful Successful - Successful [Tested: 30]
10.24#Ex2 Y ~ ν ( x ) = sech ( 1 2 π ν ) ( Y i ν ( x ) ) Bessel-Y-Weber-imaginary-order 𝜈 𝑥 1 2 𝜋 𝜈 Bessel-Y-Weber 𝑖 𝜈 𝑥 {\displaystyle{\displaystyle\widetilde{Y}_{\nu}\left(x\right)=\operatorname{% sech}\left(\tfrac{1}{2}\pi\nu\right)\Re\left(Y_{i\nu}\left(x\right)\right)}}
\BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}}
( ( i ν ) + k + 1 ) > 0 , ( ( - ( i ν ) ) + k + 1 ) > 0 formulae-sequence imaginary-unit 𝜈 𝑘 1 0 imaginary-unit 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((\mathrm{i}\nu)+k+1)>0,\Re((-(\mathrm{i}\nu))+% k+1)>0}}
sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselY(I*nu, x))
Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselY[I*\[Nu], x]]
Successful Successful - Successful [Tested: 30]
10.24.E3 Γ ( 1 + i ν ) = ( π ν sinh ( π ν ) ) 1 2 e i γ ν Euler-Gamma 1 𝑖 𝜈 superscript 𝜋 𝜈 𝜋 𝜈 1 2 superscript 𝑒 𝑖 subscript 𝛾 𝜈 {\displaystyle{\displaystyle\Gamma\left(1+i\nu\right)=\left(\frac{\pi\nu}{% \sinh\left(\pi\nu\right)}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}}}
\EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}
( 1 + i ν ) > 0 1 imaginary-unit 𝜈 0 {\displaystyle{\displaystyle\Re(1+\mathrm{i}\nu)>0}}
GAMMA(1 + I*nu) = ((Pi*nu)/(sinh(Pi*nu)))^((1)/(2))* exp(I*gamma[nu])
Gamma[1 + I*\[Nu]] == (Divide[Pi*\[Nu],Sinh[Pi*\[Nu]]])^(Divide[1,2])* Exp[I*Subscript[\[Gamma], \[Nu]]]
Failure Failure
Failed [300 / 300]
Result: .131682196e-1-.6479738907*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = 1/2*3^(1/2)+1/2*I}

Result: .2393622021-.2867640040*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.013168219691258531, -0.6479738909120968]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.23936220222535412, -0.28676400411697583]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24#Ex3 J ~ - ν ( x ) = J ~ ν ( x ) Bessel-J-imaginary-order 𝜈 𝑥 Bessel-J-imaginary-order 𝜈 𝑥 {\displaystyle{\displaystyle\widetilde{J}_{-\nu}\left(x\right)=\widetilde{J}_{% \nu}\left(x\right)}}
\BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x}

sech((1/2)*Pi*(- nu))*Re(BesselJ(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x))
Sech[1/2 Pi - \[Nu]] Re[BesselJ[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]]
Failure Failure
Failed [12 / 30]
Result: .1765981285-.1547836875*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -1.059084556+.9282601935*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.6353785354467336, 0.04153700144653363]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.2910880978413849, 0.681683596996288]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24#Ex4 Y ~ - ν ( x ) = Y ~ ν ( x ) Bessel-Y-Weber-imaginary-order 𝜈 𝑥 Bessel-Y-Weber-imaginary-order 𝜈 𝑥 {\displaystyle{\displaystyle\widetilde{Y}_{-\nu}\left(x\right)=\widetilde{Y}_{% \nu}\left(x\right)}}
\BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x}
( ( i ( - ν ) ) + k + 1 ) > 0 , ( ( i ν ) + k + 1 ) > 0 , ( ( - ( i ( - ν ) ) ) + k + 1 ) > 0 , ( ( - ( i ν ) ) + k + 1 ) > 0 formulae-sequence imaginary-unit 𝜈 𝑘 1 0 formulae-sequence imaginary-unit 𝜈 𝑘 1 0 formulae-sequence imaginary-unit 𝜈 𝑘 1 0 imaginary-unit 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((\mathrm{i}(-\nu))+k+1)>0,\Re((\mathrm{i}\nu)+% k+1)>0,\Re((-(\mathrm{i}(-\nu)))+k+1)>0,\Re((-(\mathrm{i}\nu))+k+1)>0}}
sech((1/2)*Pi*(- nu))*Re(BesselY(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))
Sech[1/2 Pi - \[Nu]] Re[BesselY[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]
Failure Failure
Failed [12 / 30]
Result: -.6730010946+.5898680353*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -.1980888923+.1736197856*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[0.16541121369118172, 0.7534126929509344]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.3242468905843751, -0.9796849117084342]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24.E5 𝒲 { J ~ ν ( x ) , Y ~ ν ( x ) } = 2 / ( π x ) Wronskian Bessel-J-imaginary-order 𝜈 𝑥 Bessel-Y-Weber-imaginary-order 𝜈 𝑥 2 𝜋 𝑥 {\displaystyle{\displaystyle\mathscr{W}\left\{\widetilde{J}_{\nu}\left(x\right% ),\widetilde{Y}_{\nu}\left(x\right)\right\}=2/(\pi x)}}
\Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x)
( ( i ν ) + k + 1 ) > 0 , ( ( - ( i ν ) ) + k + 1 ) > 0 formulae-sequence imaginary-unit 𝜈 𝑘 1 0 imaginary-unit 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((\mathrm{i}\nu)+k+1)>0,\Re((-(\mathrm{i}\nu))+% k+1)>0}}
(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)))*diff(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)), x)-diff(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)), x)*(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))) = 2/(Pi*x)
Wronskian[{Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]], Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]}, x] == 2/(Pi*x)
Failure Failure
Failed [12 / 30]
Result: -.3214564733-.7786157192*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -.6431025084-4.765445687*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [30 / 30]
Result: Plus[-0.4244131815783876, Times[Complex[0.017184424665049866, -0.12995814793225188], Plus[Times[Complex[5.94457417937745, -0.08806734388290616], Derivative[1][Re][Complex[0.5424102683642863, 1.3820413572565333]]], Times[Complex[0.04670634387761448, 2.0064149502593187], Derivative[1][Re][Complex[1.5013396639532606, -0.5145465005058608]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-0.4244131815783876, Times[Complex[-0.5062208144169521, 0.3689208146583662], Plus[Times[Complex[1.2690034139339206, -1.428145592425075], Derivative[1][Re][Complex[-0.5230512553281585, -0.7250724679588263]]], Times[Complex[0.9907135967899046, 0.5862869255257461], Derivative[1][Re][Complex[0.9118063408652576, -0.381897212811936]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24.E9 Y ~ 0 ( x ) = Y 0 ( x ) Bessel-Y-Weber-imaginary-order 0 𝑥 Bessel-Y-Weber 0 𝑥 {\displaystyle{\displaystyle\widetilde{Y}_{0}\left(x\right)=Y_{0}\left(x\right% )}}
\BesselYimag{0}@{x} = \BesselY{0}@{x}
( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 , ( ( i 0 ) + k + 1 ) > 0 , ( ( - ( i 0 ) ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 0 𝑘 1 0 formulae-sequence imaginary-unit 0 𝑘 1 0 imaginary-unit 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((-0)+k+1)>0,\Re((\mathrm{i}0)+k+1% )>0,\Re((-(\mathrm{i}0))+k+1)>0}}
sech((1/2)*Pi*(0))*Re(BesselY(I*(0), x)) = BesselY(0, x)
Sech[1/2 Pi 0] Re[BesselY[I 0, x]] == BesselY[0, x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.25.E1 z 2 d 2 w d z 2 + z d w d z - ( z 2 + ν 2 ) w = 0 superscript 𝑧 2 derivative 𝑤 𝑧 2 𝑧 derivative 𝑤 𝑧 superscript 𝑧 2 superscript 𝜈 2 𝑤 0 {\displaystyle{\displaystyle z^{2}\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+% z\frac{\mathrm{d}w}{\mathrm{d}z}-(z^{2}+\nu^{2})w=0}}
z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0

(z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)-((z)^(2)+ (nu)^(2))*w = 0
(z)^(2)* D[w, {z, 2}]+ z*D[w, z]-((z)^(2)+ \[Nu]^(2))*w == 0
Failure Failure
Failed [220 / 300]
Result: -.6467477718e-9-2.000000002*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -.8660254040e-9-2.000000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [264 / 300]
Result: Complex[0.0, -2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
10.25.E2 I ν ( z ) = ( 1 2 z ) ν k = 0 ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 Euler-Gamma 𝜈 𝑘 1 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=(\tfrac{1}{2}z)^{\nu}\sum_{% k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\Gamma\left(\nu+k+1\right)}}}
\modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselI(nu, z) = ((1)/(2)*z)^(nu)* sum((((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity)
BesselI[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 70]
10.27.E1 I - n ( z ) = I n ( z ) modified-Bessel-first-kind 𝑛 𝑧 modified-Bessel-first-kind 𝑛 𝑧 {\displaystyle{\displaystyle I_{-n}\left(z\right)=I_{n}\left(z\right)}}
\modBesselI{-n}@{z} = \modBesselI{n}@{z}
( ( - n ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re((-n)+k+1)>0,\Re(n+k+1)>0}}
BesselI(- n, z) = BesselI(n, z)
BesselI[- n, z] == BesselI[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.27.E2 I - ν ( z ) = I ν ( z ) + ( 2 / π ) sin ( ν π ) K ν ( z ) modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 2 𝜋 𝜈 𝜋 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{-\nu}\left(z\right)=I_{\nu}\left(z\right)+(2/% \pi)\sin\left(\nu\pi\right)K_{\nu}\left(z\right)}}
\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z)
BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.27.E3 K - ν ( z ) = K ν ( z ) modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle K_{-\nu}\left(z\right)=K_{\nu}\left(z\right)}}
\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}

BesselK(- nu, z) = BesselK(nu, z)
BesselK[- \[Nu], z] == BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.27.E4 K ν ( z ) = 1 2 π I - ν ( z ) - I ν ( z ) sin ( ν π ) modified-Bessel-second-kind 𝜈 𝑧 1 2 𝜋 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 𝜈 𝜋 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\tfrac{1}{2}\pi\frac{I_{-% \nu}\left(z\right)-I_{\nu}\left(z\right)}{\sin\left(\nu\pi\right)}}}
\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi))
BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]]
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.27.E6 I ν ( z ) = e - ν π i / 2 J ν ( z e + π i / 2 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 2 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=e^{-\nu\pi i/2}J_{\nu}\left% (ze^{+\pi i/2}\right)}}
\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}
- π + ph z , - π - ph z , + ph z 1 2 π , - ph z 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2))
BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E6 I ν ( z ) = e + ν π i / 2 J ν ( z e - π i / 2 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 2 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=e^{+\nu\pi i/2}J_{\nu}\left% (ze^{-\pi i/2}\right)}}
\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}
- π + ph z , - π - ph z , + ph z 1 2 π , - ph z 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2))
BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 I ν ( z ) = 1 2 e - ν π i / 2 ( H ν ( 1 ) ( z e + π i / 2 ) + H ν ( 2 ) ( z e + π i / 2 ) ) modified-Bessel-first-kind 𝜈 𝑧 1 2 superscript 𝑒 𝜈 𝜋 𝑖 2 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\tfrac{1}{2}e^{-\nu\pi i/2}% \left({H^{(1)}_{\nu}}\left(ze^{+\pi i/2}\right)+{H^{(2)}_{\nu}}\left(ze^{+\pi i% /2}\right)\right)}}
\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)
- π + ph z , - π - ph z , + ph z 1 2 π , - ph z 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2)))
BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]])
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 I ν ( z ) = 1 2 e + ν π i / 2 ( H ν ( 1 ) ( z e - π i / 2 ) + H ν ( 2 ) ( z e - π i / 2 ) ) modified-Bessel-first-kind 𝜈 𝑧 1 2 superscript 𝑒 𝜈 𝜋 𝑖 2 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\tfrac{1}{2}e^{+\nu\pi i/2}% \left({H^{(1)}_{\nu}}\left(ze^{-\pi i/2}\right)+{H^{(2)}_{\nu}}\left(ze^{-\pi i% /2}\right)\right)}}
\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)
- π + ph z , - π - ph z , + ph z 1 2 π , - ph z 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2)))
BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]])
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E9 π i J ν ( z ) = e - ν π i / 2 K ν ( z e - π i / 2 ) - e ν π i / 2 K ν ( z e π i / 2 ) 𝜋 𝑖 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\pi iJ_{\nu}\left(z\right)=e^{-\nu\pi i/2}K_{\nu}% \left(ze^{-\pi i/2}\right)-e^{\nu\pi i/2}K_{\nu}\left(ze^{\pi i/2}\right)}}
\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}
| ph z | 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{2}\pi,\Re(\nu+k+% 1)>0}}
Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))
Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E10 - π Y ν ( z ) = e - ν π i / 2 K ν ( z e - π i / 2 ) + e ν π i / 2 K ν ( z e π i / 2 ) 𝜋 Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle-\pi Y_{\nu}\left(z\right)=e^{-\nu\pi i/2}K_{\nu}% \left(ze^{-\pi i/2}\right)+e^{\nu\pi i/2}K_{\nu}\left(ze^{\pi i/2}\right)}}
-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}
| ph z | 1 2 π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{2}\pi,\Re(\nu+k+% 1)>0,\Re((-\nu)+k+1)>0}}
- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))
- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Y ν ( z ) = e + ( ν + 1 ) π i / 2 I ν ( z e - π i / 2 ) - ( 2 / π ) e - ν π i / 2 K ν ( z e - π i / 2 ) Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 1 𝜋 𝑖 2 modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 2 𝜋 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=e^{+(\nu+1)\pi i/2}I_{\nu}% \left(ze^{-\pi i/2}\right)-(2/\pi)e^{-\nu\pi i/2}K_{\nu}\left(ze^{-\pi i/2}% \right)}}
\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}
- 1 2 π + ph z , - 1 2 π - ph z , + ph z π , - ph z π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 1 2 𝜋 phase 𝑧 formulae-sequence 1 2 𝜋 phase 𝑧 formulae-sequence phase 𝑧 𝜋 formulae-sequence phase 𝑧 𝜋 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi\leq+\operatorname{ph}z,-\tfrac{1}% {2}\pi\leq-\operatorname{ph}z,+\operatorname{ph}z\leq\pi,-\operatorname{ph}z% \leq\pi,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))
BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Y ν ( z ) = e - ( ν + 1 ) π i / 2 I ν ( z e + π i / 2 ) - ( 2 / π ) e + ν π i / 2 K ν ( z e + π i / 2 ) Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 1 𝜋 𝑖 2 modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 2 𝜋 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=e^{-(\nu+1)\pi i/2}I_{\nu}% \left(ze^{+\pi i/2}\right)-(2/\pi)e^{+\nu\pi i/2}K_{\nu}\left(ze^{+\pi i/2}% \right)}}
\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}
- 1 2 π + ph z , - 1 2 π - ph z , + ph z π , - ph z π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 1 2 𝜋 phase 𝑧 formulae-sequence 1 2 𝜋 phase 𝑧 formulae-sequence phase 𝑧 𝜋 formulae-sequence phase 𝑧 𝜋 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi\leq+\operatorname{ph}z,-\tfrac{1}% {2}\pi\leq-\operatorname{ph}z,+\operatorname{ph}z\leq\pi,-\operatorname{ph}z% \leq\pi,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2))
BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.28.E1 𝒲 { I ν ( z ) , I - ν ( z ) } = I ν ( z ) I - ν - 1 ( z ) - I ν + 1 ( z ) I - ν ( z ) Wronskian modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{I_{\nu}\left(z\right),I_{-\nu}% \left(z\right)\right\}=I_{\nu}\left(z\right)I_{-\nu-1}\left(z\right)-I_{\nu+1}% \left(z\right)I_{-\nu}\left(z\right)}}
\Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ν - 1 ) + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((-\nu-1)+k+1)% >0,\Re((\nu+1)+k+1)>0}}
(BesselI(nu, z))*diff(BesselI(- nu, z), z)-diff(BesselI(nu, z), z)*(BesselI(- nu, z)) = BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z)
Wronskian[{BesselI[\[Nu], z], BesselI[- \[Nu], z]}, z] == BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.28.E1 I ν ( z ) I - ν - 1 ( z ) - I ν + 1 ( z ) I - ν ( z ) = - 2 sin ( ν π ) / ( π z ) modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 𝑧 2 𝜈 𝜋 𝜋 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(z\right)I_{-\nu-1}\left(z\right)-I_{% \nu+1}\left(z\right)I_{-\nu}\left(z\right)=-2\sin\left(\nu\pi\right)/(\pi z)}}
\modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ν - 1 ) + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((-\nu-1)+k+1)% >0,\Re((\nu+1)+k+1)>0}}
BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) = - 2*sin(nu*Pi)/(Pi*z)
BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.28.E2 𝒲 { K ν ( z ) , I ν ( z ) } = I ν ( z ) K ν + 1 ( z ) + I ν + 1 ( z ) K ν ( z ) Wronskian modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{K_{\nu}\left(z\right),I_{\nu}% \left(z\right)\right\}=I_{\nu}\left(z\right)K_{\nu+1}\left(z\right)+I_{\nu+1}% \left(z\right)K_{\nu}\left(z\right)}}
\Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
(BesselK(nu, z))*diff(BesselI(nu, z), z)-diff(BesselK(nu, z), z)*(BesselI(nu, z)) = BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z)
Wronskian[{BesselK[\[Nu], z], BesselI[\[Nu], z]}, z] == BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.28.E2 I ν ( z ) K ν + 1 ( z ) + I ν + 1 ( z ) K ν ( z ) = 1 / z modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-second-kind 𝜈 𝑧 1 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(z\right)K_{\nu+1}\left(z\right)+I_{% \nu+1}\left(z\right)K_{\nu}\left(z\right)=1/z}}
\modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) = 1/z
BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] == 1/z
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.29#Ex5 I 0 ( z ) = I 1 ( z ) diffop modified-Bessel-first-kind 0 1 𝑧 modified-Bessel-first-kind 1 𝑧 {\displaystyle{\displaystyle I_{0}'\left(z\right)=I_{1}\left(z\right)}}
\modBesselI{0}'@{z} = \modBesselI{1}@{z}
( 0 + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(1+k+1)>0}}
diff( BesselI(0, z), z$(1) ) = BesselI(1, z)
D[BesselI[0, z], {z, 1}] == BesselI[1, z]
Successful Successful - Successful [Tested: 7]
10.29#Ex6 K 0 ( z ) = - K 1 ( z ) diffop modified-Bessel-second-kind 0 1 𝑧 modified-Bessel-second-kind 1 𝑧 {\displaystyle{\displaystyle K_{0}'\left(z\right)=-K_{1}\left(z\right)}}
\modBesselK{0}'@{z} = -\modBesselK{1}@{z}

diff( BesselK(0, z), z$(1) ) = - BesselK(1, z)
D[BesselK[0, z], {z, 1}] == - BesselK[1, z]
Successful Successful - Successful [Tested: 7]
10.31.E1 K n ( z ) = 1 2 ( 1 2 z ) - n k = 0 n - 1 ( n - k - 1 ) ! k ! ( - 1 4 z 2 ) k + ( - 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( - 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! modified-Bessel-second-kind 𝑛 𝑧 1 2 superscript 1 2 𝑧 𝑛 superscript subscript 𝑘 0 𝑛 1 𝑛 𝑘 1 𝑘 superscript 1 4 superscript 𝑧 2 𝑘 superscript 1 𝑛 1 1 2 𝑧 modified-Bessel-first-kind 𝑛 𝑧 superscript 1 𝑛 1 2 superscript 1 2 𝑧 𝑛 superscript subscript 𝑘 0 digamma 𝑘 1 digamma 𝑛 𝑘 1 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 𝑛 𝑘 {\displaystyle{\displaystyle K_{n}\left(z\right)=\tfrac{1}{2}(\tfrac{1}{2}z)^{% -n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln% \left(\tfrac{1}{2}z\right)I_{n}\left(z\right)+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2% }z)^{n}\sum_{k=0}^{\infty}\left(\psi\left(k+1\right)+\psi\left(n+k+1\right)% \right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}}}
\modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}
( n + k + 1 ) > 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0}}
BesselK(n, z) = (1)/(2)*((1)/(2)*z)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*(-(1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(- 1)^(n + 1)* ln((1)/(2)*z)*BesselI(n, z)+(- 1)^(n)*(1)/(2)*((1)/(2)*z)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity)
BesselK[n, z] == Divide[1,2]*(Divide[1,2]*z)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*(-Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n + 1)* Log[Divide[1,2]*z]*BesselI[n, z]+(- 1)^(n)*Divide[1,2]*(Divide[1,2]*z)^(n)* Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out
Failed [6 / 21]
Result: Plus[0.6666666666666666, Times[-0.6666666666666666, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}

Result: Plus[0.38888888888888906, Times[0.5, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}

... skip entries to safe data
10.31.E2 K 0 ( z ) = - ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + modified-Bessel-second-kind 0 𝑧 1 2 𝑧 modified-Bessel-first-kind 0 𝑧 1 4 superscript 𝑧 2 superscript 1 2 1 1 2 superscript 1 4 superscript 𝑧 2 2 superscript 2 2 1 1 2 1 3 superscript 1 4 superscript 𝑧 2 3 superscript 3 2 {\displaystyle{\displaystyle K_{0}\left(z\right)=-\left(\ln\left(\tfrac{1}{2}z% \right)+\gamma\right)I_{0}\left(z\right)+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1% +\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{% 1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\cdots}}
\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+((1)/(4)*(z)^(2))/((factorial(1))^(2))+(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))+ ..
BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]+(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-6.985673039111573*^-6, -1.2369744460005716*^-5], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-7.140527721077872*^-6, -1.2101549865001227*^-5], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.31.E3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜇 𝑧 superscript 1 2 𝑧 𝜈 𝜇 superscript subscript 𝑘 0 subscript 𝜈 𝜇 𝑘 1 𝑘 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 Euler-Gamma 𝜈 𝑘 1 Euler-Gamma 𝜇 𝑘 1 {\displaystyle{\displaystyle I_{\nu}\left(z\right)I_{\mu}\left(z\right)=(% \tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4% }z^{2})^{k}}{k!\Gamma\left(\nu+k+1\right)\Gamma\left(\mu+k+1\right)}}}
\modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}
( ν + k + 1 ) > 0 , ( μ + k + 1 ) > 0 , ( ( μ ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝑘 1 0 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\mu+k+1)>0,\Re((\mu)+k+1)>0}}
BesselI(nu, z)*BesselI(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity)
BesselI[\[Nu], z]*BesselI[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out
10.32.E1 I 0 ( z ) = 1 π 0 π e + z cos θ d θ modified-Bessel-first-kind 0 𝑧 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 𝜃 {\displaystyle{\displaystyle I_{0}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}e^% {+z\cos\theta}\mathrm{d}\theta}}
\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
BesselI(0, z) = (1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi)
BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.32.E1 I 0 ( z ) = 1 π 0 π e - z cos θ d θ modified-Bessel-first-kind 0 𝑧 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 𝜃 {\displaystyle{\displaystyle I_{0}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}e^% {-z\cos\theta}\mathrm{d}\theta}}
\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
BesselI(0, z) = (1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi)
BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.32.E1 1 π 0 π e + z cos θ d θ = 1 π 0 π cosh ( z cos θ ) d θ 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 𝜃 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝜃 {\displaystyle{\displaystyle\frac{1}{\pi}\int_{0}^{\pi}e^{+z\cos\theta}\mathrm% {d}\theta=\frac{1}{\pi}\int_{0}^{\pi}\cosh\left(z\cos\theta\right)\mathrm{d}% \theta}}
\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
(1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi)
Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Successful [Tested: 7]
10.32.E1 1 π 0 π e - z cos θ d θ = 1 π 0 π cosh ( z cos θ ) d θ 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 𝜃 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝜃 {\displaystyle{\displaystyle\frac{1}{\pi}\int_{0}^{\pi}e^{-z\cos\theta}\mathrm% {d}\theta=\frac{1}{\pi}\int_{0}^{\pi}\cosh\left(z\cos\theta\right)\mathrm{d}% \theta}}
\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
(1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi)
Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Successful [Tested: 7]
10.32.E2 I ν ( z ) = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π e + z cos θ ( sin θ ) 2 ν d θ modified-Bessel-first-kind 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 superscript 𝜃 2 𝜈 𝜃 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\frac{(\frac{1}{2}z)^{\nu}}% {\pi^{\frac{1}{2}}\Gamma\left(\nu+\frac{1}{2}\right)}\int_{0}^{\pi}e^{+z\cos% \theta}(\sin\theta)^{2\nu}\mathrm{d}\theta}}
\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}
ν > - 1 2 , ( ν + 1 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 1 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+\frac{1}{2})>0,\Re(% \nu+k+1)>0}}
BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Successful [Tested: 35]
10.32.E2 I ν ( z ) = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π e - z cos θ ( sin θ ) 2 ν d θ modified-Bessel-first-kind 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 superscript 𝜃 2 𝜈 𝜃 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\frac{(\frac{1}{2}z)^{\nu}}% {\pi^{\frac{1}{2}}\Gamma\left(\nu+\frac{1}{2}\right)}\int_{0}^{\pi}e^{-z\cos% \theta}(\sin\theta)^{2\nu}\mathrm{d}\theta}}
\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}
ν > - 1 2 , ( ν + 1 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 1 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+\frac{1}{2})>0,\Re(% \nu+k+1)>0}}
BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Successful [Tested: 35]
10.32.E2 ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π e + z cos θ ( sin θ ) 2 ν d θ = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) - 1 1 ( 1 - t 2 ) ν - 1 2 e + z t d t superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 superscript 𝜃 2 𝜈 𝜃 superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 1 1 superscript 1 superscript 𝑡 2 𝜈 1 2 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}% \Gamma\left(\nu+\frac{1}{2}\right)}\int_{0}^{\pi}e^{+z\cos\theta}(\sin\theta)^% {2\nu}\mathrm{d}\theta=\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\Gamma% \left(\nu+\frac{1}{2}\right)}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+zt}% \mathrm{d}t}}
\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t}
ν > - 1 2 , ( ν + 1 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 1 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+\frac{1}{2})>0,\Re(% \nu+k+1)>0}}
(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(+ z*t), t = - 1..1)
Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[+ z*t], {t, - 1, 1}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Successful [Tested: 35]
10.32.E2 ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π e - z cos θ ( sin θ ) 2 ν d θ = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) - 1 1 ( 1 - t 2 ) ν - 1 2 e - z t d t superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 superscript 𝜃 2 𝜈 𝜃 superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 1 1 superscript 1 superscript 𝑡 2 𝜈 1 2 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}% \Gamma\left(\nu+\frac{1}{2}\right)}\int_{0}^{\pi}e^{-z\cos\theta}(\sin\theta)^% {2\nu}\mathrm{d}\theta=\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\Gamma% \left(\nu+\frac{1}{2}\right)}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{-zt}% \mathrm{d}t}}
\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{- zt}\diff{t}
ν > - 1 2 , ( ν + 1 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 1 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+\frac{1}{2})>0,\Re(% \nu+k+1)>0}}
(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(- z*t), t = - 1..1)
Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[- z*t], {t, - 1, 1}, GenerateConditions->None]
Error Aborted Skip - symbolical successful subtest Successful [Tested: 35]
10.32.E3 I n ( z ) = 1 π 0 π e z cos θ cos ( n θ ) d θ modified-Bessel-first-kind 𝑛 𝑧 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 𝑛 𝜃 𝜃 {\displaystyle{\displaystyle I_{n}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}e^% {z\cos\theta}\cos\left(n\theta\right)\mathrm{d}\theta}}
\modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta}
( n + k + 1 ) > 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0}}
BesselI(n, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(n*theta), theta = 0..Pi)
BesselI[n, z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Aborted Successful [Tested: 21] Skipped - Because timed out
10.32.E4 I ν ( z ) = 1 π 0 π e z cos θ cos ( ν θ ) d θ - sin ( ν π ) π 0 e - z cosh t - ν t d t modified-Bessel-first-kind 𝜈 𝑧 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 𝜈 𝜃 𝜃 𝜈 𝜋 𝜋 superscript subscript 0 superscript 𝑒 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% e^{z\cos\theta}\cos\left(\nu\theta\right)\mathrm{d}\theta-\frac{\sin\left(\nu% \pi\right)}{\pi}\int_{0}^{\infty}e^{-z\cosh t-\nu t}\mathrm{d}t}}
\modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t}
| ph z | < 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi,\Re(\nu+k+1)>% 0}}
BesselI(nu, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*cosh(t)- nu*t), t = 0..infinity)
BesselI[\[Nu], z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[\[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Cosh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E5 K 0 ( z ) = - 1 π 0 π e + z cos θ ( γ + ln ( 2 z ( sin θ ) 2 ) ) d θ modified-Bessel-second-kind 0 𝑧 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 2 𝑧 superscript 𝜃 2 𝜃 {\displaystyle{\displaystyle K_{0}\left(z\right)=-\frac{1}{\pi}\int_{0}^{\pi}e% ^{+z\cos\theta}\left(\gamma+\ln\left(2z(\sin\theta)^{2}\right)\right)\mathrm{d% }\theta}}
\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}

BesselK(0, z) = -(1)/(Pi)*int(exp(+ z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi)
BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E5 K 0 ( z ) = - 1 π 0 π e - z cos θ ( γ + ln ( 2 z ( sin θ ) 2 ) ) d θ modified-Bessel-second-kind 0 𝑧 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝜃 2 𝑧 superscript 𝜃 2 𝜃 {\displaystyle{\displaystyle K_{0}\left(z\right)=-\frac{1}{\pi}\int_{0}^{\pi}e% ^{-z\cos\theta}\left(\gamma+\ln\left(2z(\sin\theta)^{2}\right)\right)\mathrm{d% }\theta}}
\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}

BesselK(0, z) = -(1)/(Pi)*int(exp(- z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi)
BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E6 K 0 ( x ) = 0 cos ( x sinh t ) d t modified-Bessel-second-kind 0 𝑥 superscript subscript 0 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle K_{0}\left(x\right)=\int_{0}^{\infty}\cos\left(x% \sinh t\right)\mathrm{d}t}}
\modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t}
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
BesselK(0, x) = int(cos(x*sinh(t)), t = 0..infinity)
BesselK[0, x] == Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]
Successful Aborted - Skipped - Because timed out
10.32.E6 0 cos ( x sinh t ) d t = 0 cos ( x t ) t 2 + 1 d t superscript subscript 0 𝑥 𝑡 𝑡 superscript subscript 0 𝑥 𝑡 superscript 𝑡 2 1 𝑡 {\displaystyle{\displaystyle\int_{0}^{\infty}\cos\left(x\sinh t\right)\mathrm{% d}t=\int_{0}^{\infty}\frac{\cos\left(xt\right)}{\sqrt{t^{2}+1}}\mathrm{d}t}}
\int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t}
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
int(cos(x*sinh(t)), t = 0..infinity) = int((cos(x*t))/(sqrt((t)^(2)+ 1)), t = 0..infinity)
Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[Cos[x*t],Sqrt[(t)^(2)+ 1]], {t, 0, Infinity}, GenerateConditions->None]
Successful Aborted - Skipped - Because timed out
10.32.E7 K ν ( x ) = sec ( 1 2 ν π ) 0 cos ( x sinh t ) cosh ( ν t ) d t modified-Bessel-second-kind 𝜈 𝑥 1 2 𝜈 𝜋 superscript subscript 0 𝑥 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle K_{\nu}\left(x\right)=\sec\left(\tfrac{1}{2}\nu% \pi\right)\int_{0}^{\infty}\cos\left(x\sinh t\right)\cosh\left(\nu t\right)% \mathrm{d}t}}
\modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t}
| ν | < 1 , x > 0 formulae-sequence 𝜈 1 𝑥 0 {\displaystyle{\displaystyle|\Re\nu|<1,x>0}}
BesselK(nu, x) = sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity)
BesselK[\[Nu], x] == Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Successful Aborted Manual Skip! Skipped - Because timed out
10.32.E7 sec ( 1 2 ν π ) 0 cos ( x sinh t ) cosh ( ν t ) d t = csc ( 1 2 ν π ) 0 sin ( x sinh t ) sinh ( ν t ) d t 1 2 𝜈 𝜋 superscript subscript 0 𝑥 𝑡 𝜈 𝑡 𝑡 1 2 𝜈 𝜋 superscript subscript 0 𝑥 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle\sec\left(\tfrac{1}{2}\nu\pi\right)\int_{0}^{% \infty}\cos\left(x\sinh t\right)\cosh\left(\nu t\right)\mathrm{d}t=\csc\left(% \tfrac{1}{2}\nu\pi\right)\int_{0}^{\infty}\sin\left(x\sinh t\right)\sinh\left(% \nu t\right)\mathrm{d}t}}
\sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t}
| ν | < 1 , x > 0 formulae-sequence 𝜈 1 𝑥 0 {\displaystyle{\displaystyle|\Re\nu|<1,x>0}}
sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity) = csc((1)/(2)*nu*Pi)*int(sin(x*sinh(t))*sinh(nu*t), t = 0..infinity)
Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] == Csc[Divide[1,2]*\[Nu]*Pi]*Integrate[Sin[x*Sinh[t]]*Sinh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
10.32.E8 K ν ( z ) = π 1 2 ( 1 2 z ) ν Γ ( ν + 1 2 ) 0 e - z cosh t ( sinh t ) 2 ν d t modified-Bessel-second-kind 𝜈 𝑧 superscript 𝜋 1 2 superscript 1 2 𝑧 𝜈 Euler-Gamma 𝜈 1 2 superscript subscript 0 superscript 𝑒 𝑧 𝑡 superscript 𝑡 2 𝜈 𝑡 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\frac{\pi^{\frac{1}{2}}(% \frac{1}{2}z)^{\nu}}{\Gamma\left(\nu+\frac{1}{2}\right)}\int_{0}^{\infty}e^{-z% \cosh t}(\sinh t)^{2\nu}\mathrm{d}t}}
\modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t}
ν > - 1 2 , | ph z | < 1 2 π , ( ν + 1 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},|\operatorname{ph}z|<\tfrac{1% }{2}\pi,\Re(\nu+\frac{1}{2})>0}}
BesselK(nu, z) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity)
BesselK[\[Nu], z] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E8 π 1 2 ( 1 2 z ) ν Γ ( ν + 1 2 ) 0 e - z cosh t ( sinh t ) 2 ν d t = π 1 2 ( 1 2 z ) ν Γ ( ν + 1 2 ) 1 e - z t ( t 2 - 1 ) ν - 1 2 d t superscript 𝜋 1 2 superscript 1 2 𝑧 𝜈 Euler-Gamma 𝜈 1 2 superscript subscript 0 superscript 𝑒 𝑧 𝑡 superscript 𝑡 2 𝜈 𝑡 superscript 𝜋 1 2 superscript 1 2 𝑧 𝜈 Euler-Gamma 𝜈 1 2 superscript subscript 1 superscript 𝑒 𝑧 𝑡 superscript superscript 𝑡 2 1 𝜈 1 2 𝑡 {\displaystyle{\displaystyle\frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{% \Gamma\left(\nu+\frac{1}{2}\right)}\int_{0}^{\infty}e^{-z\cosh t}(\sinh t)^{2% \nu}\mathrm{d}t=\frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\Gamma\left(\nu+% \frac{1}{2}\right)}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\mathrm{% d}t}}
\frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}
ν > - 1 2 , | ph z | < 1 2 π , ( ν + 1 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},|\operatorname{ph}z|<\tfrac{1% }{2}\pi,\Re(\nu+\frac{1}{2})>0}}
((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1..infinity)
Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1, Infinity}, GenerateConditions->None]
Error Aborted Skip - symbolical successful subtest Skipped - Because timed out
10.32.E9 K ν ( z ) = 0 e - z cosh t cosh ( ν t ) d t modified-Bessel-second-kind 𝜈 𝑧 superscript subscript 0 superscript 𝑒 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\int_{0}^{\infty}e^{-z\cosh t% }\cosh\left(\nu t\right)\mathrm{d}t}}
\modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t}
| ph z | < 1 2 π phase 𝑧 1 2 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi}}
BesselK(nu, z) = int(exp(- z*cosh(t))*cosh(nu*t), t = 0..infinity)
BesselK[\[Nu], z] == Integrate[Exp[- z*Cosh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E10 K ν ( z ) = 1 2 ( 1 2 z ) ν 0 exp ( - t - z 2 4 t ) d t t ν + 1 modified-Bessel-second-kind 𝜈 𝑧 1 2 superscript 1 2 𝑧 𝜈 superscript subscript 0 𝑡 superscript 𝑧 2 4 𝑡 𝑡 superscript 𝑡 𝜈 1 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\tfrac{1}{2}(\tfrac{1}{2}z)% ^{\nu}\int_{0}^{\infty}\exp\left(-t-\frac{z^{2}}{4t}\right)\frac{\mathrm{d}t}{% t^{\nu+1}}}}
\modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}
| ph z | < 1 4 π phase 𝑧 1 4 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{4}\pi}}
BesselK(nu, z) = (1)/(2)*((1)/(2)*z)^(nu)* int(exp(- t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = 0..infinity)
BesselK[\[Nu], z] == Divide[1,2]*(Divide[1,2]*z)^\[Nu]* Integrate[Exp[- t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 40]
10.32.E11 K ν ( x z ) = Γ ( ν + 1 2 ) ( 2 z ) ν π 1 2 x ν 0 cos ( x t ) d t ( t 2 + z 2 ) ν + 1 2 modified-Bessel-second-kind 𝜈 𝑥 𝑧 Euler-Gamma 𝜈 1 2 superscript 2 𝑧 𝜈 superscript 𝜋 1 2 superscript 𝑥 𝜈 superscript subscript 0 𝑥 𝑡 𝑡 superscript superscript 𝑡 2 superscript 𝑧 2 𝜈 1 2 {\displaystyle{\displaystyle K_{\nu}\left(xz\right)=\frac{\Gamma\left(\nu+% \frac{1}{2}\right)(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{% \cos\left(xt\right)\mathrm{d}t}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}}}}
\modBesselK{\nu}@{xz} = \frac{\EulerGamma@{\nu+\frac{1}{2}}(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}}
ν > - 1 2 , x > 0 , | ph z | < 1 2 π , ( ν + 1 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝑥 0 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},x>0,|\operatorname{ph}z|<% \tfrac{1}{2}\pi,\Re(\nu+\frac{1}{2})>0}}
BesselK(nu, x*(x + y*I)) = (GAMMA(nu +(1)/(2))*(2*(x + y*I))^(nu))/((Pi)^((1)/(2))* (x)^(nu))*int((cos(x*t))/(((t)^(2)+(x + y*I)^(2))^(nu +(1)/(2))), t = 0..infinity)
BesselK[\[Nu], x*(x + y*I)] == Divide[Gamma[\[Nu]+Divide[1,2]]*(2*(x + y*I))^\[Nu],(Pi)^(Divide[1,2])* (x)^\[Nu]]*Integrate[Divide[Cos[x*t],((t)^(2)+(x + y*I)^(2))^(\[Nu]+Divide[1,2])], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.32.E12 I ν ( z ) = 1 2 π i - i π + i π e z cosh t - ν t d t modified-Bessel-first-kind 𝜈 𝑧 1 2 𝜋 𝑖 superscript subscript 𝑖 𝜋 𝑖 𝜋 superscript 𝑒 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\frac{1}{2\pi i}\int_{% \infty-i\pi}^{\infty+i\pi}e^{z\cosh t-\nu t}\mathrm{d}t}}
\modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t}
| ph z | < 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi,\Re(\nu+k+1)>% 0}}
BesselI(nu, z) = (1)/(2*Pi*I)*int(exp(z*cosh(t)- nu*t), t = infinity - I*Pi..infinity + I*Pi)
BesselI[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Exp[z*Cosh[t]- \[Nu]*t], {t, Infinity - I*Pi, Infinity + I*Pi}, GenerateConditions->None]
Error Failure -
Failed [50 / 50]
Result: Complex[0.5303418993681409, 0.010453999760907294]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.7664848208906112, 0.1468422559210476]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.32.E13 K ν ( z ) = ( 1 2 z ) ν 4 π i c - i c + i Γ ( t ) Γ ( t - ν ) ( 1 2 z ) - 2 t d t modified-Bessel-second-kind 𝜈 𝑧 superscript 1 2 𝑧 𝜈 4 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 Euler-Gamma 𝑡 Euler-Gamma 𝑡 𝜈 superscript 1 2 𝑧 2 𝑡 𝑡 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\frac{(\frac{1}{2}z)^{\nu}}% {4\pi i}\int_{c-i\infty}^{c+i\infty}\Gamma\left(t\right)\Gamma\left(t-\nu% \right)(\tfrac{1}{2}z)^{-2t}\mathrm{d}t}}
\modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t}
c > max ( ν , 0 ) < 1 2 π , | ph z | < 1 2 π , t > 0 , ( t - ν ) > 0 formulae-sequence 𝑐 𝜈 0 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence 𝑡 0 𝑡 𝜈 0 {\displaystyle{\displaystyle c>\max(\Re\nu,0)<\frac{1}{2}\pi,|\operatorname{ph% }z|<\frac{1}{2}\pi,\Re t>0,\Re(t-\nu)>0}}
BesselK(nu, z) = (((1)/(2)*z)^(nu))/(4*Pi*I)*int(GAMMA(t)*GAMMA(t - nu)*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity)
BesselK[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],4*Pi*I]*Integrate[Gamma[t]*Gamma[t - \[Nu]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Failure Aborted
Failed [300 / 300]
Result: .5663982443-.3181066824*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.434992817-2.759712160*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
10.32.E14 K ν ( z ) = 1 2 π 2 i ( π 2 z ) 1 2 e - z cos ( ν π ) - i i Γ ( t ) Γ ( 1 2 - t - ν ) Γ ( 1 2 - t + ν ) ( 2 z ) t d t modified-Bessel-second-kind 𝜈 𝑧 1 2 superscript 𝜋 2 𝑖 superscript 𝜋 2 𝑧 1 2 superscript 𝑒 𝑧 𝜈 𝜋 superscript subscript 𝑖 𝑖 Euler-Gamma 𝑡 Euler-Gamma 1 2 𝑡 𝜈 Euler-Gamma 1 2 𝑡 𝜈 superscript 2 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\frac{1}{2\pi^{2}i}\left(% \frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos\left(\nu\pi\right)\*\int_{-i% \infty}^{i\infty}\Gamma\left(t\right)\Gamma\left(\tfrac{1}{2}-t-\nu\right)% \Gamma\left(\tfrac{1}{2}-t+\nu\right)(2z)^{t}\mathrm{d}t}}
\modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t}
ν - 1 2 < 3 2 π , | ph z | < 3 2 π , t > 0 , ( 1 2 - t - ν ) > 0 , ( 1 2 - t + ν ) > 0 formulae-sequence 𝜈 1 2 3 2 𝜋 formulae-sequence phase 𝑧 3 2 𝜋 formulae-sequence 𝑡 0 formulae-sequence 1 2 𝑡 𝜈 0 1 2 𝑡 𝜈 0 {\displaystyle{\displaystyle\nu-\tfrac{1}{2}\notin\mathbb{Z}<\tfrac{3}{2}\pi,|% \operatorname{ph}z|<\tfrac{3}{2}\pi,\Re t>0,\Re(\tfrac{1}{2}-t-\nu)>0,\Re(% \tfrac{1}{2}-t+\nu)>0}}
BesselK(nu, z) = (1)/(2*(Pi)^(2)* I)*((Pi)/(2*z))^((1)/(2))* exp(- z)*cos(nu*Pi)* int(GAMMA(t)*GAMMA((1)/(2)- t - nu)*GAMMA((1)/(2)- t + nu)*(2*z)^(t), t = - I*infinity..I*infinity)
BesselK[\[Nu], z] == Divide[1,2*(Pi)^(2)* I]*(Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*Cos[\[Nu]*Pi]* Integrate[Gamma[t]*Gamma[Divide[1,2]- t - \[Nu]]*Gamma[Divide[1,2]- t + \[Nu]]*(2*z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E15 I μ ( z ) I ν ( z ) = 2 π 0 1 2 π I μ + ν ( 2 z cos θ ) cos ( ( μ - ν ) θ ) d θ modified-Bessel-first-kind 𝜇 𝑧 modified-Bessel-first-kind 𝜈 𝑧 2 𝜋 superscript subscript 0 1 2 𝜋 modified-Bessel-first-kind 𝜇 𝜈 2 𝑧 𝜃 𝜇 𝜈 𝜃 𝜃 {\displaystyle{\displaystyle I_{\mu}\left(z\right)I_{\nu}\left(z\right)=\frac{% 2}{\pi}\int_{0}^{\frac{1}{2}\pi}I_{\mu+\nu}\left(2z\cos\theta\right)\cos\left(% (\mu-\nu)\theta\right)\mathrm{d}\theta}}
\modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}
( μ + ν ) > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν ) + k + 1 ) > 0 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>-1,\Re((\mu)+k+1)>0,\Re(% \nu+k+1)>0,\Re((\mu+\nu)+k+1)>0}}
BesselI(mu, z)*BesselI(nu, z) = (2)/(Pi)*int(BesselI(mu + nu, 2*z*cos(theta))*cos((mu - nu)*theta), theta = 0..(1)/(2)*Pi)
BesselI[\[Mu], z]*BesselI[\[Nu], z] == Divide[2,Pi]*Integrate[BesselI[\[Mu]+ \[Nu], 2*z*Cos[\[Theta]]]*Cos[(\[Mu]- \[Nu])*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E16 I μ ( x ) K ν ( x ) = 0 J μ + ν ( 2 x sinh t ) e ( - μ + ν ) t d t modified-Bessel-first-kind 𝜇 𝑥 modified-Bessel-second-kind 𝜈 𝑥 superscript subscript 0 Bessel-J 𝜇 𝜈 2 𝑥 𝑡 superscript 𝑒 𝜇 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle I_{\mu}\left(x\right)K_{\nu}\left(x\right)=\int_{% 0}^{\infty}J_{\mu+\nu}\left(2x\sinh t\right)e^{(-\mu+\nu)t}\mathrm{d}t}}
\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu+\nu}@{2x\sinh@@{t}}e^{(-\mu+\nu)t}\diff{t}
( μ - ν ) > - 1 2 , ( μ + ν ) > - 1 2 , ( μ + ν ) > - 1 , ( μ - ν ) > - 1 , x > 0 , ( ( μ + ν ) + k + 1 ) > 0 , ( ( μ ) + k + 1 ) > 0 formulae-sequence 𝜇 𝜈 1 2 formulae-sequence 𝜇 𝜈 1 2 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝑥 0 formulae-sequence 𝜇 𝜈 𝑘 1 0 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(\mu-\nu\right)>-\tfrac{1}{2},\Re\left(\mu% +\nu\right)>-\tfrac{1}{2},\Re\left(\mu+\nu\right)>-1,\Re\left(\mu-\nu\right)>-% 1,x>0,\Re((\mu+\nu)+k+1)>0,\Re((\mu)+k+1)>0}}
BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu + nu, 2*x*sinh(t))*exp((- mu + nu)*t), t = 0..infinity)
BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]+ \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.32.E16 I μ ( x ) K ν ( x ) = 0 J μ - ν ( 2 x sinh t ) e ( - μ - ν ) t d t modified-Bessel-first-kind 𝜇 𝑥 modified-Bessel-second-kind 𝜈 𝑥 superscript subscript 0 Bessel-J 𝜇 𝜈 2 𝑥 𝑡 superscript 𝑒 𝜇 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle I_{\mu}\left(x\right)K_{\nu}\left(x\right)=\int_{% 0}^{\infty}J_{\mu-\nu}\left(2x\sinh t\right)e^{(-\mu-\nu)t}\mathrm{d}t}}
\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu-\nu}@{2x\sinh@@{t}}e^{(-\mu-\nu)t}\diff{t}
( μ - ν ) > - 1 2 , ( μ + ν ) > - 1 2 , ( μ + ν ) > - 1 , ( μ - ν ) > - 1 , x > 0 , ( ( μ + ν ) + k + 1 ) > 0 , ( ( μ ) + k + 1 ) > 0 , ( ( μ - ν ) + k + 1 ) > 0 formulae-sequence 𝜇 𝜈 1 2 formulae-sequence 𝜇 𝜈 1 2 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝑥 0 formulae-sequence 𝜇 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(\mu-\nu\right)>-\tfrac{1}{2},\Re\left(\mu% +\nu\right)>-\tfrac{1}{2},\Re\left(\mu+\nu\right)>-1,\Re\left(\mu-\nu\right)>-% 1,x>0,\Re((\mu+\nu)+k+1)>0,\Re((\mu)+k+1)>0,\Re((\mu-\nu)+k+1)>0}}
BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu - nu, 2*x*sinh(t))*exp((- mu - nu)*t), t = 0..infinity)
BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]- \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.32.E17 K μ ( z ) K ν ( z ) = 2 0 K μ + ν ( 2 z cosh t ) cosh ( ( μ - ν ) t ) d t modified-Bessel-second-kind 𝜇 𝑧 modified-Bessel-second-kind 𝜈 𝑧 2 superscript subscript 0 modified-Bessel-second-kind 𝜇 𝜈 2 𝑧 𝑡 𝜇 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle K_{\mu}\left(z\right)K_{\nu}\left(z\right)=2\int_% {0}^{\infty}K_{\mu+\nu}\left(2z\cosh t\right)\cosh\left((\mu-\nu)t\right)% \mathrm{d}t}}
\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t}
| ph z | < 1 2 π phase 𝑧 1 2 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi}}
BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu + nu, 2*z*cosh(t))*cosh((mu - nu)*t), t = 0..infinity)
BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]+ \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
10.32.E17 K μ ( z ) K ν ( z ) = 2 0 K μ - ν ( 2 z cosh t ) cosh ( ( μ + ν ) t ) d t modified-Bessel-second-kind 𝜇 𝑧 modified-Bessel-second-kind 𝜈 𝑧 2 superscript subscript 0 modified-Bessel-second-kind 𝜇 𝜈 2 𝑧 𝑡 𝜇 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle K_{\mu}\left(z\right)K_{\nu}\left(z\right)=2\int_% {0}^{\infty}K_{\mu-\nu}\left(2z\cosh t\right)\cosh\left((\mu+\nu)t\right)% \mathrm{d}t}}
\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t}
| ph z | < 1 2 π phase 𝑧 1 2 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi}}
BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu - nu, 2*z*cosh(t))*cosh((mu + nu)*t), t = 0..infinity)
BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]- \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
10.32.E18 K ν ( z ) K ν ( ζ ) = 1 2 0 exp ( - t 2 - z 2 + ζ 2 2 t ) K ν ( z ζ t ) d t t modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 𝜁 1 2 superscript subscript 0 𝑡 2 superscript 𝑧 2 superscript 𝜁 2 2 𝑡 modified-Bessel-second-kind 𝜈 𝑧 𝜁 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle K_{\nu}\left(z\right)K_{\nu}\left(\zeta\right)=% \frac{1}{2}\int_{0}^{\infty}\exp\left(-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}% \right)K_{\nu}\left(\frac{z\zeta}{t}\right)\frac{\mathrm{d}t}{t}}}
\modBesselK{\nu}@{z}\modBesselK{\nu}@{\zeta} = \frac{1}{2}\int_{0}^{\infty}\exp@{-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselK{\nu}\left(\frac{z\zeta}{t}\right)\frac{\diff{t}}{t}
| ph z | < π , | ph ζ | < π , | ph ( z + ζ ) | < 1 4 π formulae-sequence phase 𝑧 𝜋 formulae-sequence phase 𝜁 𝜋 phase 𝑧 𝜁 1 4 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\zeta|<% \pi,|\operatorname{ph}\left(z+\zeta\right)|<\tfrac{1}{4}\pi}}
BesselK(nu, z)*BesselK(nu, zeta) = (1)/(2)*int(exp(-(t)/(2)-((z)^(2)+ (zeta)^(2))/(2*t))*BesselK(nu, (z*zeta)/(t))*(1)/(t), t = 0..infinity)
BesselK[\[Nu], z]*BesselK[\[Nu], \[Zeta]] == Divide[1,2]*Integrate[Exp[-Divide[t,2]-Divide[(z)^(2)+ \[Zeta]^(2),2*t]]*BesselK[\[Nu], Divide[z*\[Zeta],t]]*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None]
Translation Error Translation Error - -
10.32.E19 K μ ( z ) K ν ( z ) = 1 8 π i c - i c + i Γ ( t + 1 2 μ + 1 2 ν ) Γ ( t + 1 2 μ - 1 2 ν ) Γ ( t - 1 2 μ + 1 2 ν ) Γ ( t - 1 2 μ - 1 2 ν ) Γ ( 2 t ) ( 1 2 z ) - 2 t d t modified-Bessel-second-kind 𝜇 𝑧 modified-Bessel-second-kind 𝜈 𝑧 1 8 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 Euler-Gamma 𝑡 1 2 𝜇 1 2 𝜈 Euler-Gamma 𝑡 1 2 𝜇 1 2 𝜈 Euler-Gamma 𝑡 1 2 𝜇 1 2 𝜈 Euler-Gamma 𝑡 1 2 𝜇 1 2 𝜈 Euler-Gamma 2 𝑡 superscript 1 2 𝑧 2 𝑡 𝑡 {\displaystyle{\displaystyle K_{\mu}\left(z\right)K_{\nu}\left(z\right)=\frac{% 1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\Gamma\left(t+\frac{1}{2}\mu+\frac% {1}{2}\nu\right)\Gamma\left(t+\frac{1}{2}\mu-\frac{1}{2}\nu\right)\Gamma\left(% t-\frac{1}{2}\mu+\frac{1}{2}\nu\right)\Gamma\left(t-\frac{1}{2}\mu-\frac{1}{2}% \nu\right)}{\Gamma\left(2t\right)}(\tfrac{1}{2}z)^{-2t}\mathrm{d}t}}
\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = \frac{1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{t+\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t+\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu-\frac{1}{2}\nu}}{\EulerGamma@{2t}}(\tfrac{1}{2}z)^{-2t}\diff{t}
c > 1 2 ( | μ | + | ν | ) , | ph z | < 1 2 π , ( t + 1 2 μ + 1 2 ν ) > 0 , ( t + 1 2 μ - 1 2 ν ) > 0 , ( t - 1 2 μ + 1 2 ν ) > 0 , ( t - 1 2 μ - 1 2 ν ) > 0 , ( 2 t ) > 0 formulae-sequence 𝑐 1 2 𝜇 𝜈 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence 𝑡 1 2 𝜇 1 2 𝜈 0 formulae-sequence 𝑡 1 2 𝜇 1 2 𝜈 0 formulae-sequence 𝑡 1 2 𝜇 1 2 𝜈 0 formulae-sequence 𝑡 1 2 𝜇 1 2 𝜈 0 2 𝑡 0 {\displaystyle{\displaystyle c>\tfrac{1}{2}(|\Re\mu|+|\Re\nu|),|\operatorname{% ph}z|<\tfrac{1}{2}\pi,\Re(t+\frac{1}{2}\mu+\frac{1}{2}\nu)>0,\Re(t+\frac{1}{2}% \mu-\frac{1}{2}\nu)>0,\Re(t-\frac{1}{2}\mu+\frac{1}{2}\nu)>0,\Re(t-\frac{1}{2}% \mu-\frac{1}{2}\nu)>0,\Re(2t)>0}}
BesselK(mu, z)*BesselK(nu, z) = (1)/(8*Pi*I)*int((GAMMA(t +(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t +(1)/(2)*mu -(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu -(1)/(2)*nu))/(GAMMA(2*t))*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity)
BesselK[\[Mu], z]*BesselK[\[Nu], z] == Divide[1,8*Pi*I]*Integrate[Divide[Gamma[t +Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t +Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]],Gamma[2*t]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Error Aborted - Skip - No test values generated
10.34.E1 I ν ( z e m π i ) = e m ν π i I ν ( z ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 𝑒 𝑚 𝜈 𝜋 𝑖 modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(ze^{m\pi i}\right)=e^{m\nu\pi i}I_{% \nu}\left(z\right)}}
\modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselI(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselI(nu, z)
BesselI[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselI[\[Nu], z]
Failure Failure
Failed [132 / 210]
Result: -2.206479866-1.131319388*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: .5147384726+.2724622562e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [120 / 210]
Result: Complex[-2.206479866313521, -1.1313193889480602]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5147384728800724, 0.02724622519878004]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E2 K ν ( z e m π i ) = e - m ν π i K ν ( z ) - π i sin ( m ν π ) csc ( ν π ) I ν ( z ) modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 𝑒 𝑚 𝜈 𝜋 𝑖 modified-Bessel-second-kind 𝜈 𝑧 𝜋 𝑖 𝑚 𝜈 𝜋 𝜈 𝜋 modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle K_{\nu}\left(ze^{m\pi i}\right)=e^{-m\nu\pi i}K_{% \nu}\left(z\right)-\pi i\sin\left(m\nu\pi\right)\csc\left(\nu\pi\right)I_{\nu}% \left(z\right)}}
\modBesselK{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\modBesselK{\nu}@{z}-\pi i\sin@{m\nu\pi}\csc@{\nu\pi}\modBesselI{\nu}@{z}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselK(nu, z*exp(m*Pi*I)) = exp(- m*nu*Pi*I)*BesselK(nu, z)- Pi*I*sin(m*nu*Pi)*csc(nu*Pi)*BesselI(nu, z)
BesselK[\[Nu], z*Exp[m*Pi*I]] == Exp[- m*\[Nu]*Pi*I]*BesselK[\[Nu], z]- Pi*I*Sin[m*\[Nu]*Pi]*Csc[\[Nu]*Pi]*BesselI[\[Nu], z]
Failure Failure
Failed [170 / 210]
Result: 2.965939338+3.157233720*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: -10.37113928-12.75980866*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [162 / 210]
Result: Complex[2.965939340334436, 3.157233721966529]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-10.371139260352992, -12.75980869099896]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E3 I ν ( z e m π i ) = ( i / π ) ( + e m ν π i K ν ( z e + π i ) - e ( m - 1 ) ν π i K ν ( z ) ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 𝑖 𝜋 superscript 𝑒 𝑚 𝜈 𝜋 𝑖 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑒 𝑚 1 𝜈 𝜋 𝑖 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(ze^{m\pi i}\right)=(i/\pi)\left(+e^{% m\nu\pi i}K_{\nu}\left(ze^{+\pi i}\right)-e^{(m-1)\nu\pi i}K_{\nu}\left(z% \right)\right)}}
\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(+ e^{m\nu\pi i}\modBesselK{\nu}@{ze^{+\pi i}}- e^{(m- 1)\nu\pi i}\modBesselK{\nu}@{z}\right)
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(+ exp(m*nu*Pi*I)*BesselK(nu, z*exp(+ Pi*I))- exp((m - 1)*nu*Pi*I)*BesselK(nu, z))
BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(+ Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Exp[(m - 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z])
Failure Failure
Failed [152 / 210]
Result: -2.316975457-.8668337446*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: .5132395470-.3232131754e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [140 / 210]
Result: Complex[-2.3169754573845194, -0.8668337451474188]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5132395471581521, -0.03232131806579792]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E3 I ν ( z e m π i ) = ( i / π ) ( - e m ν π i K ν ( z e - π i ) + e ( m + 1 ) ν π i K ν ( z ) ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 𝑖 𝜋 superscript 𝑒 𝑚 𝜈 𝜋 𝑖 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑒 𝑚 1 𝜈 𝜋 𝑖 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(ze^{m\pi i}\right)=(i/\pi)\left(-e^{% m\nu\pi i}K_{\nu}\left(ze^{-\pi i}\right)+e^{(m+1)\nu\pi i}K_{\nu}\left(z% \right)\right)}}
\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(- e^{m\nu\pi i}\modBesselK{\nu}@{ze^{-\pi i}}+ e^{(m+ 1)\nu\pi i}\modBesselK{\nu}@{z}\right)
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(- exp(m*nu*Pi*I)*BesselK(nu, z*exp(- Pi*I))+ exp((m + 1)*nu*Pi*I)*BesselK(nu, z))
BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(- Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Exp[(m + 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z])
Failure Failure
Failed [190 / 210]
Result: -2.206479866-1.131319388*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: .5147384726+.2724622561e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [190 / 210]
Result: Complex[-2.206479866313521, -1.1313193889480602]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5147384728800724, 0.027246225198780036]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E4 K ν ( z e m π i ) = csc ( ν π ) ( + sin ( m ν π ) K ν ( z e + π i ) - sin ( ( m - 1 ) ν π ) K ν ( z ) ) modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 𝜈 𝜋 𝑚 𝜈 𝜋 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 𝑚 1 𝜈 𝜋 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle K_{\nu}\left(ze^{m\pi i}\right)=\csc\left(\nu\pi% \right)\left(+\sin\left(m\nu\pi\right)K_{\nu}\left(ze^{+\pi i}\right)-\sin% \left((m-1)\nu\pi\right)K_{\nu}\left(z\right)\right)}}
\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(+\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{+\pi i}}-\sin@{(m- 1)\nu\pi}\modBesselK{\nu}@{z}\right)

BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(+ sin(m*nu*Pi)*BesselK(nu, z*exp(+ Pi*I))- sin((m - 1)*nu*Pi)*BesselK(nu, z))
BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(+ Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Sin[(m - 1)*\[Nu]*Pi]*BesselK[\[Nu], z])
Failure Failure
Failed [158 / 210]
Result: -2.723238516+7.278993081*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

Result: 29.12762958-25.06220737*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 3}

... skip entries to safe data
Failed [154 / 210]
Result: Complex[-2.7232385256388585, 7.278993075467058]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[29.127629620508102, -25.062207299552764]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E4 K ν ( z e m π i ) = csc ( ν π ) ( - sin ( m ν π ) K ν ( z e - π i ) + sin ( ( m + 1 ) ν π ) K ν ( z ) ) modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 𝜈 𝜋 𝑚 𝜈 𝜋 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 𝑚 1 𝜈 𝜋 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle K_{\nu}\left(ze^{m\pi i}\right)=\csc\left(\nu\pi% \right)\left(-\sin\left(m\nu\pi\right)K_{\nu}\left(ze^{-\pi i}\right)+\sin% \left((m+1)\nu\pi\right)K_{\nu}\left(z\right)\right)}}
\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(-\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{-\pi i}}+\sin@{(m+ 1)\nu\pi}\modBesselK{\nu}@{z}\right)

BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(- sin(m*nu*Pi)*BesselK(nu, z*exp(- Pi*I))+ sin((m + 1)*nu*Pi)*BesselK(nu, z))
BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(- Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Sin[(m + 1)*\[Nu]*Pi]*BesselK[\[Nu], z])
Failure Failure
Failed [170 / 210]
Result: 2.965939338+3.157233717*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: -10.37113929-12.75980866*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [182 / 210]
Result: Complex[2.9659393403344363, 3.1572337219665294]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-10.371139260352981, -12.759808690998973]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E5 K n ( z e m π i ) = ( - 1 ) m n K n ( z ) + ( - 1 ) n ( m - 1 ) - 1 m π i I n ( z ) modified-Bessel-second-kind 𝑛 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 1 𝑚 𝑛 modified-Bessel-second-kind 𝑛 𝑧 superscript 1 𝑛 𝑚 1 1 𝑚 𝜋 𝑖 modified-Bessel-first-kind 𝑛 𝑧 {\displaystyle{\displaystyle K_{n}\left(ze^{m\pi i}\right)=(-1)^{mn}K_{n}\left% (z\right)+(-1)^{n(m-1)-1}m\pi iI_{n}\left(z\right)}}
\modBesselK{n}@{ze^{m\pi i}} = (-1)^{mn}\modBesselK{n}@{z}+(-1)^{n(m-1)-1}m\pi i\modBesselI{n}@{z}
( n + k + 1 ) > 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0}}
BesselK(n, z*exp(m*Pi*I)) = (- 1)^(m*n)* BesselK(n, z)+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI(n, z)
BesselK[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)* BesselK[n, z]+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI[n, z]
Failure Failure
Failed [57 / 63]
Result: -1.971501919+2.706233555*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}

Result: -.7368261646+.3579119854*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}

... skip entries to safe data
Failed [48 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.736826162742255, 0.3579119863626685]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E6 K n ( z e m π i ) = + ( - 1 ) n ( m - 1 ) m K n ( z e + π i ) - ( - 1 ) n m ( m - 1 ) K n ( z ) modified-Bessel-second-kind 𝑛 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 1 𝑛 𝑚 1 𝑚 modified-Bessel-second-kind 𝑛 𝑧 superscript 𝑒 𝜋 𝑖 superscript 1 𝑛 𝑚 𝑚 1 modified-Bessel-second-kind 𝑛 𝑧 {\displaystyle{\displaystyle K_{n}\left(ze^{m\pi i}\right)=+(-1)^{n(m-1)}mK_{n% }\left(ze^{+\pi i}\right)-(-1)^{nm}(m-1)K_{n}\left(z\right)}}
\modBesselK{n}@{ze^{m\pi i}} = +(-1)^{n(m-1)}m\modBesselK{n}@{ze^{+\pi i}}-(-1)^{nm}(m- 1)\modBesselK{n}@{z}

BesselK(n, z*exp(m*Pi*I)) = +(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(+ Pi*I))-(- 1)^(n*m)*(m - 1)*BesselK(n, z)
BesselK[n, z*Exp[m*Pi*I]] == +(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[+ Pi*I]]-(- 1)^(n*m)*(m - 1)*BesselK[n, z]
Failure Failure
Failed [51 / 63]
Result: -1.971501920+2.706233556*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 1}

Result: .7368261602-.357911988*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 2}

... skip entries to safe data
Failed [42 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 2], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.736826162742255, -0.3579119863626685]
Test Values: {Rule[m, 2], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E6 K n ( z e m π i ) = - ( - 1 ) n ( m - 1 ) m K n ( z e - π i ) + ( - 1 ) n m ( m + 1 ) K n ( z ) modified-Bessel-second-kind 𝑛 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 1 𝑛 𝑚 1 𝑚 modified-Bessel-second-kind 𝑛 𝑧 superscript 𝑒 𝜋 𝑖 superscript 1 𝑛 𝑚 𝑚 1 modified-Bessel-second-kind 𝑛 𝑧 {\displaystyle{\displaystyle K_{n}\left(ze^{m\pi i}\right)=-(-1)^{n(m-1)}mK_{n% }\left(ze^{-\pi i}\right)+(-1)^{nm}(m+1)K_{n}\left(z\right)}}
\modBesselK{n}@{ze^{m\pi i}} = -(-1)^{n(m-1)}m\modBesselK{n}@{ze^{-\pi i}}+(-1)^{nm}(m+ 1)\modBesselK{n}@{z}

BesselK(n, z*exp(m*Pi*I)) = -(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(- Pi*I))+(- 1)^(n*m)*(m + 1)*BesselK(n, z)
BesselK[n, z*Exp[m*Pi*I]] == -(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[- Pi*I]]+(- 1)^(n*m)*(m + 1)*BesselK[n, z]
Failure Failure
Failed [54 / 63]
Result: -1.971501919+2.706233556*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}

Result: -.7368261645+.357911985*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}

... skip entries to safe data
Failed [63 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.736826162742255, 0.3579119863626685]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34#Ex1 I ν ( z ¯ ) = I ν ( z ) ¯ modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(\overline{z}\right)=\overline{I_{\nu% }\left(z\right)}}}
\modBesselI{\nu}@{\conj{z}} = \conj{\modBesselI{\nu}@{z}}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselI(nu, conjugate(z)) = conjugate(BesselI(nu, z))
BesselI[\[Nu], Conjugate[z]] == Conjugate[BesselI[\[Nu], z]]
Failure Failure Skipped - Because timed out
Failed [28 / 70]
Result: Complex[-0.1457476573229447, -0.7449450592023206]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.100244133383339, 1.2347828003590728]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.34#Ex2 K ν ( z ¯ ) = K ν ( z ) ¯ modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle K_{\nu}\left(\overline{z}\right)=\overline{K_{\nu% }\left(z\right)}}}
\modBesselK{\nu}@{\conj{z}} = \conj{\modBesselK{\nu}@{z}}

BesselK(nu, conjugate(z)) = conjugate(BesselK(nu, z))
BesselK[\[Nu], Conjugate[z]] == Conjugate[BesselK[\[Nu], z]]
Failure Failure
Failed [28 / 70]
Result: -.3322466664+.1347267497*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .8978926857-1.555608423*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [28 / 70]
Result: Complex[-0.332246666369582, 0.13472674975137633]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.23222824698313052, -0.12812607679285354]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.35.E1 e 1 2 z ( t + t - 1 ) = m = - t m I m ( z ) superscript 𝑒 1 2 𝑧 𝑡 superscript 𝑡 1 superscript subscript 𝑚 superscript 𝑡 𝑚 modified-Bessel-first-kind 𝑚 𝑧 {\displaystyle{\displaystyle e^{\frac{1}{2}z(t+t^{-1})}=\sum_{m=-\infty}^{% \infty}t^{m}I_{m}\left(z\right)}}
e^{\frac{1}{2}z(t+t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\modBesselI{m}@{z}
( m + k + 1 ) > 0 𝑚 𝑘 1 0 {\displaystyle{\displaystyle\Re(m+k+1)>0}}
exp((1)/(2)*z*(t + (t)^(- 1))) = sum((t)^(m)* BesselI(m, z), m = - infinity..infinity)
Exp[Divide[1,2]*z*(t + (t)^(- 1))] == Sum[(t)^(m)* BesselI[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.35.E2 e z cos θ = I 0 ( z ) + 2 k = 1 I k ( z ) cos ( k θ ) superscript 𝑒 𝑧 𝜃 modified-Bessel-first-kind 0 𝑧 2 superscript subscript 𝑘 1 modified-Bessel-first-kind 𝑘 𝑧 𝑘 𝜃 {\displaystyle{\displaystyle e^{z\cos\theta}=I_{0}\left(z\right)+2\sum_{k=1}^{% \infty}I_{k}\left(z\right)\cos\left(k\theta\right)}}
e^{z\cos@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\modBesselI{k}@{z}\cos@{k\theta}
( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(k+k+1)>0}}
exp(z*cos(theta)) = BesselI(0, z)+ 2*sum(BesselI(k, z)*cos(k*theta), k = 1..infinity)
Exp[z*Cos[\[Theta]]] == BesselI[0, z]+ 2*Sum[BesselI[k, z]*Cos[k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.35.E3 e z sin θ = I 0 ( z ) + 2 k = 0 ( - 1 ) k I 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) + 2 k = 1 ( - 1 ) k I 2 k ( z ) cos ( 2 k θ ) superscript 𝑒 𝑧 𝜃 modified-Bessel-first-kind 0 𝑧 2 superscript subscript 𝑘 0 superscript 1 𝑘 modified-Bessel-first-kind 2 𝑘 1 𝑧 2 𝑘 1 𝜃 2 superscript subscript 𝑘 1 superscript 1 𝑘 modified-Bessel-first-kind 2 𝑘 𝑧 2 𝑘 𝜃 {\displaystyle{\displaystyle e^{z\sin\theta}=I_{0}\left(z\right)+2\sum_{k=0}^{% \infty}(-1)^{k}I_{2k+1}\left(z\right)\sin\left((2k+1)\theta\right)+2\sum_{k=1}% ^{\infty}(-1)^{k}I_{2k}\left(z\right)\cos\left(2k\theta\right)}}
e^{z\sin@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=0}^{\infty}(-1)^{k}\modBesselI{2k+1}@{z}\sin@{(2k+1)\theta}+2\sum_{k=1}^{\infty}(-1)^{k}\modBesselI{2k}@{z}\cos@{2k\theta}
( 0 + k + 1 ) > 0 , ( ( 2 k + 1 ) + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 1 𝑘 1 0 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k+1)+k+1)>0,\Re((2k)+k+1)>0}}
exp(z*sin(theta)) = BesselI(0, z)+ 2*sum((- 1)^(k)* BesselI(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)+ 2*sum((- 1)^(k)* BesselI(2*k, z)*cos(2*k*theta), k = 1..infinity)
Exp[z*Sin[\[Theta]]] == BesselI[0, z]+ 2*Sum[(- 1)^(k)* BesselI[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselI[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Aborted Failure Manual Skip! Skipped - Because timed out
10.35.E4 1 = I 0 ( z ) - 2 I 2 ( z ) + 2 I 4 ( z ) - 2 I 6 ( z ) + 1 modified-Bessel-first-kind 0 𝑧 2 modified-Bessel-first-kind 2 𝑧 2 modified-Bessel-first-kind 4 𝑧 2 modified-Bessel-first-kind 6 𝑧 {\displaystyle{\displaystyle 1=I_{0}\left(z\right)-2I_{2}\left(z\right)+2I_{4}% \left(z\right)-2I_{6}\left(z\right)+\cdots}}
1 = \modBesselI{0}@{z}-2\modBesselI{2}@{z}+2\modBesselI{4}@{z}-2\modBesselI{6}@{z}+\dotsb
( 0 + k + 1 ) > 0 , ( 2 + k + 1 ) > 0 , ( 4 + k + 1 ) > 0 , ( 6 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 1 0 formulae-sequence 4 𝑘 1 0 6 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(2+k+1)>0,\Re(4+k+1)>0,\Re(6+k+1)>% 0}}
1 = BesselI(0, z)- 2*BesselI(2, z)+ 2*BesselI(4, z)- 2*BesselI(6, z)+ ..
1 == BesselI[0, z]- 2*BesselI[2, z]+ 2*BesselI[4, z]- 2*BesselI[6, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-9.440290591519046*^-8, -1.7199789187696823*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-9.924736610669727*^-8, -1.6360842739013975*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.35.E5 e + z = I 0 ( z ) + 2 I 1 ( z ) + 2 I 2 ( z ) + 2 I 3 ( z ) + superscript 𝑒 𝑧 modified-Bessel-first-kind 0 𝑧 2 modified-Bessel-first-kind 1 𝑧 2 modified-Bessel-first-kind 2 𝑧 2 modified-Bessel-first-kind 3 𝑧 {\displaystyle{\displaystyle e^{+z}=I_{0}\left(z\right)+2I_{1}\left(z\right)+2% I_{2}\left(z\right)+2I_{3}\left(z\right)+\cdots}}
e^{+ z} = \modBesselI{0}@{z}+ 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}+ 2\modBesselI{3}@{z}+\dotsb
( 0 + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 , ( 2 + k + 1 ) > 0 , ( 3 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 1 𝑘 1 0 formulae-sequence 2 𝑘 1 0 3 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(1+k+1)>0,\Re(2+k+1)>0,\Re(3+k+1)>% 0}}
exp(+ z) = BesselI(0, z)+ 2*BesselI(1, z)+ 2*BesselI(2, z)+ 2*BesselI(3, z)+ ..
Exp[+ z] == BesselI[0, z]+ 2*BesselI[1, z]+ 2*BesselI[2, z]+ 2*BesselI[3, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-0.003384051289485407, 0.00475177611436145], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.002576303532707505, 0.004074841322498801], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.35.E5 e - z = I 0 ( z ) - 2 I 1 ( z ) + 2 I 2 ( z ) - 2 I 3 ( z ) + superscript 𝑒 𝑧 modified-Bessel-first-kind 0 𝑧 2 modified-Bessel-first-kind 1 𝑧 2 modified-Bessel-first-kind 2 𝑧 2 modified-Bessel-first-kind 3 𝑧 {\displaystyle{\displaystyle e^{-z}=I_{0}\left(z\right)-2I_{1}\left(z\right)+2% I_{2}\left(z\right)-2I_{3}\left(z\right)+\cdots}}
e^{- z} = \modBesselI{0}@{z}- 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}- 2\modBesselI{3}@{z}+\dotsb
( 0 + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 , ( 2 + k + 1 ) > 0 , ( 3 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 1 𝑘 1 0 formulae-sequence 2 𝑘 1 0 3 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(1+k+1)>0,\Re(2+k+1)>0,\Re(3+k+1)>% 0}}
exp(- z) = BesselI(0, z)- 2*BesselI(1, z)+ 2*BesselI(2, z)- 2*BesselI(3, z)+ ..
Exp[- z] == BesselI[0, z]- 2*BesselI[1, z]+ 2*BesselI[2, z]- 2*BesselI[3, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-0.0024389937896763803, 0.0042567403420422645], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.0020316532349716754, 0.004934003265463338], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.37.E1 | K ν ( z ) | < | K μ ( z ) | modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜇 𝑧 {\displaystyle{\displaystyle|K_{\nu}\left(z\right)|<|K_{\mu}\left(z\right)|}}
|\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}|

abs(BesselK(nu, z)) < abs(BesselK(mu, z))
Abs[BesselK[\[Nu], z]] < Abs[BesselK[\[Mu], z]]
Failure Failure
Failed [204 / 300]
Result: .6496143723 < .6496143723
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 3.110500858 < 3.110500858
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [184 / 300]
Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
10.38.E1 I + ν ( z ) ν = + I + ν ( z ) ln ( 1 2 z ) - ( 1 2 z ) + ν k = 0 ψ ( k + 1 + ν ) Γ ( k + 1 + ν ) ( 1 4 z 2 ) k k ! partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 modified-Bessel-first-kind 𝜈 𝑧 1 2 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 digamma 𝑘 1 𝜈 Euler-Gamma 𝑘 1 𝜈 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\partial I_{+\nu}\left(z\right)}{\partial\nu% }=+I_{+\nu}\left(z\right)\ln\left(\tfrac{1}{2}z\right)-(\tfrac{1}{2}z)^{+\nu}% \sum_{k=0}^{\infty}\frac{\psi\left(k+1+\nu\right)}{\Gamma\left(k+1+\nu\right)}% \frac{(\frac{1}{4}z^{2})^{k}}{k!}}}
\pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}
( k + 1 + ν ) > 0 𝑘 1 𝜈 0 {\displaystyle{\displaystyle\Re(k+1+\nu)>0}}
diff(BesselI(+ nu, z), nu) = + BesselI(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselI[+ \[Nu], z], \[Nu]] == + BesselI[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]}

... skip entries to safe data
10.38.E1 I - ν ( z ) ν = - I - ν ( z ) ln ( 1 2 z ) + ( 1 2 z ) - ν k = 0 ψ ( k + 1 - ν ) Γ ( k + 1 - ν ) ( 1 4 z 2 ) k k ! partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 modified-Bessel-first-kind 𝜈 𝑧 1 2 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 digamma 𝑘 1 𝜈 Euler-Gamma 𝑘 1 𝜈 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\partial I_{-\nu}\left(z\right)}{\partial\nu% }=-I_{-\nu}\left(z\right)\ln\left(\tfrac{1}{2}z\right)+(\tfrac{1}{2}z)^{-\nu}% \sum_{k=0}^{\infty}\frac{\psi\left(k+1-\nu\right)}{\Gamma\left(k+1-\nu\right)}% \frac{(\frac{1}{4}z^{2})^{k}}{k!}}}
\pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}
( k + 1 + ν ) > 0 , ( k + 1 - ν ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝑘 1 𝜈 0 formulae-sequence 𝑘 1 𝜈 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(k+1+\nu)>0,\Re(k+1-\nu)>0,\Re((-\nu)+k+1)>0}}
diff(BesselI(- nu, z), nu) = - BesselI(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselI[- \[Nu], z], \[Nu]] == - BesselI[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.38.E2 K ν ( z ) ν = 1 2 π csc ( ν π ) ( I - ν ( z ) ν - I ν ( z ) ν ) - π cot ( ν π ) K ν ( z ) partial-derivative modified-Bessel-second-kind 𝜈 𝑧 𝜈 1 2 𝜋 𝜈 𝜋 partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 𝜋 𝜈 𝜋 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle\frac{\partial K_{\nu}\left(z\right)}{\partial\nu}% =\tfrac{1}{2}\pi\csc\left(\nu\pi\right)\*\left(\frac{\partial I_{-\nu}\left(z% \right)}{\partial\nu}-\frac{\partial I_{\nu}\left(z\right)}{\partial\nu}\right% )-\pi\cot\left(\nu\pi\right)K_{\nu}\left(z\right)}}
\pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z}
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
diff(BesselK(nu, z), nu) = (1)/(2)*Pi*csc(nu*Pi)*(diff(BesselI(- nu, z), nu)- diff(BesselI(nu, z), nu))- Pi*cot(nu*Pi)*BesselK(nu, z)
D[BesselK[\[Nu], z], \[Nu]] == Divide[1,2]*Pi*Csc[\[Nu]*Pi]*(D[BesselI[- \[Nu], z], \[Nu]]- D[BesselI[\[Nu], z], \[Nu]])- Pi*Cot[\[Nu]*Pi]*BesselK[\[Nu], z]
Successful Failure - Successful [Tested: 7]
10.39#Ex1 I 1 2 ( z ) = ( 2 π z ) 1 2 sinh z modified-Bessel-first-kind 1 2 𝑧 superscript 2 𝜋 𝑧 1 2 𝑧 {\displaystyle{\displaystyle I_{\frac{1}{2}}\left(z\right)=\left(\frac{2}{\pi z% }\right)^{\frac{1}{2}}\sinh z}}
\modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z}
( ( 1 2 ) + k + 1 ) > 0 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((\frac{1}{2})+k+1)>0}}
BesselI((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sinh(z)
BesselI[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sinh[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.39#Ex2 I - 1 2 ( z ) = ( 2 π z ) 1 2 cosh z modified-Bessel-first-kind 1 2 𝑧 superscript 2 𝜋 𝑧 1 2 𝑧 {\displaystyle{\displaystyle I_{-\frac{1}{2}}\left(z\right)=\left(\frac{2}{\pi z% }\right)^{\frac{1}{2}}\cosh z}}
\modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z}
( ( - 1 2 ) + k + 1 ) > 0 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\frac{1}{2})+k+1)>0}}
BesselI(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* cosh(z)
BesselI[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Cosh[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.39.E2 K 1 2 ( z ) = K - 1 2 ( z ) modified-Bessel-second-kind 1 2 𝑧 modified-Bessel-second-kind 1 2 𝑧 {\displaystyle{\displaystyle K_{\frac{1}{2}}\left(z\right)=K_{-\frac{1}{2}}% \left(z\right)}}
\modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z}

BesselK((1)/(2), z) = BesselK(-(1)/(2), z)
BesselK[Divide[1,2], z] == BesselK[-Divide[1,2], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.39.E2 K - 1 2 ( z ) = ( π 2 z ) 1 2 e - z modified-Bessel-second-kind 1 2 𝑧 superscript 𝜋 2 𝑧 1 2 superscript 𝑒 𝑧 {\displaystyle{\displaystyle K_{-\frac{1}{2}}\left(z\right)=\left(\frac{\pi}{2% z}\right)^{\frac{1}{2}}e^{-z}}}
\modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}

BesselK(-(1)/(2), z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)
BesselK[-Divide[1,2], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.39.E3 K 1 4 ( z ) = π 1 2 z - 1 4 U ( 0 , 2 z 1 2 ) modified-Bessel-second-kind 1 4 𝑧 superscript 𝜋 1 2 superscript 𝑧 1 4 parabolic-U 0 2 superscript 𝑧 1 2 {\displaystyle{\displaystyle K_{\frac{1}{4}}\left(z\right)=\pi^{\frac{1}{2}}z^% {-\frac{1}{4}}U\left(0,2z^{\frac{1}{2}}\right)}}
\modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}}

BesselK((1)/(4), z) = (Pi)^((1)/(2))* (z)^(-(1)/(4))* CylinderU(0, 2*(z)^((1)/(2)))
BesselK[Divide[1,4], z] == (Pi)^(Divide[1,2])* (z)^(-Divide[1,4])* ParabolicCylinderD[- 1/2 -(0), 2*(z)^(Divide[1,2])]
Successful Failure - Successful [Tested: 7]
10.39.E4 K 3 4 ( z ) = 1 2 π 1 2 z - 3 4 ( 1 2 U ( 1 , 2 z 1 2 ) + U ( - 1 , 2 z 1 2 ) ) modified-Bessel-second-kind 3 4 𝑧 1 2 superscript 𝜋 1 2 superscript 𝑧 3 4 1 2 parabolic-U 1 2 superscript 𝑧 1 2 parabolic-U 1 2 superscript 𝑧 1 2 {\displaystyle{\displaystyle K_{\frac{3}{4}}\left(z\right)=\tfrac{1}{2}\pi^{% \frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}U\left(1,2z^{\frac{1}{2}}\right)% +U\left(-1,2z^{\frac{1}{2}}\right)\right)}}
\modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right)

BesselK((3)/(4), z) = (1)/(2)*(Pi)^((1)/(2))* (z)^(-(3)/(4))*((1)/(2)*CylinderU(1, 2*(z)^((1)/(2)))+ CylinderU(- 1, 2*(z)^((1)/(2))))
BesselK[Divide[3,4], z] == Divide[1,2]*(Pi)^(Divide[1,2])* (z)^(-Divide[3,4])*(Divide[1,2]*ParabolicCylinderD[- 1/2 -(1), 2*(z)^(Divide[1,2])]+ ParabolicCylinderD[- 1/2 -(- 1), 2*(z)^(Divide[1,2])])
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.39.E5 I ν ( z ) = ( 1 2 z ) ν e + z Γ ( ν + 1 ) M ( ν + 1 2 , 2 ν + 1 , - 2 z ) modified-Bessel-first-kind 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript 𝑒 𝑧 Euler-Gamma 𝜈 1 Kummer-confluent-hypergeometric-M 𝜈 1 2 2 𝜈 1 2 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% e^{+z}}{\Gamma\left(\nu+1\right)}M\left(\nu+\tfrac{1}{2},2\nu+1,-2z\right)}}
\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z}
( ν + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+1)>0,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(+ z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, - 2*z)
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[+ z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, - 2*z]
Failure Successful
Failed [7 / 56]
Result: -.800260207-.3396157390*I
Test Values: {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}

Result: -.4588638571-.5759587792*I
Test Values: {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 56]
Result: Complex[-0.8002602062152042, -0.3396157389151986]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}

Result: Complex[-0.45886385712966904, -0.5759587792371148]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}

... skip entries to safe data
10.39.E5 I ν ( z ) = ( 1 2 z ) ν e - z Γ ( ν + 1 ) M ( ν + 1 2 , 2 ν + 1 , + 2 z ) modified-Bessel-first-kind 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript 𝑒 𝑧 Euler-Gamma 𝜈 1 Kummer-confluent-hypergeometric-M 𝜈 1 2 2 𝜈 1 2 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% e^{-z}}{\Gamma\left(\nu+1\right)}M\left(\nu+\tfrac{1}{2},2\nu+1,+2z\right)}}
\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z}
( ν + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+1)>0,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(- z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*z)
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*z]
Successful Successful Skip - symbolical successful subtest
Failed [7 / 56]
Result: Complex[0.8002602062152032, 0.3396157389151989]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}

Result: Complex[0.4588638571296689, 0.575958779237115]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}

... skip entries to safe data
10.39.E6 K ν ( z ) = π 1 2 ( 2 z ) ν e - z U ( ν + 1 2 , 2 ν + 1 , 2 z ) modified-Bessel-second-kind 𝜈 𝑧 superscript 𝜋 1 2 superscript 2 𝑧 𝜈 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝜈 1 2 2 𝜈 1 2 𝑧 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\pi^{\frac{1}{2}}(2z)^{\nu}% e^{-z}U\left(\nu+\tfrac{1}{2},2\nu+1,2z\right)}}
\modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z}

BesselK(nu, z) = (Pi)^((1)/(2))*(2*z)^(nu)* exp(- z)*KummerU(nu +(1)/(2), 2*nu + 1, 2*z)
BesselK[\[Nu], z] == (Pi)^(Divide[1,2])*(2*z)^\[Nu]* Exp[- z]*HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z]
Successful Successful - Successful [Tested: 70]
10.39.E7 I ν ( z ) = ( 2 z ) - 1 2 M 0 , ν ( 2 z ) 2 2 ν Γ ( ν + 1 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 2 𝑧 1 2 Whittaker-confluent-hypergeometric-M 0 𝜈 2 𝑧 superscript 2 2 𝜈 Euler-Gamma 𝜈 1 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\frac{(2z)^{-\frac{1}{2}}M_% {0,\nu}\left(2z\right)}{2^{2\nu}\Gamma\left(\nu+1\right)}}}
\modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}}
( ν + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+1)>0,\Re(\nu+k+1)>0}}
BesselI(nu, z) = ((2*z)^(-(1)/(2))* WhittakerM(0, nu, 2*z))/((2)^(2*nu)* GAMMA(nu + 1))
BesselI[\[Nu], z] == Divide[(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], 2*z],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]]
Successful Successful - Successful [Tested: 7]
10.39.E8 K ν ( z ) = ( π 2 z ) 1 2 W 0 , ν ( 2 z ) modified-Bessel-second-kind 𝜈 𝑧 superscript 𝜋 2 𝑧 1 2 Whittaker-confluent-hypergeometric-W 0 𝜈 2 𝑧 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\left(\frac{\pi}{2z}\right)% ^{\frac{1}{2}}W_{0,\nu}\left(2z\right)}}
\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z}

BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* WhittakerW(0, nu, 2*z)
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* WhittakerW[0, \[Nu], 2*z]
Failure Failure Successful [Tested: 70] Successful [Tested: 70]
10.39.E9 I ν ( z ) = ( 1 2 z ) ν Γ ( ν + 1 ) F 1 0 ( - ; ν + 1 ; 1 4 z 2 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 1 2 𝑧 𝜈 Euler-Gamma 𝜈 1 Gauss-hypergeometric-pFq 0 1 𝜈 1 1 4 superscript 𝑧 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\frac{(\frac{1}{2}z)^{\nu}}% {\Gamma\left(\nu+1\right)}{{}_{0}F_{1}}\left(-;\nu+1;\tfrac{1}{4}z^{2}\right)}}
\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}}
( ν + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+1)>0,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (((1)/(2)*z)^(nu))/(GAMMA(nu + 1))*hypergeom([-], [nu + 1], (1)/(4)*(z)^(2))
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+ 1]]*HypergeometricPFQ[{-}, {\[Nu]+ 1}, Divide[1,4]*(z)^(2)]
Error Failure - Error
10.40.E10 K ν ( z ) = ( π 2 z ) 1 2 e - z ( k = 0 - 1 a k ( ν ) z k + R ( ν , z ) ) modified-Bessel-second-kind 𝜈 𝑧 superscript 𝜋 2 𝑧 1 2 superscript 𝑒 𝑧 superscript subscript 𝑘 0 1 subscript 𝑎 𝑘 𝜈 superscript 𝑧 𝑘 subscript 𝑅 𝜈 𝑧 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\left(\frac{\pi}{2z}\right)% ^{\frac{1}{2}}e^{-z}\left(\sum_{k=0}^{\ell-1}\frac{a_{k}(\nu)}{z^{k}}+R_{\ell}% (\nu,z)\right)}}
\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\left(\sum_{k=0}^{\ell-1}\frac{a_{k}(\nu)}{z^{k}}+R_{\ell}(\nu,z)\right)
k 1 𝑘 1 {\displaystyle{\displaystyle k\geq 1}}
BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)*(sum((((4*(nu)^(2)- (1)^(2))*(4*(nu)^(2)- (3)^(2)) .. (4*(nu)^(2)-(2*k - 1)^(2)))/(factorial(k)*(8)^(k)))/((z)^(k)), k = 0..ell - 1)+ R[ell](nu , z))
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*(Sum[Divide[Divide[(4*\[Nu]^(2)- (1)^(2))*(4*\[Nu]^(2)- (3)^(2)) \[Ellipsis](4*\[Nu]^(2)-(2*k - 1)^(2)),(k)!*(8)^(k)],(z)^(k)], {k, 0, \[ScriptL]- 1}, GenerateConditions->None]+ Subscript[R, \[ScriptL]][\[Nu], z])
Failure Failure Error Error
10.41.E8 p = ( 1 + z 2 ) - 1 2 𝑝 superscript 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle p=(1+z^{2})^{-\frac{1}{2}}}}
p = (1+z^{2})^{-\frac{1}{2}}

p = (1 + (z)^(2))^(-(1)/(2))
p == (1 + (z)^(2))^(-Divide[1,2])
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex3 U 1 ( p ) = 1 24 ( 3 p - 5 p 3 ) subscript 𝑈 1 𝑝 1 24 3 𝑝 5 superscript 𝑝 3 {\displaystyle{\displaystyle U_{1}(p)=\tfrac{1}{24}(3p-5p^{3})}}
U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})

U[1](p) = (1)/(24)*(3*p - 5*(p)^(3))
Subscript[U, 1][p] == Divide[1,24]*(3*p - 5*(p)^(3))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex4 U 2 ( p ) = 1 1152 ( 81 p 2 - 462 p 4 + 385 p 6 ) subscript 𝑈 2 𝑝 1 1152 81 superscript 𝑝 2 462 superscript 𝑝 4 385 superscript 𝑝 6 {\displaystyle{\displaystyle U_{2}(p)=\tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6% })}}
U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})

U[2](p) = (1)/(1152)*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))
Subscript[U, 2][p] == Divide[1,1152]*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex5 U 3 ( p ) = 1 4 14720 ( 30375 p 3 - 3 69603 p 5 + 7 65765 p 7 - 4 25425 p 9 ) subscript 𝑈 3 𝑝 1 4 14720 30375 superscript 𝑝 3 3 69603 superscript 𝑝 5 7 65765 superscript 𝑝 7 4 25425 superscript 𝑝 9 {\displaystyle{\displaystyle U_{3}(p)=\tfrac{1}{4\;14720}\*(30375p^{3}-3\;6960% 3p^{5}+7\;65765p^{7}-4\;25425p^{9})}}
U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})

U[3](p) = (1)/(414720)*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))
Subscript[U, 3][p] == Divide[1,414720]*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex6 V 1 ( p ) = 1 24 ( - 9 p + 7 p 3 ) subscript 𝑉 1 𝑝 1 24 9 𝑝 7 superscript 𝑝 3 {\displaystyle{\displaystyle V_{1}(p)=\tfrac{1}{24}(-9p+7p^{3})}}
V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})

V[1](p) = (1)/(24)*(- 9*p + 7*(p)^(3))
Subscript[V, 1][p] == Divide[1,24]*(- 9*p + 7*(p)^(3))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex7 V 2 ( p ) = 1 1152 ( - 135 p 2 + 594 p 4 - 455 p 6 ) subscript 𝑉 2 𝑝 1 1152 135 superscript 𝑝 2 594 superscript 𝑝 4 455 superscript 𝑝 6 {\displaystyle{\displaystyle V_{2}(p)=\tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^% {6})}}
V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})

V[2](p) = (1)/(1152)*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))
Subscript[V, 2][p] == Divide[1,1152]*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex8 V 3 ( p ) = 1 4 14720 ( - 42525 p 3 + 4 51737 p 5 - 8 83575 p 7 + 4 75475 p 9 ) subscript 𝑉 3 𝑝 1 4 14720 42525 superscript 𝑝 3 4 51737 superscript 𝑝 5 8 83575 superscript 𝑝 7 4 75475 superscript 𝑝 9 {\displaystyle{\displaystyle V_{3}(p)=\tfrac{1}{4\;14720}\*(-42525p^{3}+4\;517% 37p^{5}-8\;83575p^{7}+4\;75475p^{9})}}
V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})

V[3](p) = (1)/(414720)*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))
Subscript[V, 3][p] == Divide[1,414720]*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))
Skipped - no semantic math Skipped - no semantic math - -
10.43.E4 0 x I 0 ( t ) - 1 t d t = 1 2 k = 1 ( - 1 ) k - 1 ψ ( k + 1 ) - ψ ( 1 ) k ! ( 1 2 x ) k I k ( x ) superscript subscript 0 𝑥 modified-Bessel-first-kind 0 𝑡 1 𝑡 𝑡 1 2 superscript subscript 𝑘 1 superscript 1 𝑘 1 digamma 𝑘 1 digamma 1 𝑘 superscript 1 2 𝑥 𝑘 modified-Bessel-first-kind 𝑘 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}\frac{I_{0}\left(t\right)-1}{t}\mathrm% {d}t=\frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\psi\left(k+1\right)-\psi% \left(1\right)}{k!}(\tfrac{1}{2}x)^{k}I_{k}\left(x\right)}}
\int_{0}^{x}\frac{\modBesselI{0}@{t}-1}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x}
( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(k+k+1)>0}}
int((BesselI(0, t)- 1)/(t), t = 0..x) = (1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity)
Integrate[Divide[BesselI[0, t]- 1,t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}

Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}

... skip entries to safe data
10.43.E4 1 2 k = 1 ( - 1 ) k - 1 ψ ( k + 1 ) - ψ ( 1 ) k ! ( 1 2 x ) k I k ( x ) = 2 x k = 0 ( - 1 ) k ( 2 k + 3 ) ( ψ ( k + 2 ) - ψ ( 1 ) ) I 2 k + 3 ( x ) 1 2 superscript subscript 𝑘 1 superscript 1 𝑘 1 digamma 𝑘 1 digamma 1 𝑘 superscript 1 2 𝑥 𝑘 modified-Bessel-first-kind 𝑘 𝑥 2 𝑥 superscript subscript 𝑘 0 superscript 1 𝑘 2 𝑘 3 digamma 𝑘 2 digamma 1 modified-Bessel-first-kind 2 𝑘 3 𝑥 {\displaystyle{\displaystyle\frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\psi% \left(k+1\right)-\psi\left(1\right)}{k!}(\tfrac{1}{2}x)^{k}I_{k}\left(x\right)% =\frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\psi\left(k+2\right)-\psi\left(1% \right))I_{2k+3}\left(x\right)}}
\frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} = \frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\digamma@{k+2}-\digamma@{1})\modBesselI{2k+3}@{x}
( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 , ( ( 2 k + 3 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 𝑘 𝑘 1 0 2 𝑘 3 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(k+k+1)>0,\Re((2k+3)+k+1)>0}}
(1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity) = (2)/(x)*sum((- 1)^(k)*(2*k + 3)*(Psi(k + 2)- Psi(1))*BesselI(2*k + 3, x), k = 0..infinity)
Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None] == Divide[2,x]*Sum[(- 1)^(k)*(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselI[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.3333333333333333, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 1.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}

Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-4.0, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 0.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}

... skip entries to safe data
10.43.E5 x K 0 ( t ) t d t = 1 2 ( ln ( 1 2 x ) + γ ) 2 + π 2 24 - k = 1 ( ψ ( k + 1 ) + 1 2 k - ln ( 1 2 x ) ) ( 1 2 x ) 2 k 2 k ( k ! ) 2 superscript subscript 𝑥 modified-Bessel-second-kind 0 𝑡 𝑡 𝑡 1 2 superscript 1 2 𝑥 2 superscript 𝜋 2 24 superscript subscript 𝑘 1 digamma 𝑘 1 1 2 𝑘 1 2 𝑥 superscript 1 2 𝑥 2 𝑘 2 𝑘 superscript 𝑘 2 {\displaystyle{\displaystyle\int_{x}^{\infty}\frac{K_{0}\left(t\right)}{t}% \mathrm{d}t=\frac{1}{2}\left(\ln\left(\tfrac{1}{2}x\right)+\gamma\right)^{2}+% \frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\psi\left(k+1\right)+\frac{1}{2k}-% \ln\left(\tfrac{1}{2}x\right)\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}}}
\int_{x}^{\infty}\frac{\modBesselK{0}@{t}}{t}\diff{t} = \frac{1}{2}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}

int((BesselK(0, t))/(t), t = x..infinity) = (1)/(2)*(ln((1)/(2)*x)+ gamma)^(2)+((Pi)^(2))/(24)- sum((Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
Integrate[Divide[BesselK[0, t],t], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[(Pi)^(2),24]- Sum[(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3] Skipped - Because timed out
10.43.E6 0 x e - t I n ( t ) d t = x e - x ( I 0 ( x ) + I 1 ( x ) ) + n ( e - x I 0 ( x ) - 1 ) + 2 e - x k = 1 n - 1 ( n - k ) I k ( x ) superscript subscript 0 𝑥 superscript 𝑒 𝑡 modified-Bessel-first-kind 𝑛 𝑡 𝑡 𝑥 superscript 𝑒 𝑥 modified-Bessel-first-kind 0 𝑥 modified-Bessel-first-kind 1 𝑥 𝑛 superscript 𝑒 𝑥 modified-Bessel-first-kind 0 𝑥 1 2 superscript 𝑒 𝑥 superscript subscript 𝑘 1 𝑛 1 𝑛 𝑘 modified-Bessel-first-kind 𝑘 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}e^{-t}I_{n}\left(t\right)\mathrm{d}t=% xe^{-x}(I_{0}\left(x\right)+I_{1}\left(x\right))+n(e^{-x}I_{0}\left(x\right)-1% )+2e^{-x}\sum_{k=1}^{n-1}(n-k)I_{k}\left(x\right)}}
\int_{0}^{x}e^{-t}\modBesselI{n}@{t}\diff{t} = xe^{-x}(\modBesselI{0}@{x}+\modBesselI{1}@{x})+n(e^{-x}\modBesselI{0}@{x}-1)+2e^{-x}\sum_{k=1}^{n-1}(n-k)\modBesselI{k}@{x}
( n + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 1 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re(0+k+1)>0,\Re(1+k+1)>0,\Re(k+k+1)>% 0}}
int(exp(- t)*BesselI(n, t), t = 0..x) = x*exp(- x)*(BesselI(0, x)+ BesselI(1, x))+ n*(exp(- x)*BesselI(0, x)- 1)+ 2*exp(- x)*sum((n - k)*BesselI(k, x), k = 1..n - 1)
Integrate[Exp[- t]*BesselI[n, t], {t, 0, x}, GenerateConditions->None] == x*Exp[- x]*(BesselI[0, x]+ BesselI[1, x])+ n*(Exp[- x]*BesselI[0, x]- 1)+ 2*Exp[- x]*Sum[(n - k)*BesselI[k, x], {k, 1, n - 1}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3]
Failed [2 / 3]
Result: Plus[1.0269197346695518, Times[-0.44626032029685964, Plus[-4.940169569318671, Times[3.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[1.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 1.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[1.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 1.5]], Equal[[2], Plus[BesselI[0, 1.5], BesselI[1, 1.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 1.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 1.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[, 1.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 1.5]], Equal[[3], Plus[Times[2, Power[1.5, -1], Plus[Times[1.5, BesselI[0, 1.5]], Times[-2, BesselI[1, 1.5]]]], BesselI[1, 1.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 1.5]}

Result: Plus[0.6643873281588137, Times[-1.2130613194252668, Plus[-3.19045011222397, Times[3.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[0.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 0.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[0.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 0.5]], Equal[[2], Plus[BesselI[0, 0.5], BesselI[1, 0.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 0.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 0.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[, 0.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 0.5]], Equal[[3], Plus[Times[2, Power[0.5, -1], Plus[Times[0.5, BesselI[0, 0.5]], Times[-2, BesselI[1, 0.5]]]], BesselI[1, 0.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 0.5]}

10.43.E7 0 x e + t t ν I ν ( t ) d t = e + x x ν + 1 2 ν + 1 ( I ν ( x ) - I ν + 1 ( x ) ) superscript subscript 0 𝑥 superscript 𝑒 𝑡 superscript 𝑡 𝜈 modified-Bessel-first-kind 𝜈 𝑡 𝑡 superscript 𝑒 𝑥 superscript 𝑥 𝜈 1 2 𝜈 1 modified-Bessel-first-kind 𝜈 𝑥 modified-Bessel-first-kind 𝜈 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}e^{+t}t^{\nu}I_{\nu}\left(t\right)% \mathrm{d}t=\frac{e^{+x}x^{\nu+1}}{2\nu+1}(I_{\nu}\left(x\right)-I_{\nu+1}% \left(x\right))}}
\int_{0}^{x}e^{+ t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}-\modBesselI{\nu+1}@{x})
ν > - 1 2 , ( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+k+1)>0,\Re((\nu+1)+k+% 1)>0}}
int(exp(+ t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)- BesselI(nu + 1, x))
Integrate[Exp[+ t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]+ 1, x])
Failure Successful Successful [Tested: 15] Successful [Tested: 15]
10.43.E7 0 x e - t t ν I ν ( t ) d t = e - x x ν + 1 2 ν + 1 ( I ν ( x ) + I ν + 1 ( x ) ) superscript subscript 0 𝑥 superscript 𝑒 𝑡 superscript 𝑡 𝜈 modified-Bessel-first-kind 𝜈 𝑡 𝑡 superscript 𝑒 𝑥 superscript 𝑥 𝜈 1 2 𝜈 1 modified-Bessel-first-kind 𝜈 𝑥 modified-Bessel-first-kind 𝜈 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}e^{-t}t^{\nu}I_{\nu}\left(t\right)% \mathrm{d}t=\frac{e^{-x}x^{\nu+1}}{2\nu+1}(I_{\nu}\left(x\right)+I_{\nu+1}% \left(x\right))}}
\int_{0}^{x}e^{- t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}+\modBesselI{\nu+1}@{x})
ν > - 1 2 , ( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+k+1)>0,\Re((\nu+1)+k+% 1)>0}}
int(exp(- t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)+ BesselI(nu + 1, x))
Integrate[Exp[- t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]+ 1, x])
Failure Successful Skipped - Because timed out Successful [Tested: 15]
10.43.E8 0 x e + t t - ν I ν ( t ) d t = - e + x x - ν + 1 2 ν - 1 ( I ν ( x ) - I ν - 1 ( x ) ) - 2 - ν + 1 ( 2 ν - 1 ) Γ ( ν ) superscript subscript 0 𝑥 superscript 𝑒 𝑡 superscript 𝑡 𝜈 modified-Bessel-first-kind 𝜈 𝑡 𝑡 superscript 𝑒 𝑥 superscript 𝑥 𝜈 1 2 𝜈 1 modified-Bessel-first-kind 𝜈 𝑥 modified-Bessel-first-kind 𝜈 1 𝑥 superscript 2 𝜈 1 2 𝜈 1 Euler-Gamma 𝜈 {\displaystyle{\displaystyle\int_{0}^{x}e^{+t}t^{-\nu}I_{\nu}\left(t\right)% \mathrm{d}t=-\frac{e^{+x}x^{-\nu+1}}{2\nu-1}(I_{\nu}\left(x\right)-I_{\nu-1}% \left(x\right))-\frac{2^{-\nu+1}}{(2\nu-1)\Gamma\left(\nu\right)}}}
\int_{0}^{x}e^{+ t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{+ x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}-\modBesselI{\nu-1}@{x})-\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}
ν 1 2 , ( ν ) > 0 , ( ν + k + 1 ) > 0 , ( ( ν - 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\nu\neq\tfrac{1}{2},\Re(\nu)>0,\Re(\nu+k+1)>0,\Re(% (\nu-1)+k+1)>0}}
int(exp(+ t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(+ x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)- BesselI(nu - 1, x))-((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu))
Integrate[Exp[+ t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[+ x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]- 1, x])-Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]]
Failure Successful Manual Skip!
Failed [3 / 12]
Result: 0.39894228040143315
Test Values: {Rule[x, 1.5], Rule[ν, 1.5]}

Result: 0.39894228040143254
Test Values: {Rule[x, 0.5], Rule[ν, 1.5]}

... skip entries to safe data
10.43.E8 0 x e - t t - ν I ν ( t ) d t = - e - x x - ν + 1 2 ν - 1 ( I ν ( x ) + I ν - 1 ( x ) ) + 2 - ν + 1 ( 2 ν - 1 ) Γ ( ν ) superscript subscript 0 𝑥 superscript 𝑒 𝑡 superscript 𝑡 𝜈 modified-Bessel-first-kind 𝜈 𝑡 𝑡 superscript 𝑒 𝑥 superscript 𝑥 𝜈 1 2 𝜈 1 modified-Bessel-first-kind 𝜈 𝑥 modified-Bessel-first-kind 𝜈 1 𝑥 superscript 2 𝜈 1 2 𝜈 1 Euler-Gamma 𝜈 {\displaystyle{\displaystyle\int_{0}^{x}e^{-t}t^{-\nu}I_{\nu}\left(t\right)% \mathrm{d}t=-\frac{e^{-x}x^{-\nu+1}}{2\nu-1}(I_{\nu}\left(x\right)+I_{\nu-1}% \left(x\right))+\frac{2^{-\nu+1}}{(2\nu-1)\Gamma\left(\nu\right)}}}
\int_{0}^{x}e^{- t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{- x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}+\modBesselI{\nu-1}@{x})+\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}
ν 1 2 , ( ν ) > 0 , ( ν + k + 1 ) > 0 , ( ( ν - 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\nu\neq\tfrac{1}{2},\Re(\nu)>0,\Re(\nu+k+1)>0,\Re(% (\nu-1)+k+1)>0}}
int(exp(- t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(- x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)+ BesselI(nu - 1, x))+((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu))
Integrate[Exp[- t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[- x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]- 1, x])+Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]]
Failure Successful Manual Skip! Successful [Tested: 12]
10.43.E9 0 x e + t t ν K ν ( t ) d t = e + x x ν + 1 2 ν + 1 ( K ν ( x ) + K ν + 1 ( x ) ) - 2 ν Γ ( ν + 1 ) 2 ν + 1 superscript subscript 0 𝑥 superscript 𝑒 𝑡 superscript 𝑡 𝜈 modified-Bessel-second-kind 𝜈 𝑡 𝑡 superscript 𝑒 𝑥 superscript 𝑥 𝜈 1 2 𝜈 1 modified-Bessel-second-kind 𝜈 𝑥 modified-Bessel-second-kind 𝜈 1 𝑥 superscript 2 𝜈 Euler-Gamma 𝜈 1 2 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{x}e^{+t}t^{\nu}K_{\nu}\left(t\right)% \mathrm{d}t=\frac{e^{+x}x^{\nu+1}}{2\nu+1}(K_{\nu}\left(x\right)+K_{\nu+1}% \left(x\right))-\frac{2^{\nu}\Gamma\left(\nu+1\right)}{2\nu+1}}}
\int_{0}^{x}e^{+ t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}+\modBesselK{\nu+1}@{x})-\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}
ν > - 1 2 , ( ν + 1 ) > 0 formulae-sequence 𝜈 1 2 𝜈 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+1)>0}}
int(exp(+ t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)+ BesselK(nu + 1, x))-((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1)
Integrate[Exp[+ t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]+ 1, x])-Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1]
Failure Aborted Manual Skip!
Failed [9 / 15]
Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 1.5]}

Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 0.5]}

... skip entries to safe data
10.43.E9 0 x e - t t ν K ν ( t ) d t = e - x x ν + 1 2 ν + 1 ( K ν ( x ) - K ν + 1 ( x ) ) + 2 ν Γ ( ν + 1 ) 2 ν + 1 superscript subscript 0 𝑥 superscript 𝑒 𝑡 superscript 𝑡 𝜈 modified-Bessel-second-kind 𝜈 𝑡 𝑡 superscript 𝑒 𝑥 superscript 𝑥 𝜈 1 2 𝜈 1 modified-Bessel-second-kind 𝜈 𝑥 modified-Bessel-second-kind 𝜈 1 𝑥 superscript 2 𝜈 Euler-Gamma 𝜈 1 2 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{x}e^{-t}t^{\nu}K_{\nu}\left(t\right)% \mathrm{d}t=\frac{e^{-x}x^{\nu+1}}{2\nu+1}(K_{\nu}\left(x\right)-K_{\nu+1}% \left(x\right))+\frac{2^{\nu}\Gamma\left(\nu+1\right)}{2\nu+1}}}
\int_{0}^{x}e^{- t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}-\modBesselK{\nu+1}@{x})+\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}
ν > - 1 2 , ( ν + 1 ) > 0 formulae-sequence 𝜈 1 2 𝜈 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+1)>0}}
int(exp(- t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)- BesselK(nu + 1, x))+((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1)
Integrate[Exp[- t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]- BesselK[\[Nu]+ 1, x])+Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1]
Failure Successful Manual Skip!
Failed [3 / 15]
Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 2]}

Result: DirectedInfinity[]
Test Values: {Rule[x, 0.5], Rule[ν, 2]}

... skip entries to safe data
10.43.E10 x e t t - ν K ν ( t ) d t = e x x - ν + 1 2 ν - 1 ( K ν ( x ) + K ν - 1 ( x ) ) superscript subscript 𝑥 superscript 𝑒 𝑡 superscript 𝑡 𝜈 modified-Bessel-second-kind 𝜈 𝑡 𝑡 superscript 𝑒 𝑥 superscript 𝑥 𝜈 1 2 𝜈 1 modified-Bessel-second-kind 𝜈 𝑥 modified-Bessel-second-kind 𝜈 1 𝑥 {\displaystyle{\displaystyle\int_{x}^{\infty}e^{t}t^{-\nu}K_{\nu}\left(t\right% )\mathrm{d}t=\frac{e^{x}x^{-\nu+1}}{2\nu-1}(K_{\nu}\left(x\right)+K_{\nu-1}% \left(x\right))}}
\int_{x}^{\infty}e^{t}t^{-\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{x}x^{-\nu+1}}{2\nu-1}(\modBesselK{\nu}@{x}+\modBesselK{\nu-1}@{x})
ν > 1 2 𝜈 1 2 {\displaystyle{\displaystyle\Re\nu>\tfrac{1}{2}}}
int(exp(t)*(t)^(- nu)* BesselK(nu, t), t = x..infinity) = (exp(x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselK(nu, x)+ BesselK(nu - 1, x))
Integrate[Exp[t]*(t)^(- \[Nu])* BesselK[\[Nu], t], {t, x, Infinity}, GenerateConditions->None] == Divide[Exp[x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]- 1, x])
Failure Successful Manual Skip!
Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, 2]}

Result: DirectedInfinity[]
Test Values: {Rule[x, 0.5], Rule[ν, 2]}

... skip entries to safe data
10.43.E18 0 K ν ( t ) d t = 1 2 π sec ( 1 2 π ν ) superscript subscript 0 modified-Bessel-second-kind 𝜈 𝑡 𝑡 1 2 𝜋 1 2 𝜋 𝜈 {\displaystyle{\displaystyle\int_{0}^{\infty}K_{\nu}\left(t\right)\mathrm{d}t=% \tfrac{1}{2}\pi\sec\left(\tfrac{1}{2}\pi\nu\right)}}
\int_{0}^{\infty}\modBesselK{\nu}@{t}\diff{t} = \tfrac{1}{2}\pi\sec@{\tfrac{1}{2}\pi\nu}
| ν | < 1 𝜈 1 {\displaystyle{\displaystyle|\Re\nu|<1}}
int(BesselK(nu, t), t = 0..infinity) = (1)/(2)*Pi*sec((1)/(2)*Pi*nu)
Integrate[BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*Sec[Divide[1,2]*Pi*\[Nu]]
Successful Successful - Successful [Tested: 6]
10.43.E19 0 t μ - 1 K ν ( t ) d t = 2 μ - 2 Γ ( 1 2 μ - 1 2 ν ) Γ ( 1 2 μ + 1 2 ν ) superscript subscript 0 superscript 𝑡 𝜇 1 modified-Bessel-second-kind 𝜈 𝑡 𝑡 superscript 2 𝜇 2 Euler-Gamma 1 2 𝜇 1 2 𝜈 Euler-Gamma 1 2 𝜇 1 2 𝜈 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu-1}K_{\nu}\left(t\right)% \mathrm{d}t=2^{\mu-2}\Gamma\left(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu\right)\Gamma% \left(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu\right)}}
\int_{0}^{\infty}t^{\mu-1}\modBesselK{\nu}@{t}\diff{t} = 2^{\mu-2}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu}
| ν | < μ , ( 1 2 μ - 1 2 ν ) > 0 , ( 1 2 μ + 1 2 ν ) > 0 formulae-sequence 𝜈 𝜇 formulae-sequence 1 2 𝜇 1 2 𝜈 0 1 2 𝜇 1 2 𝜈 0 {\displaystyle{\displaystyle|\Re\nu|<\Re\mu,\Re(\tfrac{1}{2}\mu-\tfrac{1}{2}% \nu)>0,\Re(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu)>0}}
int((t)^(mu - 1)* BesselK(nu, t), t = 0..infinity) = (2)^(mu - 2)* GAMMA((1)/(2)*mu -(1)/(2)*nu)*GAMMA((1)/(2)*mu +(1)/(2)*nu)
Integrate[(t)^(\[Mu]- 1)* BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^(\[Mu]- 2)* Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]
Successful Successful - Successful [Tested: 18]
10.43.E20 0 cos ( a t ) K 0 ( t ) d t = π 2 ( 1 + a 2 ) 1 2 superscript subscript 0 𝑎 𝑡 modified-Bessel-second-kind 0 𝑡 𝑡 𝜋 2 superscript 1 superscript 𝑎 2 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\cos\left(at\right)K_{0}\left(t% \right)\mathrm{d}t=\frac{\pi}{2(1+a^{2})^{\frac{1}{2}}}}}
\int_{0}^{\infty}\cos@{at}\modBesselK{0}@{t}\diff{t} = \frac{\pi}{2(1+a^{2})^{\frac{1}{2}}}
| a | < 1 𝑎 1 {\displaystyle{\displaystyle|\Im a|<1}}
int(cos(a*t)*BesselK(0, t), t = 0..infinity) = (Pi)/(2*(1 + (a)^(2))^((1)/(2)))
Integrate[Cos[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2*(1 + (a)^(2))^(Divide[1,2])]
Successful Aborted - Successful [Tested: 6]
10.43.E21 0 sin ( a t ) K 0 ( t ) d t = arcsinh a ( 1 + a 2 ) 1 2 superscript subscript 0 𝑎 𝑡 modified-Bessel-second-kind 0 𝑡 𝑡 hyperbolic-inverse-sine 𝑎 superscript 1 superscript 𝑎 2 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\sin\left(at\right)K_{0}\left(t% \right)\mathrm{d}t=\frac{\operatorname{arcsinh}a}{(1+a^{2})^{\frac{1}{2}}}}}
\int_{0}^{\infty}\sin@{at}\modBesselK{0}@{t}\diff{t} = \frac{\asinh@@{a}}{(1+a^{2})^{\frac{1}{2}}}
| a | < 1 𝑎 1 {\displaystyle{\displaystyle|\Im a|<1}}
int(sin(a*t)*BesselK(0, t), t = 0..infinity) = (arcsinh(a))/((1 + (a)^(2))^((1)/(2)))
Integrate[Sin[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[ArcSinh[a],(1 + (a)^(2))^(Divide[1,2])]
Failure Successful Successful [Tested: 0] Successful [Tested: 6]
10.43.E23 0 t ν + 1 I ν ( b t ) exp ( - p 2 t 2 ) d t = b ν ( 2 p 2 ) ν + 1 exp ( b 2 4 p 2 ) superscript subscript 0 superscript 𝑡 𝜈 1 modified-Bessel-first-kind 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 𝑡 superscript 𝑏 𝜈 superscript 2 superscript 𝑝 2 𝜈 1 superscript 𝑏 2 4 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\nu+1}I_{\nu}\left(bt\right)% \exp\left(-p^{2}t^{2}\right)\mathrm{d}t=\frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp% \left(\frac{b^{2}}{4p^{2}}\right)}}
\int_{0}^{\infty}t^{\nu+1}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{\frac{b^{2}}{4p^{2}}}
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0}}
int((t)^(nu + 1)* BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(((b)^(2))/(4*(p)^(2)))
Integrate[(t)^(\[Nu]+ 1)* BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[Divide[(b)^(2),4*(p)^(2)]]
Error Aborted - Skip - No test values generated
10.43.E24 0 I ν ( b t ) exp ( - p 2 t 2 ) d t = π 2 p exp ( b 2 8 p 2 ) I 1 2 ν ( b 2 8 p 2 ) superscript subscript 0 modified-Bessel-first-kind 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 𝑡 𝜋 2 𝑝 superscript 𝑏 2 8 superscript 𝑝 2 modified-Bessel-first-kind 1 2 𝜈 superscript 𝑏 2 8 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}I_{\nu}\left(bt\right)\exp\left(-% p^{2}t^{2}\right)\mathrm{d}t=\frac{\sqrt{\pi}}{2p}\exp\left(\frac{b^{2}}{8p^{2% }}\right)I_{\frac{1}{2}\nu}\left(\frac{b^{2}}{8p^{2}}\right)}}
\int_{0}^{\infty}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselI{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 , ( ( 1 2 ν ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 formulae-sequence 𝜈 𝑘 1 0 1 2 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0,% \Re((\frac{1}{2}\nu)+k+1)>0}}
int(BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(((b)^(2))/(8*(p)^(2)))*BesselI((1)/(2)*nu, ((b)^(2))/(8*(p)^(2)))
Integrate[BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]]
Failure Aborted
Failed [228 / 300]
Result: -.7585567167+3.675115279*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I}

Result: -.9489546609+2.381017603*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [152 / 300]
Result: Complex[-0.19039794459564638, -1.294097675814569]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.992047945390181, -4.249025046528451]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.43.E25 0 K ν ( b t ) exp ( - p 2 t 2 ) d t = π 4 p sec ( 1 2 π ν ) exp ( b 2 8 p 2 ) K 1 2 ν ( b 2 8 p 2 ) superscript subscript 0 modified-Bessel-second-kind 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 𝑡 𝜋 4 𝑝 1 2 𝜋 𝜈 superscript 𝑏 2 8 superscript 𝑝 2 modified-Bessel-second-kind 1 2 𝜈 superscript 𝑏 2 8 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}K_{\nu}\left(bt\right)\exp\left(-% p^{2}t^{2}\right)\mathrm{d}t=\frac{\sqrt{\pi}}{4p}\sec\left(\tfrac{1}{2}\pi\nu% \right)\exp\left(\frac{b^{2}}{8p^{2}}\right)K_{\frac{1}{2}\nu}\left(\frac{b^{2% }}{8p^{2}}\right)}}
\int_{0}^{\infty}\modBesselK{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{4p}\sec@{\tfrac{1}{2}\pi\nu}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselK{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}
| ν | < 1 , ( p 2 ) > 0 formulae-sequence 𝜈 1 superscript 𝑝 2 0 {\displaystyle{\displaystyle|\Re\nu|<1,\Re\left(p^{2}\right)>0}}
int(BesselK(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(4*p)*sec((1)/(2)*Pi*nu)*exp(((b)^(2))/(8*(p)^(2)))*BesselK((1)/(2)*nu, ((b)^(2))/(8*(p)^(2)))
Integrate[BesselK[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*p]*Sec[Divide[1,2]*Pi*\[Nu]]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselK[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]]
Failure Aborted
Failed [144 / 288]
Result: -.4056916296-1.844454275*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I}

Result: -.2830456904e-1-1.996429597*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 3/2}

... skip entries to safe data
Failed [144 / 288]
Result: Complex[0.40569163152223653, 1.8444542715605226]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4232355421098407, -0.8203643961026106]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.43.E26 0 K μ ( a t ) J ν ( b t ) t λ d t = b ν Γ ( 1 2 ν - 1 2 λ + 1 2 μ + 1 2 ) Γ ( 1 2 ν - 1 2 λ - 1 2 μ + 1 2 ) 2 λ + 1 a ν - λ + 1 𝐅 ( ν - λ + μ + 1 2 , ν - λ - μ + 1 2 ; ν + 1 ; - b 2 a 2 ) superscript subscript 0 modified-Bessel-second-kind 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑡 𝜆 𝑡 superscript 𝑏 𝜈 Euler-Gamma 1 2 𝜈 1 2 𝜆 1 2 𝜇 1 2 Euler-Gamma 1 2 𝜈 1 2 𝜆 1 2 𝜇 1 2 superscript 2 𝜆 1 superscript 𝑎 𝜈 𝜆 1 scaled-hypergeometric-bold-F 𝜈 𝜆 𝜇 1 2 𝜈 𝜆 𝜇 1 2 𝜈 1 superscript 𝑏 2 superscript 𝑎 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{K_{\mu}\left(at\right)J_{% \nu}\left(bt\right)}{t^{\lambda}}\mathrm{d}t=\frac{b^{\nu}\Gamma\left(\frac{1}% {2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\right)\Gamma\left(\frac{1% }{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2}\right)}{2^{\lambda+1}a^{% \nu-\lambda+1}}\*\mathbf{F}\left(\frac{\nu-\lambda+\mu+1}{2},\frac{\nu-\lambda% -\mu+1}{2};\nu+1;-\frac{b^{2}}{a^{2}}\right)}}
\int_{0}^{\infty}\frac{\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{b^{\nu}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2}}}{2^{\lambda+1}a^{\nu-\lambda+1}}\*\hyperOlverF@{\frac{\nu-\lambda+\mu+1}{2}}{\frac{\nu-\lambda-\mu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}
( ν + 1 - λ ) > | μ | , a > | b | , ( ν + k + 1 ) > 0 , ( 1 2 ν - 1 2 λ + 1 2 μ + 1 2 ) > 0 , ( 1 2 ν - 1 2 λ - 1 2 μ + 1 2 ) > 0 formulae-sequence 𝜈 1 𝜆 𝜇 formulae-sequence 𝑎 𝑏 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜆 1 2 𝜇 1 2 0 1 2 𝜈 1 2 𝜆 1 2 𝜇 1 2 0 {\displaystyle{\displaystyle\Re\left(\nu+1-\lambda\right)>|\Re\mu|,\Re a>|\Im b% |,\Re(\nu+k+1)>0,\Re(\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}% {2})>0,\Re(\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2})>0}}
int((BesselK(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((b)^(nu)* GAMMA((1)/(2)*nu -(1)/(2)*lambda +(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*nu -(1)/(2)*lambda -(1)/(2)*mu +(1)/(2)))/((2)^(lambda + 1)* (a)^(nu - lambda + 1))* hypergeom([(nu - lambda + mu + 1)/(2), (nu - lambda - mu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)
Integrate[Divide[BesselK[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu]* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]-Divide[1,2]*\[Mu]+Divide[1,2]],(2)^(\[Lambda]+ 1)* (a)^(\[Nu]- \[Lambda]+ 1)]* Hypergeometric2F1Regularized[Divide[\[Nu]- \[Lambda]+ \[Mu]+ 1,2], Divide[\[Nu]- \[Lambda]- \[Mu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]
Error Aborted - Skip - No test values generated
10.43.E27 0 t μ + ν + 1 K μ ( a t ) J ν ( b t ) d t = ( 2 a ) μ ( 2 b ) ν Γ ( μ + ν + 1 ) ( a 2 + b 2 ) μ + ν + 1 superscript subscript 0 superscript 𝑡 𝜇 𝜈 1 modified-Bessel-second-kind 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 𝑡 superscript 2 𝑎 𝜇 superscript 2 𝑏 𝜈 Euler-Gamma 𝜇 𝜈 1 superscript superscript 𝑎 2 superscript 𝑏 2 𝜇 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu+\nu+1}K_{\mu}\left(at% \right)J_{\nu}\left(bt\right)\mathrm{d}t=\frac{(2a)^{\mu}(2b)^{\nu}\Gamma\left% (\mu+\nu+1\right)}{(a^{2}+b^{2})^{\mu+\nu+1}}}}
\int_{0}^{\infty}t^{\mu+\nu+1}\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(2a)^{\mu}(2b)^{\nu}\EulerGamma@{\mu+\nu+1}}{(a^{2}+b^{2})^{\mu+\nu+1}}
( ν + 1 ) > | μ | , a > | b | , ( ν + k + 1 ) > 0 , ( μ + ν + 1 ) > 0 formulae-sequence 𝜈 1 𝜇 formulae-sequence 𝑎 𝑏 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 1 0 {\displaystyle{\displaystyle\Re\left(\nu+1\right)>|\Re\mu|,\Re a>|\Im b|,\Re(% \nu+k+1)>0,\Re(\mu+\nu+1)>0}}
int((t)^(mu + nu + 1)* BesselK(mu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = ((2*a)^(mu)*(2*b)^(nu)* GAMMA(mu + nu + 1))/(((a)^(2)+ (b)^(2))^(mu + nu + 1))
Integrate[(t)^(\[Mu]+ \[Nu]+ 1)* BesselK[\[Mu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2*a)^\[Mu]*(2*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]+ 1],((a)^(2)+ (b)^(2))^(\[Mu]+ \[Nu]+ 1)]
Error Aborted - Skip - No test values generated
10.43.E28 0 t exp ( - p 2 t 2 ) I ν ( a t ) I ν ( b t ) d t = 1 2 p 2 exp ( a 2 + b 2 4 p 2 ) I ν ( a b 2 p 2 ) superscript subscript 0 𝑡 superscript 𝑝 2 superscript 𝑡 2 modified-Bessel-first-kind 𝜈 𝑎 𝑡 modified-Bessel-first-kind 𝜈 𝑏 𝑡 𝑡 1 2 superscript 𝑝 2 superscript 𝑎 2 superscript 𝑏 2 4 superscript 𝑝 2 modified-Bessel-first-kind 𝜈 𝑎 𝑏 2 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t\exp\left(-p^{2}t^{2}\right)I_{% \nu}\left(at\right)I_{\nu}\left(bt\right)\mathrm{d}t=\frac{1}{2p^{2}}\exp\left% (\frac{a^{2}+b^{2}}{4p^{2}}\right)I_{\nu}\left(\frac{ab}{2p^{2}}\right)}}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{\nu}@{at}\modBesselI{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}@{\frac{ab}{2p^{2}}}
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0}}
int(t*exp(- (p)^(2)* (t)^(2))*BesselI(nu, a*t)*BesselI(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[\[Nu], a*t]*BesselI[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]
Error Aborted - Skipped - Because timed out
10.43.E29 0 t exp ( - p 2 t 2 ) I 0 ( a t ) K 0 ( a t ) d t = 1 4 p 2 exp ( a 2 2 p 2 ) K 0 ( a 2 2 p 2 ) superscript subscript 0 𝑡 superscript 𝑝 2 superscript 𝑡 2 modified-Bessel-first-kind 0 𝑎 𝑡 modified-Bessel-second-kind 0 𝑎 𝑡 𝑡 1 4 superscript 𝑝 2 superscript 𝑎 2 2 superscript 𝑝 2 modified-Bessel-second-kind 0 superscript 𝑎 2 2 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t\exp\left(-p^{2}t^{2}\right)I_{0% }\left(at\right)K_{0}\left(at\right)\mathrm{d}t=\frac{1}{4p^{2}}\exp\left(% \frac{a^{2}}{2p^{2}}\right)K_{0}\left(\frac{a^{2}}{2p^{2}}\right)}}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{0}@{at}\modBesselK{0}@{at}\diff{t} = \frac{1}{4p^{2}}\exp@{\frac{a^{2}}{2p^{2}}}\modBesselK{0}@{\frac{a^{2}}{2p^{2}}}
( p 2 ) > 0 , ( 0 + k + 1 ) > 0 formulae-sequence superscript 𝑝 2 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(p^{2}\right)>0,\Re(0+k+1)>0}}
int(t*exp(- (p)^(2)* (t)^(2))*BesselI(0, a*t)*BesselK(0, a*t), t = 0..infinity) = (1)/(4*(p)^(2))*exp(((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[0, a*t]*BesselK[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,4*(p)^(2)]*Exp[Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]
Failure Aborted Skipped - Because timed out Successful [Tested: 48]
10.44#Ex1 I ν ( z ) = k = 0 z k k ! J ν + k ( z ) modified-Bessel-first-kind 𝜈 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 𝑘 Bessel-J 𝜈 𝑘 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\sum_{k=0}^{\infty}\frac{z^% {k}}{k!}J_{\nu+k}\left(z\right)}}
\modBesselI{\nu}@{z} = \sum_{k=0}^{\infty}\frac{z^{k}}{k!}\BesselJ{\nu+k}@{z}
( ( ν + k ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((\nu+k)+k+1)>0,\Re(\nu+k+1)>0}}
BesselI(nu, z) = sum(((z)^(k))/(factorial(k))*BesselJ(nu + k, z), k = 0..infinity)
BesselI[\[Nu], z] == Sum[Divide[(z)^(k),(k)!]*BesselJ[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.44#Ex2 J ν ( z ) = k = 0 ( - 1 ) k z k k ! I ν + k ( z ) Bessel-J 𝜈 𝑧 superscript subscript 𝑘 0 superscript 1 𝑘 superscript 𝑧 𝑘 𝑘 modified-Bessel-first-kind 𝜈 𝑘 𝑧 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\sum_{k=0}^{\infty}(-1)^{k}% \frac{z^{k}}{k!}I_{\nu+k}\left(z\right)}}
\BesselJ{\nu}@{z} = \sum_{k=0}^{\infty}(-1)^{k}\frac{z^{k}}{k!}\modBesselI{\nu+k}@{z}
( ν + k + 1 ) > 0 , ( ( ν + k ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+k)+k+1)>0}}
BesselJ(nu, z) = sum((- 1)^(k)*((z)^(k))/(factorial(k))*BesselI(nu + k, z), k = 0..infinity)
BesselJ[\[Nu], z] == Sum[(- 1)^(k)*Divide[(z)^(k),(k)!]*BesselI[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [70 / 70]
Result: Plus[Complex[0.4358908643715884, -0.07192294931339177], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.0679098760861825, 0.09257666026367889], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.44.E4 ( 1 2 z ) ν = k = 0 ( - 1 ) k ( ν + 2 k ) Γ ( ν + k ) k ! I ν + 2 k ( z ) superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 superscript 1 𝑘 𝜈 2 𝑘 Euler-Gamma 𝜈 𝑘 𝑘 modified-Bessel-first-kind 𝜈 2 𝑘 𝑧 {\displaystyle{\displaystyle\left(\tfrac{1}{2}z\right)^{\nu}=\sum_{k=0}^{% \infty}(-1)^{k}\frac{(\nu+2k)\Gamma\left(\nu+k\right)}{k!}I_{\nu+2k}\left(z% \right)}}
\left(\tfrac{1}{2}z\right)^{\nu} = \sum_{k=0}^{\infty}(-1)^{k}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\modBesselI{\nu+2k}@{z}
( ν + k ) > 0 , ( ( ν + 2 k ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 0 𝜈 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k)>0,\Re((\nu+2k)+k+1)>0}}
((1)/(2)*z)^(nu) = sum((- 1)^(k)*((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselI(nu + 2*k, z), k = 0..infinity)
(Divide[1,2]*z)^\[Nu] == Sum[(- 1)^(k)*Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselI[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Manual Skip!
Failed [7 / 7]
Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1]}

Result: Plus[Complex[-0.2499999999999999, 0.43301270189221935], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 1]}

... skip entries to safe data
10.44.E5 K 0 ( z ) = - ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 2 k = 1 I 2 k ( z ) k modified-Bessel-second-kind 0 𝑧 1 2 𝑧 modified-Bessel-first-kind 0 𝑧 2 superscript subscript 𝑘 1 modified-Bessel-first-kind 2 𝑘 𝑧 𝑘 {\displaystyle{\displaystyle K_{0}\left(z\right)=-\left(\ln\left(\tfrac{1}{2}z% \right)+\gamma\right)I_{0}\left(z\right)+2\sum_{k=1}^{\infty}\frac{I_{2k}\left% (z\right)}{k}}}
\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\frac{\modBesselI{2k}@{z}}{k}
( 0 + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k)+k+1)>0}}
BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+ 2*sum((BesselI(2*k, z))/(k), k = 1..infinity)
BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+ 2*Sum[Divide[BesselI[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
10.44.E6 K n ( z ) = n ! ( 1 2 z ) - n 2 k = 0 n - 1 ( - 1 ) k ( 1 2 z ) k I k ( z ) k ! ( n - k ) + ( - 1 ) n - 1 ( ln ( 1 2 z ) - ψ ( n + 1 ) ) I n ( z ) + ( - 1 ) n k = 1 ( n + 2 k ) I n + 2 k ( z ) k ( n + k ) modified-Bessel-second-kind 𝑛 𝑧 𝑛 superscript 1 2 𝑧 𝑛 2 superscript subscript 𝑘 0 𝑛 1 superscript 1 𝑘 superscript 1 2 𝑧 𝑘 modified-Bessel-first-kind 𝑘 𝑧 𝑘 𝑛 𝑘 superscript 1 𝑛 1 1 2 𝑧 digamma 𝑛 1 modified-Bessel-first-kind 𝑛 𝑧 superscript 1 𝑛 superscript subscript 𝑘 1 𝑛 2 𝑘 modified-Bessel-first-kind 𝑛 2 𝑘 𝑧 𝑘 𝑛 𝑘 {\displaystyle{\displaystyle K_{n}\left(z\right)=\frac{n!(\tfrac{1}{2}z)^{-n}}% {2}\sum_{k=0}^{n-1}(-1)^{k}\frac{(\tfrac{1}{2}z)^{k}I_{k}\left(z\right)}{k!(n-% k)}+(-1)^{n-1}\left(\ln\left(\tfrac{1}{2}z\right)-\psi\left(n+1\right)\right)I% _{n}\left(z\right)+(-1)^{n}\sum_{k=1}^{\infty}\frac{(n+2k)I_{n+2k}\left(z% \right)}{k(n+k)}}}
\modBesselK{n}@{z} = \frac{n!(\tfrac{1}{2}z)^{-n}}{2}\sum_{k=0}^{n-1}(-1)^{k}\frac{(\tfrac{1}{2}z)^{k}\modBesselI{k}@{z}}{k!(n-k)}+(-1)^{n-1}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\modBesselI{n}@{z}+(-1)^{n}\sum_{k=1}^{\infty}\frac{(n+2k)\modBesselI{n+2k}@{z}}{k(n+k)}
( n + k + 1 ) > 0 , ( k + k + 1 ) > 0 , ( ( n + 2 k ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑘 𝑘 1 0 𝑛 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re(k+k+1)>0,\Re((n+2k)+k+1)>0}}
BesselK(n, z) = (factorial(n)*((1)/(2)*z)^(- n))/(2)*sum((- 1)^(k)*(((1)/(2)*z)^(k)* BesselI(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(- 1)^(n - 1)*(ln((1)/(2)*z)- Psi(n + 1))*BesselI(n, z)+(- 1)^(n)* sum(((n + 2*k)*BesselI(n + 2*k, z))/(k*(n + k)), k = 1..infinity)
BesselK[n, z] == Divide[(n)!*(Divide[1,2]*z)^(- n),2]*Sum[(- 1)^(k)*Divide[(Divide[1,2]*z)^(k)* BesselI[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n - 1)*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselI[n, z]+(- 1)^(n)* Sum[Divide[(n + 2*k)*BesselI[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip!
Failed [21 / 21]
Result: Plus[Complex[1.084080291505059, -0.3914662527648858], NSum[Times[Power[k, -1], Power[Plus[1, k], -1], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]], Times[Complex[-0.8660254037844387, 0.49999999999999994], DifferenceRoot[Function[{, }, {Equal[Plus[Times[-1, Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[-1, , Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.001928095904955185, 0.0030033056761246957], Times[-1.0, NSum[Times[Power[k, -1], Power[Plus[2, k], -1], Plus[2, Times[2, k]], BesselI[Plus[2, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data