Results of Bessel Functions II: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{| class="wikitable sortable" | <div style="width: 100%; height: 75vh; overflow: auto;"> | ||
{| class="wikitable sortable" style="margin: 0;" | |||
|- | |- | ||
! DLMF ! | ! scope="col" style="position: sticky; top: 0;" | DLMF | ||
|- | ! scope="col" style="position: sticky; top: 0;" | Formula | ||
| [https://dlmf.nist.gov/10. | ! scope="col" style="position: sticky; top: 0;" | Constraints | ||
! scope="col" style="position: sticky; top: 0;" | Maple | |||
! scope="col" style="position: sticky; top: 0;" | Mathematica | |||
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple | |||
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica | |||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple | |||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E38 10.22.E38] || [[Item:Q3412|<math>\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) = (((a)^(2))/((b)^(2))+ (alpha[ell])^(2)- (nu)^(2))*((BesselJ(nu, alpha[ell]))^(2))/(2*(alpha[ell])^(2))*KroneckerDelta[ell, m]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] == (Divide[(a)^(2),(b)^(2)]+ (Subscript[\[Alpha], \[ScriptL]])^(2)- \[Nu]^(2))*Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*(Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E39 10.22.E39] || [[Item:Q3413|<math>\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E39 10.22.E39] || [[Item:Q3413|<math>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E40 10.22.E40] || [[Item:Q3414|<math>\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselY(0, t))/(t), t = x..infinity) = -(1)/(Pi)*(ln((1)/(2)*x)+ gamma)^(2)+(Pi)/(6)+(2)/(Pi)*sum((- 1)^(k)*(Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselY[0, t],t], {t, x, Infinity}, GenerateConditions->None] == -Divide[1,Pi]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[Pi,6]+Divide[2,Pi]*Sum[(- 1)^(k)*(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E41 10.22.E41] || [[Item:Q3415|<math>\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t), t = 0..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 8] | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E42 10.22.E42] || [[Item:Q3416|<math>\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 6] | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E43 10.22.E43] || [[Item:Q3417|<math>\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E44 10.22.E44] || [[Item:Q3418|<math>\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselY(nu, t), t = 0..infinity) = ((2)^(mu))/(Pi)*GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*sin((1)/(2)*mu -(1)/(2)*nu)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2)^\[Mu],Pi]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Sin[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Pi</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5512405929316078, 0.2551977660147906] | |||
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.26217720344291356, -0.18052742798771904] | |||
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E45 10.22.E45] || [[Item:Q3419|<math>\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}</syntaxhighlight> || <math>1 < \realpart@@{\mu}, \realpart@@{\mu} < 3, \realpart@@{(0+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/((t)^(mu)), t = 0..infinity) = -(Pi*sec((1)/(2)*mu*Pi))/((2)^(mu)* (GAMMA((1)/(2)*mu +(1)/(2)))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],(t)^\[Mu]], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Pi*Sec[Divide[1,2]*\[Mu]*Pi],(2)^\[Mu]* (Gamma[Divide[1,2]*\[Mu]+Divide[1,2]])^(2)]</syntaxhighlight> || Error || Aborted || - || Successful [Tested: 10] | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E46 10.22.E46] || [[Item:Q3420|<math>\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}</syntaxhighlight> || <math>a > 0, \realpart@@{b} > 0, -1 < \realpart@@{\nu}, \realpart@@{\nu} < 2\realpart@@{\mu}+\tfrac{3}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(nu + 1)* BesselJ(nu, a*t))/(((t)^(2)+ (b)^(2))^(mu + 1)), t = 0..infinity) = ((a)^(mu)* (b)^(nu - mu))/((2)^(mu)* GAMMA(mu + 1))*BesselK(nu - mu, a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(\[Nu]+ 1)* BesselJ[\[Nu], a*t],((t)^(2)+ (b)^(2))^(\[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* (b)^(\[Nu]- \[Mu]),(2)^\[Mu]* Gamma[\[Mu]+ 1]]*BesselK[\[Nu]- \[Mu], a*b]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E47 10.22.E47] || [[Item:Q3421|<math>\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}</syntaxhighlight> || <math>a > 0, \realpart@@{b} > 0, -\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{5}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(nu)* BesselY(nu, a*t))/((t)^(2)+ (b)^(2)), t = 0..infinity) = - (b)^(nu - 1)* BesselK(nu, a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^\[Nu]* BesselY[\[Nu], a*t],(t)^(2)+ (b)^(2)], {t, 0, Infinity}, GenerateConditions->None] == - (b)^(\[Nu]- 1)* BesselK[\[Nu], a*b]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E48 10.22.E48] || [[Item:Q3422|<math>\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}</syntaxhighlight> || <math>x > 0, \realpart@@{\nu} > -1, \realpart@@{\mu} > 2\realpart@@{\nu}+\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu-\nu-1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, x*cosh(phi))*(cosh(phi))^(1 - mu)*(sinh(phi))^(2*nu + 1), phi = 0..infinity) = (2)^(nu)* GAMMA(nu + 1)*(x)^(- nu - 1)* BesselJ(mu - nu - 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], x*Cosh[\[Phi]]]*(Cosh[\[Phi]])^(1 - \[Mu])*(Sinh[\[Phi]])^(2*\[Nu]+ 1), {\[Phi], 0, Infinity}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(x)^(- \[Nu]- 1)* BesselJ[\[Mu]- \[Nu]- 1, x]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E49 10.22.E49] || [[Item:Q3423|<math>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* exp(- a*t)*BesselJ(nu, b*t), t = 0..infinity) = (((1)/(2)*b)^(nu))/((a)^(mu + nu))*GAMMA(mu + nu)* hypergeom([(mu + nu)/(2), (mu + nu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b)^\[Nu],(a)^(\[Mu]+ \[Nu])]*Gamma[\[Mu]+ \[Nu]]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[\[Mu]+ \[Nu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]</syntaxhighlight> || Error || Aborted || - || Successful [Tested: 0] | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E50 10.22.E50] || [[Item:Q3424|<math>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}</syntaxhighlight> || <math>\realpart@@{\mu} > |\realpart@@{\nu}|, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0, \realpart@@{(\mu-\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* exp(- a*t)*BesselY(nu, b*t), t = 0..infinity) = cot(nu*Pi)*(((1)/(2)*b)^(nu)* GAMMA(mu + nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu + nu)))* hypergeom([(mu + nu)/(2), (1 - mu + nu)/(2)], [nu + 1], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(nu + 1)- csc(nu*Pi)*(((1)/(2)*b)^(- nu)* GAMMA(mu - nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu - nu)))* hypergeom([(mu - nu)/(2), (1 - mu - nu)/(2)], [1 - nu], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(1 - nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselY[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Cot[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[1 - \[Mu]+ \[Nu],2], \[Nu]+ 1, Divide[(b)^(2),(a)^(2)+ (b)^(2)]]- Csc[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^(- \[Nu])* Gamma[\[Mu]- \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]- \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]- \[Nu],2], Divide[1 - \[Mu]- \[Nu],2], 1 - \[Nu], Divide[(b)^(2),(a)^(2)+ (b)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E51 10.22.E51] || [[Item:Q3425|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(nu + 1), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(-((b)^(2))/(4*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Nu]+ 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[-Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [151 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.06577510728447342, -0.5886826409090221] | |||
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.0556301041786353, -0.2359104145157832] | |||
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E52 10.22.E52] || [[Item:Q3426|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*BesselI((nu)/(2), ((b)^(2))/(8*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[\[Nu],2], Divide[(b)^(2),8*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E53 10.22.E53] || [[Item:Q3427|<math>\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)</syntaxhighlight> || <math>|\realpart@@{\nu}| < \tfrac{1}{2}, \realpart@{p^{2}} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(2*nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = -(sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*(BesselI(nu, ((b)^(2))/(8*(p)^(2)))*tan(nu*Pi)+(1)/(Pi)*BesselK(nu, ((b)^(2))/(8*(p)^(2)))*sec(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[2*\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*(BesselI[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Tan[\[Nu]*Pi]+Divide[1,Pi]*BesselK[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Sec[\[Nu]*Pi])</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E54 10.22.E54] || [[Item:Q3428|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(mu - 1), t = 0..infinity) = (((1)/(2)*b/p)^(nu)* GAMMA((1)/(2)*nu +(1)/(2)*mu))/(2*(p)^(mu))*exp(-((b)^(2))/(4*(p)^(2)))* KummerM((1)/(2)*nu -(1)/(2)*mu + 1, nu + 1, ((b)^(2))/(4*(p)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Mu]- 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b/p)^\[Nu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]],2*(p)^\[Mu]]*Exp[-Divide[(b)^(2),4*(p)^(2)]]* Hypergeometric1F1Regularized[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, \[Nu]+ 1, Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [246 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.07541885663346475, -0.6281916024632631] | |||
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1002850405400357, -0.7734416454563844] | |||
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E55 10.22.E55] || [[Item:Q3429|<math>\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}</syntaxhighlight> || <math>\nu+\ell+m > -1, \realpart@@{((\nu+2\ell+1)+k+1)} > 0, \realpart@@{((\nu+2m+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 54]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Rational[-3, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[m, 2], Rule[ℓ, 2], Rule[ν, Rational[-3, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E56 10.22.E56] || [[Item:Q3430|<math>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}</syntaxhighlight> || <math>0 < a, a < b, \realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)* (b)^(mu - lambda + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)*lambda +(1)/(2)))* hypergeom([(1)/(2)*(mu + nu - lambda + 1), (1)/(2)*(mu - nu - lambda + 1)], [mu + 1], ((a)^(2))/((b)^(2)))/GAMMA(mu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]* (b)^(\[Mu]- \[Lambda]+ 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]*\[Lambda]+Divide[1,2]]]* Hypergeometric2F1Regularized[Divide[1,2]*(\[Mu]+ \[Nu]- \[Lambda]+ 1), Divide[1,2]*(\[Mu]- \[Nu]- \[Lambda]+ 1), \[Mu]+ 1, Divide[(a)^(2),(b)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.12507202091813296, -0.11002587193353452] | |||
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.017959797138118128, 0.3252875517547388] | |||
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E57 10.22.E57] || [[Item:Q3431|<math>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\lambda)} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, a*t)*BesselJ(nu, a*t))/((t)^(lambda)), t = 0..infinity) = (((1)/(2)*a)^(lambda - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu -(1)/(2)*lambda +(1)/(2))*GAMMA(lambda))/(2*GAMMA((1)/(2)*lambda +(1)/(2)*nu -(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu +(1)/(2)*nu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], a*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*a)^(\[Lambda]- 1)* Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]]*Gamma[\[Lambda]],2*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E58 10.22.E58] || [[Item:Q3432|<math>\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}</syntaxhighlight> || <math>a \neq b, \realpart@{2\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(nu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a*b)^(nu)* GAMMA(nu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)*((a)^(2)+ (b)^(2))^(nu -(1)/(2)*lambda +(1)/(2))* GAMMA((1)/(2)*lambda +(1)/(2)))*hypergeom([(2*nu + 1 - lambda)/(4), (2*nu + 3 - lambda)/(4)], [nu + 1], (4*(a)^(2)* (b)^(2))/(((a)^(2)+ (b)^(2))^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a*b)^\[Nu]* Gamma[\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]*((a)^(2)+ (b)^(2))^(\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2])* Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]]]*Hypergeometric2F1Regularized[Divide[2*\[Nu]+ 1 - \[Lambda],4], Divide[2*\[Nu]+ 3 - \[Lambda],4], \[Nu]+ 1, Divide[4*(a)^(2)* (b)^(2),((a)^(2)+ (b)^(2))^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [209 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.13393539357334844, 0.1322614378889556] | |||
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.07230690300251369, -0.15068591568973605] | |||
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E66 10.22.E66] || [[Item:Q3440|<math>\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t), t = 0..infinity) = (1)/(Pi*(b*c)^((1)/(2)))* LegendreQ(nu -(1)/(2), ((a)^(2)+ (b)^(2)+ (c)^(2))/(2*b*c))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Pi*(b*c)^(Divide[1,2])]* LegendreQ[\[Nu]-Divide[1,2], 0, 3, Divide[(a)^(2)+ (b)^(2)+ (c)^(2),2*b*c]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E67 10.22.E67] || [[Item:Q3441|<math>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(nu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(-((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[-Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]</syntaxhighlight> || Translation Error || Translation Error || - || - | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E68 10.22.E68] || [[Item:Q3442|<math>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)</syntaxhighlight> || <math>\realpart@{p^{2}} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(0, a*t)*BesselY(0, a*t), t = 0..infinity) = -(1)/(2*Pi*(p)^(2))*exp(-((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[0, a*t]*BesselY[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == -Divide[1,2*Pi*(p)^(2)]*Exp[-Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]</syntaxhighlight> || Translation Error || Translation Error || - || - | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E70 10.22.E70] || [[Item:Q3444|<math>\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}</syntaxhighlight> || <math>a \geq b, b > 0, \realpart@@{\nu} > -\tfrac{3}{2}, \imagpart@@{z} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(nu, a*t)*BesselJ(nu + 1, b*t)*(t)/((t)^(2)- (z)^(2)), t = 0..infinity) = (1)/(2)*Pi*BesselJ(nu + 1, b*z)*HankelH1(nu, a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Nu], a*t]*BesselJ[\[Nu]+ 1, b*t]*Divide[t,(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ 1, b*z]*HankelH1[\[Nu], a*z]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E71 10.22.E71] || [[Item:Q3445|<math>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, |b-c| < a, a < b+c, \cos@@{\phi} = (b^{2}+c^{2}-a^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)*(sin(phi))^(mu -(1)/(2)))/((2*Pi)^((1)/(2))* (a)^(mu))*LegendreP(nu -(1)/(2), (1)/(2)- mu, cos(phi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)*(Sin[\[Phi]])^(\[Mu]-Divide[1,2]),(2*Pi)^(Divide[1,2])* (a)^\[Mu]]*LegendreP[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], Cos[\[Phi]]]</syntaxhighlight> || Translation Error || Translation Error || - || - | |||
|- | |||
| [https://dlmf.nist.gov/10.22.E72 10.22.E72] || [[Item:Q3446|<math>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, a > b+c, \cosh@@{\chi} = (a^{2}-b^{2}-c^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)* sin((mu - nu)*Pi)*(sinh(chi))^(mu -(1)/(2)))/(((1)/(2)*(Pi)^(3))^((1)/(2))* (a)^(mu))*exp((mu -(1)/(2))*I*Pi)*LegendreQ(nu -(1)/(2), (1)/(2)- mu, cosh(chi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)* Sin[(\[Mu]- \[Nu])*Pi]*(Sinh[\[Chi]])^(\[Mu]-Divide[1,2]),(Divide[1,2]*(Pi)^(3))^(Divide[1,2])* (a)^\[Mu]]*Exp[(\[Mu]-Divide[1,2])*I*Pi]*LegendreQ[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], 3, Cosh[\[Chi]]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated | |||
|- | |||
| [https://dlmf.nist.gov/10.23.E3 10.23.E3] || [[Item:Q3455|<math>\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Aborted || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.23.E4 10.23.E4] || [[Item:Q3456|<math>\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0</syntaxhighlight> || <math>n \geq 1, \realpart@@{(k+k+1)} > 0, \realpart@@{((2n-k)+k+1)} > 0, \realpart@@{((2n+k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z)*; , k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z]*, {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] | |||
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] | |||
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.23.E5 10.23.E5] || [[Item:Q3457|<math>\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}</syntaxhighlight> || <math>\realpart@@{(k+k+1)} > 0, \realpart@@{((n-k)+k+1)} > 0, \realpart@@{((n+k)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] | |||
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] | |||
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.23#Ex1 10.23#Ex1] || [[Item:Q3458|<math>w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha))</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3146075610-.1816387601*I | |||
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.680632965+.1843866439*I | |||
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3146075609842255, -0.18163876002333418] | |||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4375091763619045, 0.252596040745477] | |||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.23#Ex2 10.23#Ex2] || [[Item:Q3459|<math>u-v\cos@@{\alpha} = w\cos@@{\chi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u-v\cos@@{\alpha} = w\cos@@{\chi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u - v*cos(alpha) = w*cos(chi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u - v*Cos[\[Alpha]] == w*Cos[\[Chi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.263783978e-1+.4431282844*I | |||
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8262683052-.3665121890*I | |||
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.026378398027867456, 0.44312828415668515] | |||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.023973249213014358, -0.5554825514041751] | |||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.23#Ex3 10.23#Ex3] || [[Item:Q3460|<math>v\sin@@{\alpha} = w\sin@@{\chi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>v\sin@@{\alpha} = w\sin@@{\chi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>v*sin(alpha) = w*sin(chi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>v*Sin[\[Alpha]] == w*Sin[\[Chi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2887554391-.2231097873*I | |||
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.585713279-.763530664e-1*I | |||
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [294 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.2887554393029954, -0.22310978722682606] | |||
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.8740447527972026, 0.09051196331992012] | |||
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.23.E9 10.23.E9] || [[Item:Q3463|<math>e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu)} > 0</math> || <syntaxhighlight lang=mathematica>exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)*(I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)*(I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.23.E15 10.23.E15] || [[Item:Q3469|<math>(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}</syntaxhighlight> || <math>\realpart@@{((\nu+2k)+k+1)} > 0, \realpart@@{(\nu+k)} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*z)^(nu) = sum(((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Skipped - Because timed out || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.23.E16 10.23.E16] || [[Item:Q3470|<math>\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.23.E17 10.23.E17] || [[Item:Q3471|<math>\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(k+k+1)} > 0, \realpart@@{((n+2k)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))*BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)*BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)*BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.24.E1 10.24.E1] || [[Item:Q3476|<math>x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((x)^(2)+ (nu)^(2))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+((x)^(2)+ \[Nu]^(2))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.948557159+2.125000000*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2165063513+1.125000001*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.9485571585149875, 2.125] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.948557158514987, 0.12499999999999989] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.24#Ex1 10.24#Ex1] || [[Item:Q3477|<math>\BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}}</syntaxhighlight> || <math>\realpart@@{((\iunit \nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselJ(I*nu, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselJ[I*\[Nu], x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 30] | |||
|- | |||
| [https://dlmf.nist.gov/10.24#Ex2 10.24#Ex2] || [[Item:Q3478|<math>\BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}}</syntaxhighlight> || <math>\realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselY(I*nu, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselY[I*\[Nu], x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 30] | |||
|- | |||
| [https://dlmf.nist.gov/10.24.E3 10.24.E3] || [[Item:Q3479|<math>\EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}</syntaxhighlight> || <math>\realpart@@{(1+\iunit \nu)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(1 + I*nu) = ((Pi*nu)/(sinh(Pi*nu)))^((1)/(2))* exp(I*gamma[nu])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[1 + I*\[Nu]] == (Divide[Pi*\[Nu],Sinh[Pi*\[Nu]]])^(Divide[1,2])* Exp[I*Subscript[\[Gamma], \[Nu]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .131682196e-1-.6479738907*I | |||
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2393622021-.2867640040*I | |||
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.013168219691258531, -0.6479738909120968] | |||
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.23936220222535412, -0.28676400411697583] | |||
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.24#Ex3 10.24#Ex3] || [[Item:Q3480|<math>\BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(- nu))*Re(BesselJ(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi - \[Nu]] Re[BesselJ[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [12 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1765981285-.1547836875*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.059084556+.9282601935*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.6353785354467336, 0.04153700144653363] | |||
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.2910880978413849, 0.681683596996288] | |||
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.24#Ex4 10.24#Ex4] || [[Item:Q3481|<math>\BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x}</syntaxhighlight> || <math>\realpart@@{((\iunit (-\nu))+k+1)} > 0, \realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit (-\nu)))+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(- nu))*Re(BesselY(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi - \[Nu]] Re[BesselY[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [12 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6730010946+.5898680353*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1980888923+.1736197856*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.16541121369118172, 0.7534126929509344] | |||
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.3242468905843751, -0.9796849117084342] | |||
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.24.E5 10.24.E5] || [[Item:Q3482|<math>\Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x)</syntaxhighlight> || <math>\realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)))*diff(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)), x)-diff(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)), x)*(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))) = 2/(Pi*x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]], Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]}, x] == 2/(Pi*x)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [12 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3214564733-.7786157192*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6431025084-4.765445687*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.4244131815783876, Times[Complex[0.017184424665049866, -0.12995814793225188], Plus[Times[Complex[5.94457417937745, -0.08806734388290616], Derivative[1][Re][Complex[0.5424102683642863, 1.3820413572565333]]], Times[Complex[0.04670634387761448, 2.0064149502593187], Derivative[1][Re][Complex[1.5013396639532606, -0.5145465005058608]]]]]] | |||
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.4244131815783876, Times[Complex[-0.5062208144169521, 0.3689208146583662], Plus[Times[Complex[1.2690034139339206, -1.428145592425075], Derivative[1][Re][Complex[-0.5230512553281585, -0.7250724679588263]]], Times[Complex[0.9907135967899046, 0.5862869255257461], Derivative[1][Re][Complex[0.9118063408652576, -0.381897212811936]]]]]] | |||
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.24.E9 10.24.E9] || [[Item:Q3487|<math>\BesselYimag{0}@{x} = \BesselY{0}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselYimag{0}@{x} = \BesselY{0}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{((\iunit 0)+k+1)} > 0, \realpart@@{((-(\iunit 0))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sech((1/2)*Pi*(0))*Re(BesselY(I*(0), x)) = BesselY(0, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[1/2 Pi 0] Re[BesselY[I 0, x]] == BesselY[0, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/10.25.E1 10.25.E1] || [[Item:Q3488|<math>z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)-((z)^(2)+ (nu)^(2))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(2)* D[w, {z, 2}]+ z*D[w, z]-((z)^(2)+ \[Nu]^(2))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [220 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6467477718e-9-2.000000002*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8660254040e-9-2.000000001*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [264 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -2.0] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -2.0] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.25.E2 10.25.E2] || [[Item:Q3489|<math>\modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = ((1)/(2)*z)^(nu)* sum((((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E1 10.27.E1] || [[Item:Q3491|<math>\modBesselI{-n}@{z} = \modBesselI{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-n}@{z} = \modBesselI{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- n, z) = BesselI(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- n, z] == BesselI[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E2 10.27.E2] || [[Item:Q3492|<math>\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E3 10.27.E3] || [[Item:Q3493|<math>\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(- nu, z) = BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[- \[Nu], z] == BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E4 10.27.E4] || [[Item:Q3494|<math>\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E6 10.27.E6] || [[Item:Q3496|<math>\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E6 10.27.E6] || [[Item:Q3496|<math>\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E7 10.27.E7] || [[Item:Q3497|<math>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E7 10.27.E7] || [[Item:Q3497|<math>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E9 10.27.E9] || [[Item:Q3499|<math>\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E10 10.27.E10] || [[Item:Q3500|<math>-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E11 10.27.E11] || [[Item:Q3501|<math>\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50] | |||
|- | |||
| [https://dlmf.nist.gov/10.27.E11 10.27.E11] || [[Item:Q3501|<math>\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50] | |||
|- | |||
| [https://dlmf.nist.gov/10.28.E1 10.28.E1] || [[Item:Q3502|<math>\Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselI(nu, z))*diff(BesselI(- nu, z), z)-diff(BesselI(nu, z), z)*(BesselI(- nu, z)) = BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselI[\[Nu], z], BesselI[- \[Nu], z]}, z] == BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.28.E1 10.28.E1] || [[Item:Q3502|<math>\modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) = - 2*sin(nu*Pi)/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.28.E2 10.28.E2] || [[Item:Q3503|<math>\Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselK(nu, z))*diff(BesselI(nu, z), z)-diff(BesselK(nu, z), z)*(BesselI(nu, z)) = BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselK[\[Nu], z], BesselI[\[Nu], z]}, z] == BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.28.E2 10.28.E2] || [[Item:Q3503|<math>\modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) = 1/z</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] == 1/z</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.29#Ex5 10.29#Ex5] || [[Item:Q3508|<math>\modBesselI{0}'@{z} = \modBesselI{1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{0}'@{z} = \modBesselI{1}@{z}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>diff( BesselI(0, z), z$(1) ) = BesselI(1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[BesselI[0, z], {z, 1}] == BesselI[1, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.29#Ex6 10.29#Ex6] || [[Item:Q3509|<math>\modBesselK{0}'@{z} = -\modBesselK{1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}'@{z} = -\modBesselK{1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff( BesselK(0, z), z$(1) ) = - BesselK(1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[BesselK[0, z], {z, 1}] == - BesselK[1, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.31.E1 10.31.E1] || [[Item:Q3518|<math>\modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(n, z) = (1)/(2)*((1)/(2)*z)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*(-(1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(- 1)^(n + 1)* ln((1)/(2)*z)*BesselI(n, z)+(- 1)^(n)*(1)/(2)*((1)/(2)*z)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[n, z] == Divide[1,2]*(Divide[1,2]*z)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*(-Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n + 1)* Log[Divide[1,2]*z]*BesselI[n, z]+(- 1)^(n)*Divide[1,2]*(Divide[1,2]*z)^(n)* Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.6666666666666666, Times[-0.6666666666666666, DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.38888888888888906, Times[0.5, DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.31.E2 10.31.E2] || [[Item:Q3519|<math>\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+((1)/(4)*(z)^(2))/((factorial(1))^(2))+(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]+(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-6.985673039111573*^-6, -1.2369744460005716*^-5], Times[-1.0, …]] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-7.140527721077872*^-6, -1.2101549865001227*^-5], Times[-1.0, …]] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.31.E3 10.31.E3] || [[Item:Q3520|<math>\modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z)*BesselI(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z]*BesselI[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E1 10.32.E1] || [[Item:Q3521|<math>\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(0, z) = (1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E1 10.32.E1] || [[Item:Q3521|<math>\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(0, z) = (1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E1 10.32.E1] || [[Item:Q3521|<math>\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E1 10.32.E1] || [[Item:Q3521|<math>\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E2 10.32.E2] || [[Item:Q3522|<math>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 35] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E2 10.32.E2] || [[Item:Q3522|<math>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 35] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E2 10.32.E2] || [[Item:Q3522|<math>\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(+ z*t), t = - 1..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[+ z*t], {t, - 1, 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 35] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E2 10.32.E2] || [[Item:Q3522|<math>\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{- zt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{- zt}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(- z*t), t = - 1..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[- z*t], {t, - 1, 1}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || Skip - symbolical successful subtest || Successful [Tested: 35] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E3 10.32.E3] || [[Item:Q3523|<math>\modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(n, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(n*theta), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[n, z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 21] || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E4 10.32.E4] || [[Item:Q3524|<math>\modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*cosh(t)- nu*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[\[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Cosh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E5 10.32.E5] || [[Item:Q3525|<math>\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(0, z) = -(1)/(Pi)*int(exp(+ z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E5 10.32.E5] || [[Item:Q3525|<math>\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(0, z) = -(1)/(Pi)*int(exp(- z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E6 10.32.E6] || [[Item:Q3526|<math>\modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>BesselK(0, x) = int(cos(x*sinh(t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[0, x] == Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E6 10.32.E6] || [[Item:Q3526|<math>\int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>int(cos(x*sinh(t)), t = 0..infinity) = int((cos(x*t))/(sqrt((t)^(2)+ 1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[Cos[x*t],Sqrt[(t)^(2)+ 1]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E7 10.32.E7] || [[Item:Q3527|<math>\modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, x > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, x) = sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], x] == Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E7 10.32.E7] || [[Item:Q3527|<math>\sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, x > 0</math> || <syntaxhighlight lang=mathematica>sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity) = csc((1)/(2)*nu*Pi)*int(sin(x*sinh(t))*sinh(nu*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] == Csc[Divide[1,2]*\[Nu]*Pi]*Integrate[Sin[x*Sinh[t]]*Sinh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E8 10.32.E8] || [[Item:Q3528|<math>\modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E8 10.32.E8] || [[Item:Q3528|<math>\frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || Skip - symbolical successful subtest || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E9 10.32.E9] || [[Item:Q3529|<math>\modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = int(exp(- z*cosh(t))*cosh(nu*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Integrate[Exp[- z*Cosh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E10 10.32.E10] || [[Item:Q3530|<math>\modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (1)/(2)*((1)/(2)*z)^(nu)* int(exp(- t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[1,2]*(Divide[1,2]*z)^\[Nu]* Integrate[Exp[- t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 40] | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E11 10.32.E11] || [[Item:Q3531|<math>\modBesselK{\nu}@{xz} = \frac{\EulerGamma@{\nu+\frac{1}{2}}(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{xz} = \frac{\EulerGamma@{\nu+\frac{1}{2}}(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, x > 0, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, x*(x + y*I)) = (GAMMA(nu +(1)/(2))*(2*(x + y*I))^(nu))/((Pi)^((1)/(2))* (x)^(nu))*int((cos(x*t))/(((t)^(2)+(x + y*I)^(2))^(nu +(1)/(2))), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], x*(x + y*I)] == Divide[Gamma[\[Nu]+Divide[1,2]]*(2*(x + y*I))^\[Nu],(Pi)^(Divide[1,2])* (x)^\[Nu]]*Integrate[Divide[Cos[x*t],((t)^(2)+(x + y*I)^(2))^(\[Nu]+Divide[1,2])], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E12 10.32.E12] || [[Item:Q3532|<math>\modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2*Pi*I)*int(exp(z*cosh(t)- nu*t), t = infinity - I*Pi..infinity + I*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Exp[z*Cosh[t]- \[Nu]*t], {t, Infinity - I*Pi, Infinity + I*Pi}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [50 / 50]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5303418993681409, 0.010453999760907294] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.7664848208906112, 0.1468422559210476] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E13 10.32.E13] || [[Item:Q3533|<math>\modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t}</syntaxhighlight> || <math>c > \max(\realpart@@{\nu}, 0) < \frac{1}{2}\pi, |\phase@@{z}| < \frac{1}{2}\pi, \realpart@@{t} > 0, \realpart@@{(t-\nu)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (((1)/(2)*z)^(nu))/(4*Pi*I)*int(GAMMA(t)*GAMMA(t - nu)*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],4*Pi*I]*Integrate[Gamma[t]*Gamma[t - \[Nu]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5663982443-.3181066824*I | |||
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.434992817-2.759712160*I | |||
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E14 10.32.E14] || [[Item:Q3534|<math>\modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t}</syntaxhighlight> || <math>\nu-\tfrac{1}{2}\notin\Integers < \tfrac{3}{2}\pi, |\phase@@{z}| < \tfrac{3}{2}\pi, \realpart@@{t} > 0, \realpart@@{(\tfrac{1}{2}-t-\nu)} > 0, \realpart@@{(\tfrac{1}{2}-t+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (1)/(2*(Pi)^(2)* I)*((Pi)/(2*z))^((1)/(2))* exp(- z)*cos(nu*Pi)* int(GAMMA(t)*GAMMA((1)/(2)- t - nu)*GAMMA((1)/(2)- t + nu)*(2*z)^(t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[1,2*(Pi)^(2)* I]*(Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*Cos[\[Nu]*Pi]* Integrate[Gamma[t]*Gamma[Divide[1,2]- t - \[Nu]]*Gamma[Divide[1,2]- t + \[Nu]]*(2*z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E15 10.32.E15] || [[Item:Q3535|<math>\modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(mu, z)*BesselI(nu, z) = (2)/(Pi)*int(BesselI(mu + nu, 2*z*cos(theta))*cos((mu - nu)*theta), theta = 0..(1)/(2)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Mu], z]*BesselI[\[Nu], z] == Divide[2,Pi]*Integrate[BesselI[\[Mu]+ \[Nu], 2*z*Cos[\[Theta]]]*Cos[(\[Mu]- \[Nu])*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E16 10.32.E16] || [[Item:Q3536|<math>\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu+\nu}@{2x\sinh@@{t}}e^{(-\mu+\nu)t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu+\nu}@{2x\sinh@@{t}}e^{(-\mu+\nu)t}\diff{t}</syntaxhighlight> || <math>\realpart@{\mu-\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, x > 0, \realpart@@{((\mu+\nu)+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu + nu, 2*x*sinh(t))*exp((- mu + nu)*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]+ \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E16 10.32.E16] || [[Item:Q3536|<math>\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu-\nu}@{2x\sinh@@{t}}e^{(-\mu-\nu)t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu-\nu}@{2x\sinh@@{t}}e^{(-\mu-\nu)t}\diff{t}</syntaxhighlight> || <math>\realpart@{\mu-\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, x > 0, \realpart@@{((\mu+\nu)+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu - nu, 2*x*sinh(t))*exp((- mu - nu)*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]- \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E17 10.32.E17] || [[Item:Q3537|<math>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu + nu, 2*z*cosh(t))*cosh((mu - nu)*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]+ \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E17 10.32.E17] || [[Item:Q3537|<math>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu - nu, 2*z*cosh(t))*cosh((mu + nu)*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]- \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E18 10.32.E18] || [[Item:Q3538|<math>\modBesselK{\nu}@{z}\modBesselK{\nu}@{\zeta} = \frac{1}{2}\int_{0}^{\infty}\exp@{-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselK{\nu}\left(\frac{z\zeta}{t}\right)\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z}\modBesselK{\nu}@{\zeta} = \frac{1}{2}\int_{0}^{\infty}\exp@{-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselK{\nu}\left(\frac{z\zeta}{t}\right)\frac{\diff{t}}{t}</syntaxhighlight> || <math>|\phase@@{z}| < \pi, |\phase@@{\zeta}| < \pi, |\phase@{z+\zeta}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z)*BesselK(nu, zeta) = (1)/(2)*int(exp(-(t)/(2)-((z)^(2)+ (zeta)^(2))/(2*t))*BesselK(nu, (z*zeta)/(t))*(1)/(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z]*BesselK[\[Nu], \[Zeta]] == Divide[1,2]*Integrate[Exp[-Divide[t,2]-Divide[(z)^(2)+ \[Zeta]^(2),2*t]]*BesselK[\[Nu], Divide[z*\[Zeta],t]]*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Translation Error || Translation Error || - || - | |||
|- | |||
| [https://dlmf.nist.gov/10.32.E19 10.32.E19] || [[Item:Q3539|<math>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = \frac{1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{t+\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t+\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu-\frac{1}{2}\nu}}{\EulerGamma@{2t}}(\tfrac{1}{2}z)^{-2t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = \frac{1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{t+\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t+\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu-\frac{1}{2}\nu}}{\EulerGamma@{2t}}(\tfrac{1}{2}z)^{-2t}\diff{t}</syntaxhighlight> || <math>c > \tfrac{1}{2}(|\realpart@@{\mu}|+|\realpart@@{\nu}|), |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(t+\frac{1}{2}\mu+\frac{1}{2}\nu)} > 0, \realpart@@{(t+\frac{1}{2}\mu-\frac{1}{2}\nu)} > 0, \realpart@@{(t-\frac{1}{2}\mu+\frac{1}{2}\nu)} > 0, \realpart@@{(t-\frac{1}{2}\mu-\frac{1}{2}\nu)} > 0, \realpart@@{(2t)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(mu, z)*BesselK(nu, z) = (1)/(8*Pi*I)*int((GAMMA(t +(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t +(1)/(2)*mu -(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu -(1)/(2)*nu))/(GAMMA(2*t))*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Mu], z]*BesselK[\[Nu], z] == Divide[1,8*Pi*I]*Integrate[Divide[Gamma[t +Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t +Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]],Gamma[2*t]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated | |||
|- | |||
| [https://dlmf.nist.gov/10.34.E1 10.34.E1] || [[Item:Q3542|<math>\modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselI[\[Nu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [132 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.206479866-1.131319388*I | |||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5147384726+.2724622562e-1*I | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5147384726+.2724622562e-1*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [120 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.206479866313521, -1.1313193889480602] | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [120 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.206479866313521, -1.1313193889480602] | ||
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5147384728800724, 0.02724622519878004] | Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5147384728800724, 0.02724622519878004] | ||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34.E2 10.34.E2] || [[Item:Q3543|<math>\modBesselK{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\modBesselK{\nu}@{z}-\pi i\sin@{m\nu\pi}\csc@{\nu\pi}\modBesselI{\nu}@{z}</math>]] || <math>\realpart@@{\nu+k+1} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z*exp(m*Pi*I)) = exp(- m*nu*Pi*I)*BesselK(nu, z)- Pi*I*sin(m*nu*Pi)*csc(nu*Pi)*BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z*Exp[m*Pi*I]] == Exp[- m*\[Nu]*Pi*I]*BesselK[\[Nu], z]- Pi*I*Sin[m*\[Nu]*Pi]*Csc[\[Nu]*Pi]*BesselI[\[Nu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [170 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.965939338+3.157233720*I | | [https://dlmf.nist.gov/10.34.E2 10.34.E2] || [[Item:Q3543|<math>\modBesselK{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\modBesselK{\nu}@{z}-\pi i\sin@{m\nu\pi}\csc@{\nu\pi}\modBesselI{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\modBesselK{\nu}@{z}-\pi i\sin@{m\nu\pi}\csc@{\nu\pi}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z*exp(m*Pi*I)) = exp(- m*nu*Pi*I)*BesselK(nu, z)- Pi*I*sin(m*nu*Pi)*csc(nu*Pi)*BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z*Exp[m*Pi*I]] == Exp[- m*\[Nu]*Pi*I]*BesselK[\[Nu], z]- Pi*I*Sin[m*\[Nu]*Pi]*Csc[\[Nu]*Pi]*BesselI[\[Nu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [170 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.965939338+3.157233720*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -10.37113928-12.75980866*I | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -10.37113928-12.75980866*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [162 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.965939340334436, 3.157233721966529] | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [162 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.965939340334436, 3.157233721966529] | ||
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-10.371139260352992, -12.75980869099896] | Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-10.371139260352992, -12.75980869099896] | ||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34.E3 10.34.E3] || [[Item:Q3544|<math>\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(+ e^{m\nu\pi i}\modBesselK{\nu}@{ze^{+\pi i}}- e^{(m- 1)\nu\pi i}\modBesselK{\nu}@{z}\right)</math>]] || <math>\realpart@@{\nu+k+1} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(+ exp(m*nu*Pi*I)*BesselK(nu, z*exp(+ Pi*I))- exp((m - 1)*nu*Pi*I)*BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(+ Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Exp[(m - 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [152 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.316975457-.8668337446*I | | [https://dlmf.nist.gov/10.34.E3 10.34.E3] || [[Item:Q3544|<math>\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(+ e^{m\nu\pi i}\modBesselK{\nu}@{ze^{+\pi i}}- e^{(m- 1)\nu\pi i}\modBesselK{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(+ e^{m\nu\pi i}\modBesselK{\nu}@{ze^{+\pi i}}- e^{(m- 1)\nu\pi i}\modBesselK{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(+ exp(m*nu*Pi*I)*BesselK(nu, z*exp(+ Pi*I))- exp((m - 1)*nu*Pi*I)*BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(+ Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Exp[(m - 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [152 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.316975457-.8668337446*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5132395470-.3232131754e-1*I | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5132395470-.3232131754e-1*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [140 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.3169754573845194, -0.8668337451474188] | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [140 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.3169754573845194, -0.8668337451474188] | ||
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5132395471581521, -0.03232131806579792] | Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5132395471581521, -0.03232131806579792] | ||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34.E3 10.34.E3] || [[Item:Q3544|<math>\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(- e^{m\nu\pi i}\modBesselK{\nu}@{ze^{-\pi i}}+ e^{(m+ 1)\nu\pi i}\modBesselK{\nu}@{z}\right)</math>]] || <math>\realpart@@{\nu+k+1} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(- exp(m*nu*Pi*I)*BesselK(nu, z*exp(- Pi*I))+ exp((m + 1)*nu*Pi*I)*BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(- Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Exp[(m + 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [190 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.206479866-1.131319388*I | | [https://dlmf.nist.gov/10.34.E3 10.34.E3] || [[Item:Q3544|<math>\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(- e^{m\nu\pi i}\modBesselK{\nu}@{ze^{-\pi i}}+ e^{(m+ 1)\nu\pi i}\modBesselK{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(- e^{m\nu\pi i}\modBesselK{\nu}@{ze^{-\pi i}}+ e^{(m+ 1)\nu\pi i}\modBesselK{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(- exp(m*nu*Pi*I)*BesselK(nu, z*exp(- Pi*I))+ exp((m + 1)*nu*Pi*I)*BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(- Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Exp[(m + 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [190 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.206479866-1.131319388*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5147384726+.2724622561e-1*I | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5147384726+.2724622561e-1*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [190 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.206479866313521, -1.1313193889480602] | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [190 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.206479866313521, -1.1313193889480602] | ||
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5147384728800724, 0.027246225198780036] | Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5147384728800724, 0.027246225198780036] | ||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34.E4 10.34.E4] || [[Item:Q3545|<math>\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(+\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{+\pi i}}-\sin@{(m- 1)\nu\pi}\modBesselK{\nu}@{z}\right)</math>]] || <math></math> || <syntaxhighlight lang=mathematica>BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(+ sin(m*nu*Pi)*BesselK(nu, z*exp(+ Pi*I))- sin((m - 1)*nu*Pi)*BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(+ Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Sin[(m - 1)*\[Nu]*Pi]*BesselK[\[Nu], z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [158 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.723238516+7.278993081*I | | [https://dlmf.nist.gov/10.34.E4 10.34.E4] || [[Item:Q3545|<math>\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(+\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{+\pi i}}-\sin@{(m- 1)\nu\pi}\modBesselK{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(+\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{+\pi i}}-\sin@{(m- 1)\nu\pi}\modBesselK{\nu}@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(+ sin(m*nu*Pi)*BesselK(nu, z*exp(+ Pi*I))- sin((m - 1)*nu*Pi)*BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(+ Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Sin[(m - 1)*\[Nu]*Pi]*BesselK[\[Nu], z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [158 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.723238516+7.278993081*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 29.12762958-25.06220737*I | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 29.12762958-25.06220737*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [154 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.7232385256388585, 7.278993075467058] | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [154 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.7232385256388585, 7.278993075467058] | ||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[29.127629620508102, -25.062207299552764] | Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[29.127629620508102, -25.062207299552764] | ||
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34.E4 10.34.E4] || [[Item:Q3545|<math>\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(-\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{-\pi i}}+\sin@{(m+ 1)\nu\pi}\modBesselK{\nu}@{z}\right)</math>]] || <math></math> || <syntaxhighlight lang=mathematica>BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(- sin(m*nu*Pi)*BesselK(nu, z*exp(- Pi*I))+ sin((m + 1)*nu*Pi)*BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(- Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Sin[(m + 1)*\[Nu]*Pi]*BesselK[\[Nu], z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [170 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.965939338+3.157233717*I | | [https://dlmf.nist.gov/10.34.E4 10.34.E4] || [[Item:Q3545|<math>\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(-\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{-\pi i}}+\sin@{(m+ 1)\nu\pi}\modBesselK{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(-\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{-\pi i}}+\sin@{(m+ 1)\nu\pi}\modBesselK{\nu}@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(- sin(m*nu*Pi)*BesselK(nu, z*exp(- Pi*I))+ sin((m + 1)*nu*Pi)*BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(- Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Sin[(m + 1)*\[Nu]*Pi]*BesselK[\[Nu], z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [170 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.965939338+3.157233717*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -10.37113929-12.75980866*I | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -10.37113929-12.75980866*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [182 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.9659393403344363, 3.1572337219665294] | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [182 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.9659393403344363, 3.1572337219665294] | ||
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-10.371139260352981, -12.759808690998973] | Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-10.371139260352981, -12.759808690998973] | ||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34.E5 10.34.E5] || [[Item:Q3546|<math>\modBesselK{n}@{ze^{m\pi i}} = (-1)^{mn}\modBesselK{n}@{z}+(-1)^{n(m-1)-1}m\pi i\modBesselI{n}@{z}</math>]] || <math>\realpart@@{n+k+1} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(n, z*exp(m*Pi*I)) = (- 1)^(m*n)* BesselK(n, z)+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)* BesselK[n, z]+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [57 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.971501919+2.706233555*I | | [https://dlmf.nist.gov/10.34.E5 10.34.E5] || [[Item:Q3546|<math>\modBesselK{n}@{ze^{m\pi i}} = (-1)^{mn}\modBesselK{n}@{z}+(-1)^{n(m-1)-1}m\pi i\modBesselI{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{n}@{ze^{m\pi i}} = (-1)^{mn}\modBesselK{n}@{z}+(-1)^{n(m-1)-1}m\pi i\modBesselI{n}@{z}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(n, z*exp(m*Pi*I)) = (- 1)^(m*n)* BesselK(n, z)+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)* BesselK[n, z]+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [57 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.971501919+2.706233555*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7368261646+.3579119854*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7368261646+.3579119854*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [48 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9715019183470535, 2.7062335550125516] | Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [48 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9715019183470535, 2.7062335550125516] | ||
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.736826162742255, 0.3579119863626685] | Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.736826162742255, 0.3579119863626685] | ||
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34.E6 10.34.E6] || [[Item:Q3547|<math>\modBesselK{n}@{ze^{m\pi i}} = +(-1)^{n(m-1)}m\modBesselK{n}@{ze^{+\pi i}}-(-1)^{nm}(m- 1)\modBesselK{n}@{z}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>BesselK(n, z*exp(m*Pi*I)) = +(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(+ Pi*I))-(- 1)^(n*m)*(m - 1)*BesselK(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[n, z*Exp[m*Pi*I]] == +(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[+ Pi*I]]-(- 1)^(n*m)*(m - 1)*BesselK[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [51 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.971501920+2.706233556*I | | [https://dlmf.nist.gov/10.34.E6 10.34.E6] || [[Item:Q3547|<math>\modBesselK{n}@{ze^{m\pi i}} = +(-1)^{n(m-1)}m\modBesselK{n}@{ze^{+\pi i}}-(-1)^{nm}(m- 1)\modBesselK{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{n}@{ze^{m\pi i}} = +(-1)^{n(m-1)}m\modBesselK{n}@{ze^{+\pi i}}-(-1)^{nm}(m- 1)\modBesselK{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(n, z*exp(m*Pi*I)) = +(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(+ Pi*I))-(- 1)^(n*m)*(m - 1)*BesselK(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[n, z*Exp[m*Pi*I]] == +(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[+ Pi*I]]-(- 1)^(n*m)*(m - 1)*BesselK[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [51 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.971501920+2.706233556*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7368261602-.357911988*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7368261602-.357911988*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9715019183470535, 2.7062335550125516] | Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9715019183470535, 2.7062335550125516] | ||
Test Values: {Rule[m, 2], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.736826162742255, -0.3579119863626685] | Test Values: {Rule[m, 2], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.736826162742255, -0.3579119863626685] | ||
Test Values: {Rule[m, 2], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 2], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34.E6 10.34.E6] || [[Item:Q3547|<math>\modBesselK{n}@{ze^{m\pi i}} = -(-1)^{n(m-1)}m\modBesselK{n}@{ze^{-\pi i}}+(-1)^{nm}(m+ 1)\modBesselK{n}@{z}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>BesselK(n, z*exp(m*Pi*I)) = -(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(- Pi*I))+(- 1)^(n*m)*(m + 1)*BesselK(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[n, z*Exp[m*Pi*I]] == -(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[- Pi*I]]+(- 1)^(n*m)*(m + 1)*BesselK[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [54 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.971501919+2.706233556*I | | [https://dlmf.nist.gov/10.34.E6 10.34.E6] || [[Item:Q3547|<math>\modBesselK{n}@{ze^{m\pi i}} = -(-1)^{n(m-1)}m\modBesselK{n}@{ze^{-\pi i}}+(-1)^{nm}(m+ 1)\modBesselK{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{n}@{ze^{m\pi i}} = -(-1)^{n(m-1)}m\modBesselK{n}@{ze^{-\pi i}}+(-1)^{nm}(m+ 1)\modBesselK{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(n, z*exp(m*Pi*I)) = -(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(- Pi*I))+(- 1)^(n*m)*(m + 1)*BesselK(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[n, z*Exp[m*Pi*I]] == -(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[- Pi*I]]+(- 1)^(n*m)*(m + 1)*BesselK[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [54 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.971501919+2.706233556*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7368261645+.357911985*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7368261645+.357911985*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [63 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9715019183470535, 2.7062335550125516] | Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [63 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9715019183470535, 2.7062335550125516] | ||
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.736826162742255, 0.3579119863626685] | Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.736826162742255, 0.3579119863626685] | ||
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34#Ex1 10.34#Ex1] || [[Item:Q3548|<math>\modBesselI{\nu}@{\conj{z}} = \conj{\modBesselI{\nu}@{z}}</math>]] || <math>\realpart@@{\nu+k+1} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, conjugate(z)) = conjugate(BesselI(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], Conjugate[z]] == Conjugate[BesselI[\[Nu], z]]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [28 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.1457476573229447, -0.7449450592023206] | | [https://dlmf.nist.gov/10.34#Ex1 10.34#Ex1] || [[Item:Q3548|<math>\modBesselI{\nu}@{\conj{z}} = \conj{\modBesselI{\nu}@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{\conj{z}} = \conj{\modBesselI{\nu}@{z}}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, conjugate(z)) = conjugate(BesselI(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], Conjugate[z]] == Conjugate[BesselI[\[Nu], z]]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [28 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.1457476573229447, -0.7449450592023206] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.100244133383339, 1.2347828003590728] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.100244133383339, 1.2347828003590728] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.34#Ex2 10.34#Ex2] || [[Item:Q3549|<math>\modBesselK{\nu}@{\conj{z}} = \conj{\modBesselK{\nu}@{z}}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>BesselK(nu, conjugate(z)) = conjugate(BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], Conjugate[z]] == Conjugate[BesselK[\[Nu], z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [28 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3322466664+.1347267497*I | | [https://dlmf.nist.gov/10.34#Ex2 10.34#Ex2] || [[Item:Q3549|<math>\modBesselK{\nu}@{\conj{z}} = \conj{\modBesselK{\nu}@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{\conj{z}} = \conj{\modBesselK{\nu}@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(nu, conjugate(z)) = conjugate(BesselK(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], Conjugate[z]] == Conjugate[BesselK[\[Nu], z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [28 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3322466664+.1347267497*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8978926857-1.555608423*I | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8978926857-1.555608423*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [28 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.332246666369582, 0.13472674975137633] | Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [28 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.332246666369582, 0.13472674975137633] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.23222824698313052, -0.12812607679285354] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.23222824698313052, -0.12812607679285354] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.35.E1 10.35.E1] || [[Item:Q3550|<math>e^{\frac{1}{2}z(t+t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\modBesselI{m}@{z}</math>]] || <math>\realpart@@{m+k+1} > 0</math> || <syntaxhighlight lang=mathematica>exp((1)/(2)*z*(t + (t)^(- 1))) = sum((t)^(m)* BesselI(m, z), m = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Divide[1,2]*z*(t + (t)^(- 1))] == Sum[(t)^(m)* BesselI[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | | [https://dlmf.nist.gov/10.35.E1 10.35.E1] || [[Item:Q3550|<math>e^{\frac{1}{2}z(t+t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\modBesselI{m}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{\frac{1}{2}z(t+t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\modBesselI{m}@{z}</syntaxhighlight> || <math>\realpart@@{(m+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp((1)/(2)*z*(t + (t)^(- 1))) = sum((t)^(m)* BesselI(m, z), m = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Divide[1,2]*z*(t + (t)^(- 1))] == Sum[(t)^(m)* BesselI[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.35.E2 10.35.E2] || [[Item:Q3551|<math>e^{z\cos@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\modBesselI{k}@{z}\cos@{k\theta}</math>]] || <math>\realpart@@{0+k+1} > 0, \realpart@@{k+k+1} > 0</math> || <syntaxhighlight lang=mathematica>exp(z*cos(theta)) = BesselI(0, z)+ 2*sum(BesselI(k, z)*cos(k*theta), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z*Cos[\[Theta]]] == BesselI[0, z]+ 2*Sum[BesselI[k, z]*Cos[k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70] | | [https://dlmf.nist.gov/10.35.E2 10.35.E2] || [[Item:Q3551|<math>e^{z\cos@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\modBesselI{k}@{z}\cos@{k\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z\cos@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\modBesselI{k}@{z}\cos@{k\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp(z*cos(theta)) = BesselI(0, z)+ 2*sum(BesselI(k, z)*cos(k*theta), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z*Cos[\[Theta]]] == BesselI[0, z]+ 2*Sum[BesselI[k, z]*Cos[k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.35.E3 10.35.E3] || [[Item:Q3552|<math>e^{z\sin@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=0}^{\infty}(-1)^{k}\modBesselI{2k+1}@{z}\sin@{(2k+1)\theta}+2\sum_{k=1}^{\infty}(-1)^{k}\modBesselI{2k}@{z}\cos@{2k\theta}</math>]] || <math>\realpart@@{0+k+1} > 0, \realpart@@{2k+1+k+1} > 0, \realpart@@{2k+k+1} > 0</math> || <syntaxhighlight lang=mathematica>exp(z*sin(theta)) = BesselI(0, z)+ 2*sum((- 1)^(k)* BesselI(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)+ 2*sum((- 1)^(k)* BesselI(2*k, z)*cos(2*k*theta), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z*Sin[\[Theta]]] == BesselI[0, z]+ 2*Sum[(- 1)^(k)* BesselI[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselI[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Manual Skip! || Skipped - Because timed out | | [https://dlmf.nist.gov/10.35.E3 10.35.E3] || [[Item:Q3552|<math>e^{z\sin@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=0}^{\infty}(-1)^{k}\modBesselI{2k+1}@{z}\sin@{(2k+1)\theta}+2\sum_{k=1}^{\infty}(-1)^{k}\modBesselI{2k}@{z}\cos@{2k\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z\sin@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=0}^{\infty}(-1)^{k}\modBesselI{2k+1}@{z}\sin@{(2k+1)\theta}+2\sum_{k=1}^{\infty}(-1)^{k}\modBesselI{2k}@{z}\cos@{2k\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp(z*sin(theta)) = BesselI(0, z)+ 2*sum((- 1)^(k)* BesselI(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)+ 2*sum((- 1)^(k)* BesselI(2*k, z)*cos(2*k*theta), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z*Sin[\[Theta]]] == BesselI[0, z]+ 2*Sum[(- 1)^(k)* BesselI[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselI[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Manual Skip! || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.35.E4 10.35.E4] || [[Item:Q3553|<math>1 = \modBesselI{0}@{z}-2\modBesselI{2}@{z}+2\modBesselI{4}@{z}-2\modBesselI{6}@{z}+\dotsb</math>]] || <math>\realpart@@{0+k+1} > 0, \realpart@@{2+k+1} > 0, \realpart@@{4+k+1} > 0, \realpart@@{6+k+1} > 0</math> || <syntaxhighlight lang=mathematica>1 = BesselI(0, z)- 2*BesselI(2, z)+ 2*BesselI(4, z)- 2*BesselI(6, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 == BesselI[0, z]- 2*BesselI[2, z]+ 2*BesselI[4, z]- 2*BesselI[6, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.440290591519046*^-8, -1.7199789187696823*^-7], Times[-1.0, …]] | | [https://dlmf.nist.gov/10.35.E4 10.35.E4] || [[Item:Q3553|<math>1 = \modBesselI{0}@{z}-2\modBesselI{2}@{z}+2\modBesselI{4}@{z}-2\modBesselI{6}@{z}+\dotsb</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1 = \modBesselI{0}@{z}-2\modBesselI{2}@{z}+2\modBesselI{4}@{z}-2\modBesselI{6}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>1 = BesselI(0, z)- 2*BesselI(2, z)+ 2*BesselI(4, z)- 2*BesselI(6, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 == BesselI[0, z]- 2*BesselI[2, z]+ 2*BesselI[4, z]- 2*BesselI[6, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.440290591519046*^-8, -1.7199789187696823*^-7], Times[-1.0, …]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.924736610669727*^-8, -1.6360842739013975*^-7], Times[-1.0, …]] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.924736610669727*^-8, -1.6360842739013975*^-7], Times[-1.0, …]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.35.E5 10.35.E5] || [[Item:Q3554|<math>e^{+ z} = \modBesselI{0}@{z}+ 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}+ 2\modBesselI{3}@{z}+\dotsb</math>]] || <math>\realpart@@{0+k+1} > 0, \realpart@@{1+k+1} > 0, \realpart@@{2+k+1} > 0, \realpart@@{3+k+1} > 0</math> || <syntaxhighlight lang=mathematica>exp(+ z) = BesselI(0, z)+ 2*BesselI(1, z)+ 2*BesselI(2, z)+ 2*BesselI(3, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ z] == BesselI[0, z]+ 2*BesselI[1, z]+ 2*BesselI[2, z]+ 2*BesselI[3, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.003384051289485407, 0.00475177611436145], Times[-1.0, …]] | | [https://dlmf.nist.gov/10.35.E5 10.35.E5] || [[Item:Q3554|<math>e^{+ z} = \modBesselI{0}@{z}+ 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}+ 2\modBesselI{3}@{z}+\dotsb</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+ z} = \modBesselI{0}@{z}+ 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}+ 2\modBesselI{3}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(3+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp(+ z) = BesselI(0, z)+ 2*BesselI(1, z)+ 2*BesselI(2, z)+ 2*BesselI(3, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ z] == BesselI[0, z]+ 2*BesselI[1, z]+ 2*BesselI[2, z]+ 2*BesselI[3, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.003384051289485407, 0.00475177611436145], Times[-1.0, …]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.002576303532707505, 0.004074841322498801], Times[-1.0, …]] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.002576303532707505, 0.004074841322498801], Times[-1.0, …]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.35.E5 10.35.E5] || [[Item:Q3554|<math>e^{- z} = \modBesselI{0}@{z}- 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}- 2\modBesselI{3}@{z}+\dotsb</math>]] || <math>\realpart@@{0+k+1} > 0, \realpart@@{1+k+1} > 0, \realpart@@{2+k+1} > 0, \realpart@@{3+k+1} > 0</math> || <syntaxhighlight lang=mathematica>exp(- z) = BesselI(0, z)- 2*BesselI(1, z)+ 2*BesselI(2, z)- 2*BesselI(3, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z] == BesselI[0, z]- 2*BesselI[1, z]+ 2*BesselI[2, z]- 2*BesselI[3, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.0024389937896763803, 0.0042567403420422645], Times[-1.0, …]] | | [https://dlmf.nist.gov/10.35.E5 10.35.E5] || [[Item:Q3554|<math>e^{- z} = \modBesselI{0}@{z}- 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}- 2\modBesselI{3}@{z}+\dotsb</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{- z} = \modBesselI{0}@{z}- 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}- 2\modBesselI{3}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(3+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp(- z) = BesselI(0, z)- 2*BesselI(1, z)+ 2*BesselI(2, z)- 2*BesselI(3, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z] == BesselI[0, z]- 2*BesselI[1, z]+ 2*BesselI[2, z]- 2*BesselI[3, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.0024389937896763803, 0.0042567403420422645], Times[-1.0, …]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.0020316532349716754, 0.004934003265463338], Times[-1.0, …]] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.0020316532349716754, 0.004934003265463338], Times[-1.0, …]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.37.E1 10.37.E1] || [[Item:Q3559|<math>|\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}|</math>]] || <math></math> || <syntaxhighlight lang=mathematica>abs(BesselK(nu, z)) < abs(BesselK(mu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[BesselK[\[Nu], z]] < Abs[BesselK[\[Mu], z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [204 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6496143723 < .6496143723 | | [https://dlmf.nist.gov/10.37.E1 10.37.E1] || [[Item:Q3559|<math>|\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(BesselK(nu, z)) < abs(BesselK(mu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[BesselK[\[Nu], z]] < Abs[BesselK[\[Mu], z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [204 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6496143723 < .6496143723 | ||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.110500858 < 3.110500858 | Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.110500858 < 3.110500858 | ||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [184 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [184 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.38.E1 10.38.E1] || [[Item:Q3560|<math>\pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}</math>]] | | [https://dlmf.nist.gov/10.38.E1 10.38.E1] || [[Item:Q3560|<math>\pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}</syntaxhighlight> || <math>\realpart@@{(k+1+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>diff(BesselI(+ nu, z), nu) = + BesselI(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[BesselI[+ \[Nu], z], \[Nu]] == + BesselI[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.38.E1 10.38.E1] || [[Item:Q3560|<math>\pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}</math>]] | | [https://dlmf.nist.gov/10.38.E1 10.38.E1] || [[Item:Q3560|<math>\pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}</syntaxhighlight> || <math>\realpart@@{(k+1+\nu)} > 0, \realpart@@{(k+1-\nu)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>diff(BesselI(- nu, z), nu) = - BesselI(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[BesselI[- \[Nu], z], \[Nu]] == - BesselI[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.38.E2 10.38.E2] || [[Item:Q3561|<math>\pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z}</math>]] | | [https://dlmf.nist.gov/10.38.E2 10.38.E2] || [[Item:Q3561|<math>\pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>diff(BesselK(nu, z), nu) = (1)/(2)*Pi*csc(nu*Pi)*(diff(BesselI(- nu, z), nu)- diff(BesselI(nu, z), nu))- Pi*cot(nu*Pi)*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[BesselK[\[Nu], z], \[Nu]] == Divide[1,2]*Pi*Csc[\[Nu]*Pi]*(D[BesselI[- \[Nu], z], \[Nu]]- D[BesselI[\[Nu], z], \[Nu]])- Pi*Cot[\[Nu]*Pi]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 7] | ||
|- | |||
| [https://dlmf.nist.gov/10.39#Ex1 10.39#Ex1] || [[Item:Q3568|<math>\modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z}</syntaxhighlight> || <math>\realpart@@{((\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sinh[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.39#Ex2 10.39#Ex2] || [[Item:Q3569|<math>\modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z}</syntaxhighlight> || <math>\realpart@@{((-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Cosh[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |- | ||
| [https://dlmf.nist.gov/10.39 | | [https://dlmf.nist.gov/10.39.E2 10.39.E2] || [[Item:Q3570|<math>\modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK((1)/(2), z) = BesselK(-(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[Divide[1,2], z] == BesselK[-Divide[1,2], z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | ||
|- | |||
| [https://dlmf.nist.gov/10.39.E2 10.39.E2] || [[Item:Q3570|<math>\modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(-(1)/(2), z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[-Divide[1,2], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.39.E3 10.39.E3] || [[Item:Q3571|<math>\modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK((1)/(4), z) = (Pi)^((1)/(2))* (z)^(-(1)/(4))* CylinderU(0, 2*(z)^((1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[Divide[1,4], z] == (Pi)^(Divide[1,2])* (z)^(-Divide[1,4])* ParabolicCylinderD[- 1/2 -(0), 2*(z)^(Divide[1,2])]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.39.E4 10.39.E4] || [[Item:Q3572|<math>\modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK((3)/(4), z) = (1)/(2)*(Pi)^((1)/(2))* (z)^(-(3)/(4))*((1)/(2)*CylinderU(1, 2*(z)^((1)/(2)))+ CylinderU(- 1, 2*(z)^((1)/(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[Divide[3,4], z] == Divide[1,2]*(Pi)^(Divide[1,2])* (z)^(-Divide[3,4])*(Divide[1,2]*ParabolicCylinderD[- 1/2 -(1), 2*(z)^(Divide[1,2])]+ ParabolicCylinderD[- 1/2 -(- 1), 2*(z)^(Divide[1,2])])</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |- | ||
| [https://dlmf.nist.gov/10.39. | | [https://dlmf.nist.gov/10.39.E5 10.39.E5] || [[Item:Q3573|<math>\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z}</syntaxhighlight> || <math>\realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(+ z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, - 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[+ z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, - 2*z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.800260207-.3396157390*I | ||
Test Values: {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4588638571-.5759587792*I | Test Values: {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4588638571-.5759587792*I | ||
Test Values: {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8002602062152042, -0.3396157389151986] | Test Values: {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8002602062152042, -0.3396157389151986] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.45886385712966904, -0.5759587792371148] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.45886385712966904, -0.5759587792371148] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.39.E5 10.39.E5] || [[Item:Q3573|<math>\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z}</math>]] || <math>\realpart@@{\nu+1} > 0, \realpart@@{\nu+k+1} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(- z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8002602062152032, 0.3396157389151989] | | [https://dlmf.nist.gov/10.39.E5 10.39.E5] || [[Item:Q3573|<math>\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z}</syntaxhighlight> || <math>\realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(- z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8002602062152032, 0.3396157389151989] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4588638571296689, 0.575958779237115] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4588638571296689, 0.575958779237115] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.39.E6 10.39.E6] || [[Item:Q3574|<math>\modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z}</math>]] | | [https://dlmf.nist.gov/10.39.E6 10.39.E6] || [[Item:Q3574|<math>\modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (Pi)^((1)/(2))*(2*z)^(nu)* exp(- z)*KummerU(nu +(1)/(2), 2*nu + 1, 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == (Pi)^(Divide[1,2])*(2*z)^\[Nu]* Exp[- z]*HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | ||
|- | |||
| [https://dlmf.nist.gov/10.39.E7 10.39.E7] || [[Item:Q3575|<math>\modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}}</syntaxhighlight> || <math>\realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = ((2*z)^(-(1)/(2))* WhittakerM(0, nu, 2*z))/((2)^(2*nu)* GAMMA(nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], 2*z],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/10.39.E8 10.39.E8] || [[Item:Q3576|<math>\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* WhittakerW(0, nu, 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* WhittakerW[0, \[Nu], 2*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 70] || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.39.E9 10.39.E9] || [[Item:Q3577|<math>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}}</syntaxhighlight> || <math>\realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (((1)/(2)*z)^(nu))/(GAMMA(nu + 1))*hypergeom([-], [nu + 1], (1)/(4)*(z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+ 1]]*HypergeometricPFQ[{-}, {\[Nu]+ 1}, Divide[1,4]*(z)^(2)]</syntaxhighlight> || Error || Failure || - || Error | |||
|- | |- | ||
| [https://dlmf.nist.gov/10. | | [https://dlmf.nist.gov/10.40.E10 10.40.E10] || [[Item:Q3588|<math>\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\left(\sum_{k=0}^{\ell-1}\frac{a_{k}(\nu)}{z^{k}}+R_{\ell}(\nu,z)\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\left(\sum_{k=0}^{\ell-1}\frac{a_{k}(\nu)}{z^{k}}+R_{\ell}(\nu,z)\right)</syntaxhighlight> || <math>k \geq 1</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)*(sum((((4*(nu)^(2)- (1)^(2))*(4*(nu)^(2)- (3)^(2)) .. (4*(nu)^(2)-(2*k - 1)^(2)))/(factorial(k)*(8)^(k)))/((z)^(k)), k = 0..ell - 1)+ R[ell](nu , z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*(Sum[Divide[Divide[(4*\[Nu]^(2)- (1)^(2))*(4*\[Nu]^(2)- (3)^(2)) \[Ellipsis](4*\[Nu]^(2)-(2*k - 1)^(2)),(k)!*(8)^(k)],(z)^(k)], {k, 0, \[ScriptL]- 1}, GenerateConditions->None]+ Subscript[R, \[ScriptL]][\[Nu], z])</syntaxhighlight> || Failure || Failure || Error || Error | ||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/10.41.E8 10.41.E8] || [[Item:Q3600|<math>p = (1+z^{2})^{-\frac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p = (1+z^{2})^{-\frac{1}{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p = (1 + (z)^(2))^(-(1)/(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p == (1 + (z)^(2))^(-Divide[1,2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/10.41#Ex3 10.41#Ex3] || [[Item:Q3603|<math>U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[1](p) = (1)/(24)*(3*p - 5*(p)^(3))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 1][p] == Divide[1,24]*(3*p - 5*(p)^(3))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/10.41#Ex4 10.41#Ex4] || [[Item:Q3604|<math>U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[2](p) = (1)/(1152)*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 2][p] == Divide[1,1152]*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/10.41#Ex5 10.41#Ex5] || [[Item:Q3605|<math>U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[3](p) = (1)/(414720)*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 3][p] == Divide[1,414720]*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/10.41#Ex6 10.41#Ex6] || [[Item:Q3606|<math>V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[1](p) = (1)/(24)*(- 9*p + 7*(p)^(3))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 1][p] == Divide[1,24]*(- 9*p + 7*(p)^(3))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/10.41#Ex7 10.41#Ex7] || [[Item:Q3607|<math>V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[2](p) = (1)/(1152)*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 2][p] == Divide[1,1152]*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/10.41# | | [https://dlmf.nist.gov/10.41#Ex8 10.41#Ex8] || [[Item:Q3608|<math>V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[3](p) = (1)/(414720)*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 3][p] == Divide[1,414720]*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |||
| [https://dlmf.nist.gov/10.43.E4 10.43.E4] || [[Item:Q3618|<math>\int_{0}^{x}\frac{\modBesselI{0}@{t}-1}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{\modBesselI{0}@{t}-1}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselI(0, t)- 1)/(t), t = 0..x) = (1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselI[0, t]- 1,t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] | |||
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] | Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] | ||
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E4 10.43.E4] || [[Item:Q3618|<math>\frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} = \frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\digamma@{k+2}-\digamma@{1})\modBesselI{2k+3}@{x}</math>]] || <math>\realpart@@{0+k+1} > 0, \realpart@@{k+k+1} > 0, \realpart@@{2k+3+k+1} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity) = (2)/(x)*sum((- 1)^(k)*(2*k + 3)*(Psi(k + 2)- Psi(1))*BesselI(2*k + 3, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None] == Divide[2,x]*Sum[(- 1)^(k)*(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselI[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] | | [https://dlmf.nist.gov/10.43.E4 10.43.E4] || [[Item:Q3618|<math>\frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} = \frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\digamma@{k+2}-\digamma@{1})\modBesselI{2k+3}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} = \frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\digamma@{k+2}-\digamma@{1})\modBesselI{2k+3}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity) = (2)/(x)*sum((- 1)^(k)*(2*k + 3)*(Psi(k + 2)- Psi(1))*BesselI(2*k + 3, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None] == Divide[2,x]*Sum[(- 1)^(k)*(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselI[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] | ||
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.3333333333333333, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 1.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] | Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.3333333333333333, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 1.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] | ||
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-4.0, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 0.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]],</div></div> | Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-4.0, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 0.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E5 10.43.E5] || [[Item:Q3619|<math>\int_{x}^{\infty}\frac{\modBesselK{0}@{t}}{t}\diff{t} = \frac{1}{2}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</math>]] | | [https://dlmf.nist.gov/10.43.E5 10.43.E5] || [[Item:Q3619|<math>\int_{x}^{\infty}\frac{\modBesselK{0}@{t}}{t}\diff{t} = \frac{1}{2}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\modBesselK{0}@{t}}{t}\diff{t} = \frac{1}{2}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((BesselK(0, t))/(t), t = x..infinity) = (1)/(2)*(ln((1)/(2)*x)+ gamma)^(2)+((Pi)^(2))/(24)- sum((Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselK[0, t],t], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[(Pi)^(2),24]- Sum[(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out | ||
|- | |||
| [https://dlmf.nist.gov/10.43.E6 10.43.E6] || [[Item:Q3620|<math>\int_{0}^{x}e^{-t}\modBesselI{n}@{t}\diff{t} = xe^{-x}(\modBesselI{0}@{x}+\modBesselI{1}@{x})+n(e^{-x}\modBesselI{0}@{x}-1)+2e^{-x}\sum_{k=1}^{n-1}(n-k)\modBesselI{k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{-t}\modBesselI{n}@{t}\diff{t} = xe^{-x}(\modBesselI{0}@{x}+\modBesselI{1}@{x})+n(e^{-x}\modBesselI{0}@{x}-1)+2e^{-x}\sum_{k=1}^{n-1}(n-k)\modBesselI{k}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- t)*BesselI(n, t), t = 0..x) = x*exp(- x)*(BesselI(0, x)+ BesselI(1, x))+ n*(exp(- x)*BesselI(0, x)- 1)+ 2*exp(- x)*sum((n - k)*BesselI(k, x), k = 1..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- t]*BesselI[n, t], {t, 0, x}, GenerateConditions->None] == x*Exp[- x]*(BesselI[0, x]+ BesselI[1, x])+ n*(Exp[- x]*BesselI[0, x]- 1)+ 2*Exp[- x]*Sum[(n - k)*BesselI[k, x], {k, 1, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[1.0269197346695518, Times[-0.44626032029685964, Plus[-4.940169569318671, Times[3.0, DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[1.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 1.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[1.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 1.5]], Equal[[2], Plus[BesselI[0, 1.5], BesselI[1, 1.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 1.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 1.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[, 1.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 1.5]], Equal[[3], Plus[Times[2, Power[1.5, -1], Plus[Times[1.5, BesselI[0, 1.5]], Times[-2, BesselI[1, 1.5]]]], BesselI[1, 1.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.6643873281588137, Times[-1.2130613194252668, Plus[-3.19045011222397, Times[3.0, DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[0.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 0.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[0.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 0.5]], Equal[[2], Plus[BesselI[0, 0.5], BesselI[1, 0.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 0.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 0.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[, 0.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 0.5]], Equal[[3], Plus[Times[2, Power[0.5, -1], Plus[Times[0.5, BesselI[0, 0.5]], Times[-2, BesselI[1, 0.5]]]], BesselI[1, 0.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/10.43.E7 10.43.E7] || [[Item:Q3621|<math>\int_{0}^{x}e^{+ t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}-\modBesselI{\nu+1}@{x})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{+ t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}-\modBesselI{\nu+1}@{x})</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(+ t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)- BesselI(nu + 1, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[+ t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]+ 1, x])</syntaxhighlight> || Failure || Successful || Successful [Tested: 15] || Successful [Tested: 15] | |||
|- | |||
| [https://dlmf.nist.gov/10.43.E7 10.43.E7] || [[Item:Q3621|<math>\int_{0}^{x}e^{- t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}+\modBesselI{\nu+1}@{x})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{- t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}+\modBesselI{\nu+1}@{x})</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)+ BesselI(nu + 1, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]+ 1, x])</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 15] | |||
|- | |||
| [https://dlmf.nist.gov/10.43.E8 10.43.E8] || [[Item:Q3622|<math>\int_{0}^{x}e^{+ t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{+ x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}-\modBesselI{\nu-1}@{x})-\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{+ t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{+ x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}-\modBesselI{\nu-1}@{x})-\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}</syntaxhighlight> || <math>\nu \neq \tfrac{1}{2}, \realpart@@{(\nu)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu-1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(+ t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(+ x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)- BesselI(nu - 1, x))-((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[+ t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[+ x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]- 1, x])-Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]]</syntaxhighlight> || Failure || Successful || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 12]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.39894228040143315 | |||
Test Values: {Rule[x, 1.5], Rule[ν, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.39894228040143254 | Test Values: {Rule[x, 1.5], Rule[ν, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.39894228040143254 | ||
Test Values: {Rule[x, 0.5], Rule[ν, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 0.5], Rule[ν, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E8 10.43.E8] || [[Item:Q3622|<math>\int_{0}^{x}e^{- t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{- x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}+\modBesselI{\nu-1}@{x})+\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}</math>]] || <math>\nu \neq \tfrac{1}{2}, \realpart@@{\nu} > 0, \realpart@@{\nu+k+1} > 0, \realpart@@{\nu-1+k+1} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(- x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)+ BesselI(nu - 1, x))+((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[- x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]- 1, x])+Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]]</syntaxhighlight> || Failure || Successful || Manual Skip! || Successful [Tested: 12] | | [https://dlmf.nist.gov/10.43.E8 10.43.E8] || [[Item:Q3622|<math>\int_{0}^{x}e^{- t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{- x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}+\modBesselI{\nu-1}@{x})+\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{- t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{- x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}+\modBesselI{\nu-1}@{x})+\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}</syntaxhighlight> || <math>\nu \neq \tfrac{1}{2}, \realpart@@{(\nu)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu-1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(- x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)+ BesselI(nu - 1, x))+((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[- x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]- 1, x])+Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]]</syntaxhighlight> || Failure || Successful || Manual Skip! || Successful [Tested: 12] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E9 10.43.E9] || [[Item:Q3623|<math>\int_{0}^{x}e^{+ t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}+\modBesselK{\nu+1}@{x})-\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}</math>]] || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{\nu+1} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(+ t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)+ BesselK(nu + 1, x))-((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[+ t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]+ 1, x])-Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1]</syntaxhighlight> || Failure || Aborted || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 15]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | | [https://dlmf.nist.gov/10.43.E9 10.43.E9] || [[Item:Q3623|<math>\int_{0}^{x}e^{+ t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}+\modBesselK{\nu+1}@{x})-\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{+ t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}+\modBesselK{\nu+1}@{x})-\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(+ t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)+ BesselK(nu + 1, x))-((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[+ t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]+ 1, x])-Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1]</syntaxhighlight> || Failure || Aborted || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 15]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[x, 1.5], Rule[ν, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | Test Values: {Rule[x, 1.5], Rule[ν, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[x, 1.5], Rule[ν, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[ν, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E9 10.43.E9] || [[Item:Q3623|<math>\int_{0}^{x}e^{- t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}-\modBesselK{\nu+1}@{x})+\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}</math>]] || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{\nu+1} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)- BesselK(nu + 1, x))+((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]- BesselK[\[Nu]+ 1, x])+Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1]</syntaxhighlight> || Failure || Successful || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 15]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | | [https://dlmf.nist.gov/10.43.E9 10.43.E9] || [[Item:Q3623|<math>\int_{0}^{x}e^{- t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}-\modBesselK{\nu+1}@{x})+\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{- t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}-\modBesselK{\nu+1}@{x})+\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)- BesselK(nu + 1, x))+((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]- BesselK[\[Nu]+ 1, x])+Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1]</syntaxhighlight> || Failure || Successful || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 15]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[x, 1.5], Rule[ν, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | Test Values: {Rule[x, 1.5], Rule[ν, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[x, 0.5], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 0.5], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E10 10.43.E10] || [[Item:Q3624|<math>\int_{x}^{\infty}e^{t}t^{-\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{x}x^{-\nu+1}}{2\nu-1}(\modBesselK{\nu}@{x}+\modBesselK{\nu-1}@{x})</math>]] || <math>\realpart@@{\nu} > \tfrac{1}{2}</math> || <syntaxhighlight lang=mathematica>int(exp(t)*(t)^(- nu)* BesselK(nu, t), t = x..infinity) = (exp(x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselK(nu, x)+ BesselK(nu - 1, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[t]*(t)^(- \[Nu])* BesselK[\[Nu], t], {t, x, Infinity}, GenerateConditions->None] == Divide[Exp[x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]- 1, x])</syntaxhighlight> || Failure || Successful || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | | [https://dlmf.nist.gov/10.43.E10 10.43.E10] || [[Item:Q3624|<math>\int_{x}^{\infty}e^{t}t^{-\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{x}x^{-\nu+1}}{2\nu-1}(\modBesselK{\nu}@{x}+\modBesselK{\nu-1}@{x})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}e^{t}t^{-\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{x}x^{-\nu+1}}{2\nu-1}(\modBesselK{\nu}@{x}+\modBesselK{\nu-1}@{x})</syntaxhighlight> || <math>\realpart@@{\nu} > \tfrac{1}{2}</math> || <syntaxhighlight lang=mathematica>int(exp(t)*(t)^(- nu)* BesselK(nu, t), t = x..infinity) = (exp(x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselK(nu, x)+ BesselK(nu - 1, x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[t]*(t)^(- \[Nu])* BesselK[\[Nu], t], {t, x, Infinity}, GenerateConditions->None] == Divide[Exp[x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]- 1, x])</syntaxhighlight> || Failure || Successful || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[x, 1.5], Rule[ν, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | Test Values: {Rule[x, 1.5], Rule[ν, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[x, 0.5], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 0.5], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E18 10.43.E18] || [[Item:Q3632|<math>\int_{0}^{\infty}\modBesselK{\nu}@{t}\diff{t} = \tfrac{1}{2}\pi\sec@{\tfrac{1}{2}\pi\nu}</math>]] | | [https://dlmf.nist.gov/10.43.E18 10.43.E18] || [[Item:Q3632|<math>\int_{0}^{\infty}\modBesselK{\nu}@{t}\diff{t} = \tfrac{1}{2}\pi\sec@{\tfrac{1}{2}\pi\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\modBesselK{\nu}@{t}\diff{t} = \tfrac{1}{2}\pi\sec@{\tfrac{1}{2}\pi\nu}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1</math> || <syntaxhighlight lang=mathematica>int(BesselK(nu, t), t = 0..infinity) = (1)/(2)*Pi*sec((1)/(2)*Pi*nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*Sec[Divide[1,2]*Pi*\[Nu]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 6] | ||
|- | |||
| [https://dlmf.nist.gov/10.43.E19 10.43.E19] || [[Item:Q3633|<math>\int_{0}^{\infty}t^{\mu-1}\modBesselK{\nu}@{t}\diff{t} = 2^{\mu-2}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}\modBesselK{\nu}@{t}\diff{t} = 2^{\mu-2}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu}</syntaxhighlight> || <math>|\realpart@@{\nu}| < \realpart@@{\mu}, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* BesselK(nu, t), t = 0..infinity) = (2)^(mu - 2)* GAMMA((1)/(2)*mu -(1)/(2)*nu)*GAMMA((1)/(2)*mu +(1)/(2)*nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^(\[Mu]- 2)* Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/10.43.E20 10.43.E20] || [[Item:Q3634|<math>\int_{0}^{\infty}\cos@{at}\modBesselK{0}@{t}\diff{t} = \frac{\pi}{2(1+a^{2})^{\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\cos@{at}\modBesselK{0}@{t}\diff{t} = \frac{\pi}{2(1+a^{2})^{\frac{1}{2}}}</syntaxhighlight> || <math>|\imagpart@@{a}| < 1</math> || <syntaxhighlight lang=mathematica>int(cos(a*t)*BesselK(0, t), t = 0..infinity) = (Pi)/(2*(1 + (a)^(2))^((1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2*(1 + (a)^(2))^(Divide[1,2])]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 6] | |||
|- | |- | ||
| [https://dlmf.nist.gov/10.43. | | [https://dlmf.nist.gov/10.43.E21 10.43.E21] || [[Item:Q3635|<math>\int_{0}^{\infty}\sin@{at}\modBesselK{0}@{t}\diff{t} = \frac{\asinh@@{a}}{(1+a^{2})^{\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\sin@{at}\modBesselK{0}@{t}\diff{t} = \frac{\asinh@@{a}}{(1+a^{2})^{\frac{1}{2}}}</syntaxhighlight> || <math>|\imagpart@@{a}| < 1</math> || <syntaxhighlight lang=mathematica>int(sin(a*t)*BesselK(0, t), t = 0..infinity) = (arcsinh(a))/((1 + (a)^(2))^((1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[ArcSinh[a],(1 + (a)^(2))^(Divide[1,2])]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 6] | ||
|- | |||
| [https://dlmf.nist.gov/10.43.E23 10.43.E23] || [[Item:Q3637|<math>\int_{0}^{\infty}t^{\nu+1}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{\frac{b^{2}}{4p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\nu+1}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(nu + 1)* BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(((b)^(2))/(4*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Nu]+ 1)* BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated | |||
|- | |- | ||
| [https://dlmf.nist.gov/10.43. | | [https://dlmf.nist.gov/10.43.E24 10.43.E24] || [[Item:Q3638|<math>\int_{0}^{\infty}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselI{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselI{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\frac{1}{2}\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(((b)^(2))/(8*(p)^(2)))*BesselI((1)/(2)*nu, ((b)^(2))/(8*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [228 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.7585567167+3.675115279*I | ||
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.9489546609+2.381017603*I | Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.9489546609+2.381017603*I | ||
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [152 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.19039794459564638, -1.294097675814569] | Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [152 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.19039794459564638, -1.294097675814569] | ||
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.992047945390181, -4.249025046528451] | Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.992047945390181, -4.249025046528451] | ||
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E25 10.43.E25] || [[Item:Q3639|<math>\int_{0}^{\infty}\modBesselK{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{4p}\sec@{\tfrac{1}{2}\pi\nu}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselK{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}</math>]] || <math>|\realpart@@{\nu}| < 1, \realpart@{p^{2}} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselK(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(4*p)*sec((1)/(2)*Pi*nu)*exp(((b)^(2))/(8*(p)^(2)))*BesselK((1)/(2)*nu, ((b)^(2))/(8*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselK[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*p]*Sec[Divide[1,2]*Pi*\[Nu]]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselK[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [144 / 288]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4056916296-1.844454275*I | | [https://dlmf.nist.gov/10.43.E25 10.43.E25] || [[Item:Q3639|<math>\int_{0}^{\infty}\modBesselK{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{4p}\sec@{\tfrac{1}{2}\pi\nu}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselK{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\modBesselK{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{4p}\sec@{\tfrac{1}{2}\pi\nu}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselK{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@{p^{2}} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselK(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(4*p)*sec((1)/(2)*Pi*nu)*exp(((b)^(2))/(8*(p)^(2)))*BesselK((1)/(2)*nu, ((b)^(2))/(8*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselK[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*p]*Sec[Divide[1,2]*Pi*\[Nu]]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselK[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [144 / 288]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4056916296-1.844454275*I | ||
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2830456904e-1-1.996429597*I | Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2830456904e-1-1.996429597*I | ||
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [144 / 288]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.40569163152223653, 1.8444542715605226] | Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [144 / 288]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.40569163152223653, 1.8444542715605226] | ||
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4232355421098407, -0.8203643961026106] | Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4232355421098407, -0.8203643961026106] | ||
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.43.E26 10.43.E26] || [[Item:Q3640|<math>\int_{0}^{\infty}\frac{\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{b^{\nu}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2}}}{2^{\lambda+1}a^{\nu-\lambda+1}}\*\hyperOlverF@{\frac{\nu-\lambda+\mu+1}{2}}{\frac{\nu-\lambda-\mu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</math>]] | | [https://dlmf.nist.gov/10.43.E26 10.43.E26] || [[Item:Q3640|<math>\int_{0}^{\infty}\frac{\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{b^{\nu}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2}}}{2^{\lambda+1}a^{\nu-\lambda+1}}\*\hyperOlverF@{\frac{\nu-\lambda+\mu+1}{2}}{\frac{\nu-\lambda-\mu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{b^{\nu}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2}}}{2^{\lambda+1}a^{\nu-\lambda+1}}\*\hyperOlverF@{\frac{\nu-\lambda+\mu+1}{2}}{\frac{\nu-\lambda-\mu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</syntaxhighlight> || <math>\realpart@{\nu+1-\lambda} > |\realpart@@{\mu}|, \realpart@@{a} > |\imagpart@@{b}|, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselK(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((b)^(nu)* GAMMA((1)/(2)*nu -(1)/(2)*lambda +(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*nu -(1)/(2)*lambda -(1)/(2)*mu +(1)/(2)))/((2)^(lambda + 1)* (a)^(nu - lambda + 1))* hypergeom([(nu - lambda + mu + 1)/(2), (nu - lambda - mu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselK[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu]* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]-Divide[1,2]*\[Mu]+Divide[1,2]],(2)^(\[Lambda]+ 1)* (a)^(\[Nu]- \[Lambda]+ 1)]* Hypergeometric2F1Regularized[Divide[\[Nu]- \[Lambda]+ \[Mu]+ 1,2], Divide[\[Nu]- \[Lambda]- \[Mu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated | ||
|- | |||
| [https://dlmf.nist.gov/10.43.E27 10.43.E27] || [[Item:Q3641|<math>\int_{0}^{\infty}t^{\mu+\nu+1}\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(2a)^{\mu}(2b)^{\nu}\EulerGamma@{\mu+\nu+1}}{(a^{2}+b^{2})^{\mu+\nu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu+\nu+1}\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(2a)^{\mu}(2b)^{\nu}\EulerGamma@{\mu+\nu+1}}{(a^{2}+b^{2})^{\mu+\nu+1}}</syntaxhighlight> || <math>\realpart@{\nu+1} > |\realpart@@{\mu}|, \realpart@@{a} > |\imagpart@@{b}|, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu + nu + 1)* BesselK(mu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = ((2*a)^(mu)*(2*b)^(nu)* GAMMA(mu + nu + 1))/(((a)^(2)+ (b)^(2))^(mu + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]+ \[Nu]+ 1)* BesselK[\[Mu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2*a)^\[Mu]*(2*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]+ 1],((a)^(2)+ (b)^(2))^(\[Mu]+ \[Nu]+ 1)]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated | |||
|- | |||
| [https://dlmf.nist.gov/10.43.E28 10.43.E28] || [[Item:Q3642|<math>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{\nu}@{at}\modBesselI{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}@{\frac{ab}{2p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{\nu}@{at}\modBesselI{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}@{\frac{ab}{2p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselI(nu, a*t)*BesselI(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[\[Nu], a*t]*BesselI[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/10.43.E29 10.43.E29] || [[Item:Q3643|<math>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{0}@{at}\modBesselK{0}@{at}\diff{t} = \frac{1}{4p^{2}}\exp@{\frac{a^{2}}{2p^{2}}}\modBesselK{0}@{\frac{a^{2}}{2p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{0}@{at}\modBesselK{0}@{at}\diff{t} = \frac{1}{4p^{2}}\exp@{\frac{a^{2}}{2p^{2}}}\modBesselK{0}@{\frac{a^{2}}{2p^{2}}}</syntaxhighlight> || <math>\realpart@{p^{2}} > 0, \realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselI(0, a*t)*BesselK(0, a*t), t = 0..infinity) = (1)/(4*(p)^(2))*exp(((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[0, a*t]*BesselK[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,4*(p)^(2)]*Exp[Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 48] | |||
|- | |||
| [https://dlmf.nist.gov/10.44#Ex1 10.44#Ex1] || [[Item:Q3649|<math>\modBesselI{\nu}@{z} = \sum_{k=0}^{\infty}\frac{z^{k}}{k!}\BesselJ{\nu+k}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \sum_{k=0}^{\infty}\frac{z^{k}}{k!}\BesselJ{\nu+k}@{z}</syntaxhighlight> || <math>\realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = sum(((z)^(k))/(factorial(k))*BesselJ(nu + k, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Sum[Divide[(z)^(k),(k)!]*BesselJ[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/10.44#Ex2 10.44#Ex2] || [[Item:Q3650|<math>\BesselJ{\nu}@{z} = \sum_{k=0}^{\infty}(-1)^{k}\frac{z^{k}}{k!}\modBesselI{\nu+k}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{z} = \sum_{k=0}^{\infty}(-1)^{k}\frac{z^{k}}{k!}\modBesselI{\nu+k}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, z) = sum((- 1)^(k)*((z)^(k))/(factorial(k))*BesselI(nu + k, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], z] == Sum[(- 1)^(k)*Divide[(z)^(k),(k)!]*BesselI[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.4358908643715884, -0.07192294931339177], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]] | |||
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0679098760861825, 0.09257666026367889], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]] | Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0679098760861825, 0.09257666026367889], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]] | ||
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, | Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.44.E4 10.44.E4] || [[Item:Q3652|<math>\left(\tfrac{1}{2}z\right)^{\nu} = \sum_{k=0}^{\infty}(-1)^{k}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\modBesselI{\nu+2k}@{z}</math>]] || <math>\realpart@@{\nu+k} > 0, \realpart@@{\nu+2k+k+1} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*z)^(nu) = sum((- 1)^(k)*((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselI(nu + 2*k, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*z)^\[Nu] == Sum[(- 1)^(k)*Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselI[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]] | | [https://dlmf.nist.gov/10.44.E4 10.44.E4] || [[Item:Q3652|<math>\left(\tfrac{1}{2}z\right)^{\nu} = \sum_{k=0}^{\infty}(-1)^{k}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\modBesselI{\nu+2k}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\tfrac{1}{2}z\right)^{\nu} = \sum_{k=0}^{\infty}(-1)^{k}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\modBesselI{\nu+2k}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k)} > 0, \realpart@@{((\nu+2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*z)^(nu) = sum((- 1)^(k)*((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselI(nu + 2*k, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*z)^\[Nu] == Sum[(- 1)^(k)*Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselI[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]] | ||
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.2499999999999999, 0.43301270189221935], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]] | Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.2499999999999999, 0.43301270189221935], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]] | ||
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 1]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 1]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |||
| [https | |||
|} | |} | ||
</div> |
Latest revision as of 07:02, 25 May 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
10.22.E38 | \int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m} |
int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) = (((a)^(2))/((b)^(2))+ (alpha[ell])^(2)- (nu)^(2))*((BesselJ(nu, alpha[ell]))^(2))/(2*(alpha[ell])^(2))*KroneckerDelta[ell, m]
|
Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] == (Divide[(a)^(2),(b)^(2)]+ (Subscript[\[Alpha], \[ScriptL]])^(2)- \[Nu]^(2))*Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*(Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m]
|
Failure | Failure | Error | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
10.22.E39 | \int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} |
int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x)
|
Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 3] | |
10.22.E39 | \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}} |
int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
|
Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 3] | |
10.22.E40 | \int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}} |
int((BesselY(0, t))/(t), t = x..infinity) = -(1)/(Pi)*(ln((1)/(2)*x)+ gamma)^(2)+(Pi)/(6)+(2)/(Pi)*sum((- 1)^(k)*(Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
|
Integrate[Divide[BesselY[0, t],t], {t, x, Infinity}, GenerateConditions->None] == -Divide[1,Pi]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[Pi,6]+Divide[2,Pi]*Sum[(- 1)^(k)*(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
|
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
10.22.E41 | \int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1 |
int(BesselJ(nu, t), t = 0..infinity) = 1
|
Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 8] | |
10.22.E42 | \int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi} |
int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi)
|
Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi]
|
Successful | Aborted | - | Successful [Tested: 6] | |
10.22.E43 | \int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}} |
int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))
|
Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]
|
Successful | Successful | - | Successful [Tested: 10] | |
10.22.E44 | \int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi |
int((t)^(mu)* BesselY(nu, t), t = 0..infinity) = ((2)^(mu))/(Pi)*GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*sin((1)/(2)*mu -(1)/(2)*nu)*Pi
|
Integrate[(t)^\[Mu]* BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2)^\[Mu],Pi]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Sin[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Pi
|
Error | Aborted | - | Failed [10 / 10]
Result: Complex[-0.5512405929316078, 0.2551977660147906]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.26217720344291356, -0.18052742798771904]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
10.22.E45 | \int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}} |
int((1 - BesselJ(0, t))/((t)^(mu)), t = 0..infinity) = -(Pi*sec((1)/(2)*mu*Pi))/((2)^(mu)* (GAMMA((1)/(2)*mu +(1)/(2)))^(2))
|
Integrate[Divide[1 - BesselJ[0, t],(t)^\[Mu]], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Pi*Sec[Divide[1,2]*\[Mu]*Pi],(2)^\[Mu]* (Gamma[Divide[1,2]*\[Mu]+Divide[1,2]])^(2)]
|
Error | Aborted | - | Successful [Tested: 10] | |
10.22.E46 | \int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab} |
int(((t)^(nu + 1)* BesselJ(nu, a*t))/(((t)^(2)+ (b)^(2))^(mu + 1)), t = 0..infinity) = ((a)^(mu)* (b)^(nu - mu))/((2)^(mu)* GAMMA(mu + 1))*BesselK(nu - mu, a*b)
|
Integrate[Divide[(t)^(\[Nu]+ 1)* BesselJ[\[Nu], a*t],((t)^(2)+ (b)^(2))^(\[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* (b)^(\[Nu]- \[Mu]),(2)^\[Mu]* Gamma[\[Mu]+ 1]]*BesselK[\[Nu]- \[Mu], a*b]
|
Error | Aborted | - | Skipped - Because timed out | |
10.22.E47 | \int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab} |
int(((t)^(nu)* BesselY(nu, a*t))/((t)^(2)+ (b)^(2)), t = 0..infinity) = - (b)^(nu - 1)* BesselK(nu, a*b)
|
Integrate[Divide[(t)^\[Nu]* BesselY[\[Nu], a*t],(t)^(2)+ (b)^(2)], {t, 0, Infinity}, GenerateConditions->None] == - (b)^(\[Nu]- 1)* BesselK[\[Nu], a*b]
|
Error | Aborted | - | Skipped - Because timed out | |
10.22.E48 | \int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x} |
int(BesselJ(mu, x*cosh(phi))*(cosh(phi))^(1 - mu)*(sinh(phi))^(2*nu + 1), phi = 0..infinity) = (2)^(nu)* GAMMA(nu + 1)*(x)^(- nu - 1)* BesselJ(mu - nu - 1, x)
|
Integrate[BesselJ[\[Mu], x*Cosh[\[Phi]]]*(Cosh[\[Phi]])^(1 - \[Mu])*(Sinh[\[Phi]])^(2*\[Nu]+ 1), {\[Phi], 0, Infinity}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(x)^(- \[Nu]- 1)* BesselJ[\[Mu]- \[Nu]- 1, x]
|
Error | Aborted | - | Skipped - Because timed out | |
10.22.E49 | \int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}} |
int((t)^(mu - 1)* exp(- a*t)*BesselJ(nu, b*t), t = 0..infinity) = (((1)/(2)*b)^(nu))/((a)^(mu + nu))*GAMMA(mu + nu)* hypergeom([(mu + nu)/(2), (mu + nu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)
|
Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b)^\[Nu],(a)^(\[Mu]+ \[Nu])]*Gamma[\[Mu]+ \[Nu]]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[\[Mu]+ \[Nu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]
|
Error | Aborted | - | Successful [Tested: 0] | |
10.22.E50 | \int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}} |
int((t)^(mu - 1)* exp(- a*t)*BesselY(nu, b*t), t = 0..infinity) = cot(nu*Pi)*(((1)/(2)*b)^(nu)* GAMMA(mu + nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu + nu)))* hypergeom([(mu + nu)/(2), (1 - mu + nu)/(2)], [nu + 1], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(nu + 1)- csc(nu*Pi)*(((1)/(2)*b)^(- nu)* GAMMA(mu - nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu - nu)))* hypergeom([(mu - nu)/(2), (1 - mu - nu)/(2)], [1 - nu], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(1 - nu)
|
Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselY[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Cot[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[1 - \[Mu]+ \[Nu],2], \[Nu]+ 1, Divide[(b)^(2),(a)^(2)+ (b)^(2)]]- Csc[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^(- \[Nu])* Gamma[\[Mu]- \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]- \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]- \[Nu],2], Divide[1 - \[Mu]- \[Nu],2], 1 - \[Nu], Divide[(b)^(2),(a)^(2)+ (b)^(2)]]
|
Error | Aborted | - | Skipped - Because timed out | |
10.22.E51 | \int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}} |
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(nu + 1), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(-((b)^(2))/(4*(p)^(2)))
|
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Nu]+ 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[-Divide[(b)^(2),4*(p)^(2)]]
|
Error | Aborted | - | Failed [151 / 300]
Result: Complex[-0.06577510728447342, -0.5886826409090221]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.0556301041786353, -0.2359104145157832]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
10.22.E52 | \int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}} |
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*BesselI((nu)/(2), ((b)^(2))/(8*(p)^(2)))
|
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[\[Nu],2], Divide[(b)^(2),8*(p)^(2)]]
|
Error | Aborted | - | Skip - No test values generated | |
10.22.E53 | \int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right) |
int(BesselY(2*nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = -(sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*(BesselI(nu, ((b)^(2))/(8*(p)^(2)))*tan(nu*Pi)+(1)/(Pi)*BesselK(nu, ((b)^(2))/(8*(p)^(2)))*sec(nu*Pi))
|
Integrate[BesselY[2*\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*(BesselI[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Tan[\[Nu]*Pi]+Divide[1,Pi]*BesselK[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Sec[\[Nu]*Pi])
|
Error | Aborted | - | Skipped - Because timed out | |
10.22.E54 | \int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}} |
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(mu - 1), t = 0..infinity) = (((1)/(2)*b/p)^(nu)* GAMMA((1)/(2)*nu +(1)/(2)*mu))/(2*(p)^(mu))*exp(-((b)^(2))/(4*(p)^(2)))* KummerM((1)/(2)*nu -(1)/(2)*mu + 1, nu + 1, ((b)^(2))/(4*(p)^(2)))/GAMMA(nu + 1)
|
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Mu]- 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b/p)^\[Nu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]],2*(p)^\[Mu]]*Exp[-Divide[(b)^(2),4*(p)^(2)]]* Hypergeometric1F1Regularized[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, \[Nu]+ 1, Divide[(b)^(2),4*(p)^(2)]]
|
Error | Aborted | - | Failed [246 / 300]
Result: Complex[0.07541885663346475, -0.6281916024632631]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.1002850405400357, -0.7734416454563844]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
10.22.E55 | \int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)} |
int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1))
|
Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)]
|
Failure | Failure | Error | Failed [18 / 54]
Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Rational[-3, 2]]}
Result: Indeterminate
Test Values: {Rule[m, 2], Rule[ℓ, 2], Rule[ν, Rational[-3, 2]]}
... skip entries to safe data | |
10.22.E56 | \int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}} |
int((BesselJ(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)* (b)^(mu - lambda + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)*lambda +(1)/(2)))* hypergeom([(1)/(2)*(mu + nu - lambda + 1), (1)/(2)*(mu - nu - lambda + 1)], [mu + 1], ((a)^(2))/((b)^(2)))/GAMMA(mu + 1)
|
Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]* (b)^(\[Mu]- \[Lambda]+ 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]*\[Lambda]+Divide[1,2]]]* Hypergeometric2F1Regularized[Divide[1,2]*(\[Mu]+ \[Nu]- \[Lambda]+ 1), Divide[1,2]*(\[Mu]- \[Nu]- \[Lambda]+ 1), \[Mu]+ 1, Divide[(a)^(2),(b)^(2)]]
|
Error | Aborted | - | Failed [300 / 300]
Result: Complex[0.12507202091813296, -0.11002587193353452]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.017959797138118128, 0.3252875517547388]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
10.22.E57 | \int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}} |
int((BesselJ(mu, a*t)*BesselJ(nu, a*t))/((t)^(lambda)), t = 0..infinity) = (((1)/(2)*a)^(lambda - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu -(1)/(2)*lambda +(1)/(2))*GAMMA(lambda))/(2*GAMMA((1)/(2)*lambda +(1)/(2)*nu -(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu +(1)/(2)*nu +(1)/(2)))
|
Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], a*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*a)^(\[Lambda]- 1)* Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]]*Gamma[\[Lambda]],2*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]]
|
Error | Aborted | - | Skipped - Because timed out | |
10.22.E58 | \int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}} |
int((BesselJ(nu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a*b)^(nu)* GAMMA(nu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)*((a)^(2)+ (b)^(2))^(nu -(1)/(2)*lambda +(1)/(2))* GAMMA((1)/(2)*lambda +(1)/(2)))*hypergeom([(2*nu + 1 - lambda)/(4), (2*nu + 3 - lambda)/(4)], [nu + 1], (4*(a)^(2)* (b)^(2))/(((a)^(2)+ (b)^(2))^(2)))/GAMMA(nu + 1)
|
Integrate[Divide[BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a*b)^\[Nu]* Gamma[\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]*((a)^(2)+ (b)^(2))^(\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2])* Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]]]*Hypergeometric2F1Regularized[Divide[2*\[Nu]+ 1 - \[Lambda],4], Divide[2*\[Nu]+ 3 - \[Lambda],4], \[Nu]+ 1, Divide[4*(a)^(2)* (b)^(2),((a)^(2)+ (b)^(2))^(2)]]
|
Error | Aborted | - | Failed [209 / 300]
Result: Complex[-0.13393539357334844, 0.1322614378889556]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.07230690300251369, -0.15068591568973605]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
10.22.E66 | \int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}} |
int(exp(- a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t), t = 0..infinity) = (1)/(Pi*(b*c)^((1)/(2)))* LegendreQ(nu -(1)/(2), ((a)^(2)+ (b)^(2)+ (c)^(2))/(2*b*c))
|
Integrate[Exp[- a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Pi*(b*c)^(Divide[1,2])]* LegendreQ[\[Nu]-Divide[1,2], 0, 3, Divide[(a)^(2)+ (b)^(2)+ (c)^(2),2*b*c]]
|
Error | Aborted | - | Skipped - Because timed out | |
10.22.E67 | \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right) |
int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(nu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(-((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))
|
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[-Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]
|
Translation Error | Translation Error | - | - | |
10.22.E68 | \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right) |
int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(0, a*t)*BesselY(0, a*t), t = 0..infinity) = -(1)/(2*Pi*(p)^(2))*exp(-((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))
|
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[0, a*t]*BesselY[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == -Divide[1,2*Pi*(p)^(2)]*Exp[-Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]
|
Translation Error | Translation Error | - | - | |
10.22.E70 | \int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az} |
int(BesselY(nu, a*t)*BesselJ(nu + 1, b*t)*(t)/((t)^(2)- (z)^(2)), t = 0..infinity) = (1)/(2)*Pi*BesselJ(nu + 1, b*z)*HankelH1(nu, a*z)
|
Integrate[BesselY[\[Nu], a*t]*BesselJ[\[Nu]+ 1, b*t]*Divide[t,(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ 1, b*z]*HankelH1[\[Nu], a*z]
|
Error | Aborted | - | Skipped - Because timed out | |
10.22.E71 | \int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi}) |
int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)*(sin(phi))^(mu -(1)/(2)))/((2*Pi)^((1)/(2))* (a)^(mu))*LegendreP(nu -(1)/(2), (1)/(2)- mu, cos(phi))
|
Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)*(Sin[\[Phi]])^(\[Mu]-Divide[1,2]),(2*Pi)^(Divide[1,2])* (a)^\[Mu]]*LegendreP[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], Cos[\[Phi]]]
|
Translation Error | Translation Error | - | - | |
10.22.E72 | \int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}} |
int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)* sin((mu - nu)*Pi)*(sinh(chi))^(mu -(1)/(2)))/(((1)/(2)*(Pi)^(3))^((1)/(2))* (a)^(mu))*exp((mu -(1)/(2))*I*Pi)*LegendreQ(nu -(1)/(2), (1)/(2)- mu, cosh(chi))
|
Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)* Sin[(\[Mu]- \[Nu])*Pi]*(Sinh[\[Chi]])^(\[Mu]-Divide[1,2]),(Divide[1,2]*(Pi)^(3))^(Divide[1,2])* (a)^\[Mu]]*Exp[(\[Mu]-Divide[1,2])*I*Pi]*LegendreQ[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], 3, Cosh[\[Chi]]]
|
Error | Aborted | - | Skip - No test values generated | |
10.23.E3 | \BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1 |
(BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1
|
(BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1 |
Aborted | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
10.23.E4 | \sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0 |
sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z)*; , k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0 |
Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z]*, {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0 |
Error | Failure | - | Failed [21 / 21]
Result: Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
10.23.E5 | \sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z} |
sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z) |
Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z] |
Aborted | Failure | Skipped - Because timed out | Failed [21 / 21]
Result: Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
10.23#Ex1 | w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}} |
|
w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha)) |
w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]] |
Failure | Failure | Failed [300 / 300] Result: -.3146075610-.1816387601*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I} Result: -1.680632965+.1843866439*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.3146075609842255, -0.18163876002333418]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]} Result: Complex[0.4375091763619045, 0.252596040745477]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]} ... skip entries to safe data |
10.23#Ex2 | u-v\cos@@{\alpha} = w\cos@@{\chi} |
|
u - v*cos(alpha) = w*cos(chi) |
u - v*Cos[\[Alpha]] == w*Cos[\[Chi]] |
Failure | Failure | Failed [300 / 300] Result: -.263783978e-1+.4431282844*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I} Result: .8262683052-.3665121890*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.026378398027867456, 0.44312828415668515]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.023973249213014358, -0.5554825514041751]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
10.23#Ex3 | v\sin@@{\alpha} = w\sin@@{\chi} |
|
v*sin(alpha) = w*sin(chi) |
v*Sin[\[Alpha]] == w*Sin[\[Chi]] |
Failure | Failure | Failed [300 / 300] Result: .2887554391-.2231097873*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I} Result: 1.585713279-.763530664e-1*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [294 / 300]
Result: Complex[0.2887554393029954, -0.22310978722682606]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.8740447527972026, 0.09051196331992012]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
10.23.E9 | e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}} |
exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)*(I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity) |
Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)*(I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None] |
Aborted | Failure | Skipped - Because timed out | Skipped - Because timed out | |
10.23.E15 | (\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z} |
((1)/(2)*z)^(nu) = sum(((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity) |
(Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None] |
Aborted | Successful | Skipped - Because timed out | Successful [Tested: 7] | |
10.23.E16 | \BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k} |
BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity) |
BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None] |
Aborted | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
10.23.E17 | \BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)} |
BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))*BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)*BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity) |
BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)*BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None] |
Aborted | Failure | Manual Skip! | Failed [16 / 21]
Result: Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
10.24.E1 | x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0 |
|
(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((x)^(2)+ (nu)^(2))*w = 0 |
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+((x)^(2)+ \[Nu]^(2))*w == 0 |
Failure | Failure | Failed [300 / 300] Result: 1.948557159+2.125000000*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: .2165063513+1.125000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.9485571585149875, 2.125]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.948557158514987, 0.12499999999999989]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
10.24#Ex1 | \BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}} |
sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselJ(I*nu, x)) |
Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselJ[I*\[Nu], x]] |
Successful | Successful | - | Successful [Tested: 30] | |
10.24#Ex2 | \BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}} |
sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselY(I*nu, x)) |
Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselY[I*\[Nu], x]] |
Successful | Successful | - | Successful [Tested: 30] | |
10.24.E3 | \EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}} |
GAMMA(1 + I*nu) = ((Pi*nu)/(sinh(Pi*nu)))^((1)/(2))* exp(I*gamma[nu]) |
Gamma[1 + I*\[Nu]] == (Divide[Pi*\[Nu],Sinh[Pi*\[Nu]]])^(Divide[1,2])* Exp[I*Subscript[\[Gamma], \[Nu]]] |
Failure | Failure | Failed [300 / 300] Result: .131682196e-1-.6479738907*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = 1/2*3^(1/2)+1/2*I} Result: .2393622021-.2867640040*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.013168219691258531, -0.6479738909120968]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.23936220222535412, -0.28676400411697583]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.24#Ex3 | \BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x} |
|
sech((1/2)*Pi*(- nu))*Re(BesselJ(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)) |
Sech[1/2 Pi - \[Nu]] Re[BesselJ[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]] |
Failure | Failure | Failed [12 / 30] Result: .1765981285-.1547836875*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: -1.059084556+.9282601935*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-0.6353785354467336, 0.04153700144653363]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.2910880978413849, 0.681683596996288]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
10.24#Ex4 | \BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x} |
sech((1/2)*Pi*(- nu))*Re(BesselY(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)) |
Sech[1/2 Pi - \[Nu]] Re[BesselY[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]] |
Failure | Failure | Failed [12 / 30] Result: -.6730010946+.5898680353*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: -.1980888923+.1736197856*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[0.16541121369118172, 0.7534126929509344]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.3242468905843751, -0.9796849117084342]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.24.E5 | \Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x) |
(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)))*diff(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)), x)-diff(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)), x)*(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))) = 2/(Pi*x) |
Wronskian[{Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]], Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]}, x] == 2/(Pi*x) |
Failure | Failure | Failed [12 / 30] Result: -.3214564733-.7786157192*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: -.6431025084-4.765445687*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Failed [30 / 30]
Result: Plus[-0.4244131815783876, Times[Complex[0.017184424665049866, -0.12995814793225188], Plus[Times[Complex[5.94457417937745, -0.08806734388290616], Derivative[1][Re][Complex[0.5424102683642863, 1.3820413572565333]]], Times[Complex[0.04670634387761448, 2.0064149502593187], Derivative[1][Re][Complex[1.5013396639532606, -0.5145465005058608]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[-0.4244131815783876, Times[Complex[-0.5062208144169521, 0.3689208146583662], Plus[Times[Complex[1.2690034139339206, -1.428145592425075], Derivative[1][Re][Complex[-0.5230512553281585, -0.7250724679588263]]], Times[Complex[0.9907135967899046, 0.5862869255257461], Derivative[1][Re][Complex[0.9118063408652576, -0.381897212811936]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.24.E9 | \BesselYimag{0}@{x} = \BesselY{0}@{x} |
sech((1/2)*Pi*(0))*Re(BesselY(I*(0), x)) = BesselY(0, x) |
Sech[1/2 Pi 0] Re[BesselY[I 0, x]] == BesselY[0, x] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
10.25.E1 | z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0 |
|
(z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)-((z)^(2)+ (nu)^(2))*w = 0 |
(z)^(2)* D[w, {z, 2}]+ z*D[w, z]-((z)^(2)+ \[Nu]^(2))*w == 0 |
Failure | Failure | Failed [220 / 300] Result: -.6467477718e-9-2.000000002*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -.8660254040e-9-2.000000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [264 / 300]
Result: Complex[0.0, -2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.0, -2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
10.25.E2 | \modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}} |
BesselI(nu, z) = ((1)/(2)*z)^(nu)* sum((((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity) |
BesselI[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None] |
Successful | Successful | - | Successful [Tested: 70] | |
10.27.E1 | \modBesselI{-n}@{z} = \modBesselI{n}@{z} |
BesselI(- n, z) = BesselI(n, z) |
BesselI[- n, z] == BesselI[n, z] |
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
10.27.E2 | \modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z} |
BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z) |
BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z] |
Successful | Successful | - | Successful [Tested: 70] | |
10.27.E3 | \modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z} |
|
BesselK(- nu, z) = BesselK(nu, z) |
BesselK[- \[Nu], z] == BesselK[\[Nu], z] |
Successful | Successful | - | Successful [Tested: 70] |
10.27.E4 | \modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}} |
BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi)) |
BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]] |
Successful | Successful | - | Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]} ... skip entries to safe data | |
10.27.E6 | \modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}} |
BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2)) |
BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]] |
Failure | Failure | Successful [Tested: 50] | Successful [Tested: 50] | |
10.27.E6 | \modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}} |
BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2)) |
BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]] |
Failure | Failure | Successful [Tested: 50] | Successful [Tested: 50] | |
10.27.E7 | \modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right) |
BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2))) |
BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]]) |
Failure | Failure | Successful [Tested: 50] | Successful [Tested: 50] | |
10.27.E7 | \modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right) |
BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2))) |
BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]]) |
Failure | Failure | Successful [Tested: 50] | Successful [Tested: 50] | |
10.27.E9 | \pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}} |
Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2)) |
Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]] |
Failure | Failure | Successful [Tested: 50] | Successful [Tested: 50] | |
10.27.E10 | -\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}} |
- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2)) |
- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]] |
Failure | Failure | Successful [Tested: 50] | Successful [Tested: 50] | |
10.27.E11 | \BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}} |
BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2)) |
BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]] |
Failure | Failure | Successful [Tested: 50] | Successful [Tested: 50] | |
10.27.E11 | \BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}} |
BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2)) |
BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]] |
Failure | Failure | Successful [Tested: 50] | Successful [Tested: 50] | |
10.28.E1 | \Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} |
(BesselI(nu, z))*diff(BesselI(- nu, z), z)-diff(BesselI(nu, z), z)*(BesselI(- nu, z)) = BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) |
Wronskian[{BesselI[\[Nu], z], BesselI[- \[Nu], z]}, z] == BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 70] | |
10.28.E1 | \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z) |
BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) = - 2*sin(nu*Pi)/(Pi*z) |
BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] == - 2*Sin[\[Nu]*Pi]/(Pi*z) |
Failure | Successful | Successful [Tested: 70] | Successful [Tested: 70] | |
10.28.E2 | \Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} |
(BesselK(nu, z))*diff(BesselI(nu, z), z)-diff(BesselK(nu, z), z)*(BesselI(nu, z)) = BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) |
Wronskian[{BesselK[\[Nu], z], BesselI[\[Nu], z]}, z] == BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 70] | |
10.28.E2 | \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z |
BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) = 1/z |
BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] == 1/z |
Failure | Successful | Successful [Tested: 70] | Successful [Tested: 70] | |
10.29#Ex5 | \modBesselI{0}'@{z} = \modBesselI{1}@{z} |
diff( BesselI(0, z), z$(1) ) = BesselI(1, z) |
D[BesselI[0, z], {z, 1}] == BesselI[1, z] |
Successful | Successful | - | Successful [Tested: 7] | |
10.29#Ex6 | \modBesselK{0}'@{z} = -\modBesselK{1}@{z} |
|
diff( BesselK(0, z), z$(1) ) = - BesselK(1, z) |
D[BesselK[0, z], {z, 1}] == - BesselK[1, z] |
Successful | Successful | - | Successful [Tested: 7] |
10.31.E1 | \modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!} |
BesselK(n, z) = (1)/(2)*((1)/(2)*z)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*(-(1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(- 1)^(n + 1)* ln((1)/(2)*z)*BesselI(n, z)+(- 1)^(n)*(1)/(2)*((1)/(2)*z)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity) |
BesselK[n, z] == Divide[1,2]*(Divide[1,2]*z)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*(-Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n + 1)* Log[Divide[1,2]*z]*BesselI[n, z]+(- 1)^(n)*Divide[1,2]*(Divide[1,2]*z)^(n)* Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}, GenerateConditions->None] |
Aborted | Aborted | Skipped - Because timed out | Failed [6 / 21]
Result: Plus[0.6666666666666666, Times[-0.6666666666666666, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]} Result: Plus[0.38888888888888906, Times[0.5, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]} ... skip entries to safe data | |
10.31.E2 | \modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi |
BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+((1)/(4)*(z)^(2))/((factorial(1))^(2))+(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))+ .. |
BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]+(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]+ \[Ellipsis] |
Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[-6.985673039111573*^-6, -1.2369744460005716*^-5], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[-7.140527721077872*^-6, -1.2101549865001227*^-5], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.31.E3 | \modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}} |
BesselI(nu, z)*BesselI(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity) |
BesselI[\[Nu], z]*BesselI[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Skipped - Because timed out | |
10.32.E1 | \modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} |
BesselI(0, z) = (1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi) |
BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] | |
10.32.E1 | \modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} |
BesselI(0, z) = (1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi) |
BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] | |
10.32.E1 | \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta} |
(1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi) |
Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Successful [Tested: 7] | |
10.32.E1 | \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta} |
(1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi) |
Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Successful [Tested: 7] | |
10.32.E2 | \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} |
BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) |
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Successful [Tested: 35] | |
10.32.E2 | \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} |
BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) |
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Successful [Tested: 35] | |
10.32.E2 | \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t} |
(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(+ z*t), t = - 1..1) |
Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[+ z*t], {t, - 1, 1}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Successful [Tested: 35] | |
10.32.E2 | \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{- zt}\diff{t} |
(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(- z*t), t = - 1..1) |
Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[- z*t], {t, - 1, 1}, GenerateConditions->None] |
Error | Aborted | Skip - symbolical successful subtest | Successful [Tested: 35] | |
10.32.E3 | \modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta} |
BesselI(n, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(n*theta), theta = 0..Pi) |
BesselI[n, z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] |
Failure | Aborted | Successful [Tested: 21] | Skipped - Because timed out | |
10.32.E4 | \modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t} |
BesselI(nu, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*cosh(t)- nu*t), t = 0..infinity) |
BesselI[\[Nu], z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[\[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Cosh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
10.32.E5 | \modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta} |
|
BesselK(0, z) = -(1)/(Pi)*int(exp(+ z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi) |
BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
10.32.E5 | \modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta} |
|
BesselK(0, z) = -(1)/(Pi)*int(exp(- z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi) |
BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
10.32.E6 | \modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} |
BesselK(0, x) = int(cos(x*sinh(t)), t = 0..infinity) |
BesselK[0, x] == Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] |
Successful | Aborted | - | Skipped - Because timed out | |
10.32.E6 | \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t} |
int(cos(x*sinh(t)), t = 0..infinity) = int((cos(x*t))/(sqrt((t)^(2)+ 1)), t = 0..infinity) |
Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[Cos[x*t],Sqrt[(t)^(2)+ 1]], {t, 0, Infinity}, GenerateConditions->None] |
Successful | Aborted | - | Skipped - Because timed out | |
10.32.E7 | \modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} |
BesselK(nu, x) = sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity) |
BesselK[\[Nu], x] == Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] |
Successful | Aborted | Manual Skip! | Skipped - Because timed out | |
10.32.E7 | \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t} |
sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity) = csc((1)/(2)*nu*Pi)*int(sin(x*sinh(t))*sinh(nu*t), t = 0..infinity) |
Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] == Csc[Divide[1,2]*\[Nu]*Pi]*Integrate[Sin[x*Sinh[t]]*Sinh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Manual Skip! | Skipped - Because timed out | |
10.32.E8 | \modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} |
BesselK(nu, z) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity) |
BesselK[\[Nu], z] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
10.32.E8 | \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t} |
((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1..infinity) |
Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1, Infinity}, GenerateConditions->None] |
Error | Aborted | Skip - symbolical successful subtest | Skipped - Because timed out | |
10.32.E9 | \modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t} |
BesselK(nu, z) = int(exp(- z*cosh(t))*cosh(nu*t), t = 0..infinity) |
BesselK[\[Nu], z] == Integrate[Exp[- z*Cosh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
10.32.E10 | \modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}} |
BesselK(nu, z) = (1)/(2)*((1)/(2)*z)^(nu)* int(exp(- t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = 0..infinity) |
BesselK[\[Nu], z] == Divide[1,2]*(Divide[1,2]*z)^\[Nu]* Integrate[Exp[- t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] |
Successful | Successful | - | Successful [Tested: 40] | |
10.32.E11 | \modBesselK{\nu}@{xz} = \frac{\EulerGamma@{\nu+\frac{1}{2}}(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}} |
BesselK(nu, x*(x + y*I)) = (GAMMA(nu +(1)/(2))*(2*(x + y*I))^(nu))/((Pi)^((1)/(2))* (x)^(nu))*int((cos(x*t))/(((t)^(2)+(x + y*I)^(2))^(nu +(1)/(2))), t = 0..infinity) |
BesselK[\[Nu], x*(x + y*I)] == Divide[Gamma[\[Nu]+Divide[1,2]]*(2*(x + y*I))^\[Nu],(Pi)^(Divide[1,2])* (x)^\[Nu]]*Integrate[Divide[Cos[x*t],((t)^(2)+(x + y*I)^(2))^(\[Nu]+Divide[1,2])], {t, 0, Infinity}, GenerateConditions->None] |
Error | Aborted | - | Skipped - Because timed out | |
10.32.E12 | \modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t} |
BesselI(nu, z) = (1)/(2*Pi*I)*int(exp(z*cosh(t)- nu*t), t = infinity - I*Pi..infinity + I*Pi) |
BesselI[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Exp[z*Cosh[t]- \[Nu]*t], {t, Infinity - I*Pi, Infinity + I*Pi}, GenerateConditions->None] |
Error | Failure | - | Failed [50 / 50]
Result: Complex[0.5303418993681409, 0.010453999760907294]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.7664848208906112, 0.1468422559210476]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.32.E13 | \modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t} |
BesselK(nu, z) = (((1)/(2)*z)^(nu))/(4*Pi*I)*int(GAMMA(t)*GAMMA(t - nu)*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity) |
BesselK[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],4*Pi*I]*Integrate[Gamma[t]*Gamma[t - \[Nu]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] |
Failure | Aborted | Failed [300 / 300] Result: .5663982443-.3181066824*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.434992817-2.759712160*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Skipped - Because timed out | |
10.32.E14 | \modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t} |
BesselK(nu, z) = (1)/(2*(Pi)^(2)* I)*((Pi)/(2*z))^((1)/(2))* exp(- z)*cos(nu*Pi)* int(GAMMA(t)*GAMMA((1)/(2)- t - nu)*GAMMA((1)/(2)- t + nu)*(2*z)^(t), t = - I*infinity..I*infinity) |
BesselK[\[Nu], z] == Divide[1,2*(Pi)^(2)* I]*(Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*Cos[\[Nu]*Pi]* Integrate[Gamma[t]*Gamma[Divide[1,2]- t - \[Nu]]*Gamma[Divide[1,2]- t + \[Nu]]*(2*z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
10.32.E15 | \modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta} |
BesselI(mu, z)*BesselI(nu, z) = (2)/(Pi)*int(BesselI(mu + nu, 2*z*cos(theta))*cos((mu - nu)*theta), theta = 0..(1)/(2)*Pi) |
BesselI[\[Mu], z]*BesselI[\[Nu], z] == Divide[2,Pi]*Integrate[BesselI[\[Mu]+ \[Nu], 2*z*Cos[\[Theta]]]*Cos[(\[Mu]- \[Nu])*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
10.32.E16 | \modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu+\nu}@{2x\sinh@@{t}}e^{(-\mu+\nu)t}\diff{t} |
BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu + nu, 2*x*sinh(t))*exp((- mu + nu)*t), t = 0..infinity) |
BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]+ \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None] |
Error | Aborted | - | Skipped - Because timed out | |
10.32.E16 | \modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu-\nu}@{2x\sinh@@{t}}e^{(-\mu-\nu)t}\diff{t} |
BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu - nu, 2*x*sinh(t))*exp((- mu - nu)*t), t = 0..infinity) |
BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]- \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None] |
Error | Aborted | - | Skipped - Because timed out | |
10.32.E17 | \modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t} |
BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu + nu, 2*z*cosh(t))*cosh((mu - nu)*t), t = 0..infinity) |
BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]+ \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Manual Skip! | Skipped - Because timed out | |
10.32.E17 | \modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t} |
BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu - nu, 2*z*cosh(t))*cosh((mu + nu)*t), t = 0..infinity) |
BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]- \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Manual Skip! | Skipped - Because timed out | |
10.32.E18 | \modBesselK{\nu}@{z}\modBesselK{\nu}@{\zeta} = \frac{1}{2}\int_{0}^{\infty}\exp@{-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselK{\nu}\left(\frac{z\zeta}{t}\right)\frac{\diff{t}}{t} |
BesselK(nu, z)*BesselK(nu, zeta) = (1)/(2)*int(exp(-(t)/(2)-((z)^(2)+ (zeta)^(2))/(2*t))*BesselK(nu, (z*zeta)/(t))*(1)/(t), t = 0..infinity) |
BesselK[\[Nu], z]*BesselK[\[Nu], \[Zeta]] == Divide[1,2]*Integrate[Exp[-Divide[t,2]-Divide[(z)^(2)+ \[Zeta]^(2),2*t]]*BesselK[\[Nu], Divide[z*\[Zeta],t]]*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None] |
Translation Error | Translation Error | - | - | |
10.32.E19 | \modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = \frac{1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{t+\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t+\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu-\frac{1}{2}\nu}}{\EulerGamma@{2t}}(\tfrac{1}{2}z)^{-2t}\diff{t} |
BesselK(mu, z)*BesselK(nu, z) = (1)/(8*Pi*I)*int((GAMMA(t +(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t +(1)/(2)*mu -(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu -(1)/(2)*nu))/(GAMMA(2*t))*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity) |
BesselK[\[Mu], z]*BesselK[\[Nu], z] == Divide[1,8*Pi*I]*Integrate[Divide[Gamma[t +Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t +Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]],Gamma[2*t]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] |
Error | Aborted | - | Skip - No test values generated | |
10.34.E1 | \modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z} |
BesselI(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselI(nu, z) |
BesselI[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselI[\[Nu], z] |
Failure | Failure | Failed [132 / 210] Result: -2.206479866-1.131319388*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} Result: .5147384726+.2724622562e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} ... skip entries to safe data |
Failed [120 / 210]
Result: Complex[-2.206479866313521, -1.1313193889480602]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.5147384728800724, 0.02724622519878004]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
10.34.E2 | \modBesselK{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\modBesselK{\nu}@{z}-\pi i\sin@{m\nu\pi}\csc@{\nu\pi}\modBesselI{\nu}@{z} |
BesselK(nu, z*exp(m*Pi*I)) = exp(- m*nu*Pi*I)*BesselK(nu, z)- Pi*I*sin(m*nu*Pi)*csc(nu*Pi)*BesselI(nu, z) |
BesselK[\[Nu], z*Exp[m*Pi*I]] == Exp[- m*\[Nu]*Pi*I]*BesselK[\[Nu], z]- Pi*I*Sin[m*\[Nu]*Pi]*Csc[\[Nu]*Pi]*BesselI[\[Nu], z] |
Failure | Failure | Failed [170 / 210] Result: 2.965939338+3.157233720*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} Result: -10.37113928-12.75980866*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} ... skip entries to safe data |
Failed [162 / 210]
Result: Complex[2.965939340334436, 3.157233721966529]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-10.371139260352992, -12.75980869099896]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
10.34.E3 | \modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(+ e^{m\nu\pi i}\modBesselK{\nu}@{ze^{+\pi i}}- e^{(m- 1)\nu\pi i}\modBesselK{\nu}@{z}\right) |
BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(+ exp(m*nu*Pi*I)*BesselK(nu, z*exp(+ Pi*I))- exp((m - 1)*nu*Pi*I)*BesselK(nu, z)) |
BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(+ Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Exp[(m - 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z]) |
Failure | Failure | Failed [152 / 210] Result: -2.316975457-.8668337446*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} Result: .5132395470-.3232131754e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} ... skip entries to safe data |
Failed [140 / 210]
Result: Complex[-2.3169754573845194, -0.8668337451474188]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.5132395471581521, -0.03232131806579792]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
10.34.E3 | \modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(- e^{m\nu\pi i}\modBesselK{\nu}@{ze^{-\pi i}}+ e^{(m+ 1)\nu\pi i}\modBesselK{\nu}@{z}\right) |
BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(- exp(m*nu*Pi*I)*BesselK(nu, z*exp(- Pi*I))+ exp((m + 1)*nu*Pi*I)*BesselK(nu, z)) |
BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(- Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Exp[(m + 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z]) |
Failure | Failure | Failed [190 / 210] Result: -2.206479866-1.131319388*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} Result: .5147384726+.2724622561e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} ... skip entries to safe data |
Failed [190 / 210]
Result: Complex[-2.206479866313521, -1.1313193889480602]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.5147384728800724, 0.027246225198780036]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
10.34.E4 | \modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(+\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{+\pi i}}-\sin@{(m- 1)\nu\pi}\modBesselK{\nu}@{z}\right) |
|
BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(+ sin(m*nu*Pi)*BesselK(nu, z*exp(+ Pi*I))- sin((m - 1)*nu*Pi)*BesselK(nu, z)) |
BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(+ Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Sin[(m - 1)*\[Nu]*Pi]*BesselK[\[Nu], z]) |
Failure | Failure | Failed [158 / 210] Result: -2.723238516+7.278993081*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} Result: 29.12762958-25.06220737*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 3} ... skip entries to safe data |
Failed [154 / 210]
Result: Complex[-2.7232385256388585, 7.278993075467058]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[29.127629620508102, -25.062207299552764]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
10.34.E4 | \modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(-\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{-\pi i}}+\sin@{(m+ 1)\nu\pi}\modBesselK{\nu}@{z}\right) |
|
BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(- sin(m*nu*Pi)*BesselK(nu, z*exp(- Pi*I))+ sin((m + 1)*nu*Pi)*BesselK(nu, z)) |
BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(- Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Sin[(m + 1)*\[Nu]*Pi]*BesselK[\[Nu], z]) |
Failure | Failure | Failed [170 / 210] Result: 2.965939338+3.157233717*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1} Result: -10.37113929-12.75980866*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2} ... skip entries to safe data |
Failed [182 / 210]
Result: Complex[2.9659393403344363, 3.1572337219665294]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-10.371139260352981, -12.759808690998973]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
10.34.E5 | \modBesselK{n}@{ze^{m\pi i}} = (-1)^{mn}\modBesselK{n}@{z}+(-1)^{n(m-1)-1}m\pi i\modBesselI{n}@{z} |
BesselK(n, z*exp(m*Pi*I)) = (- 1)^(m*n)* BesselK(n, z)+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI(n, z) |
BesselK[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)* BesselK[n, z]+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI[n, z] |
Failure | Failure | Failed [57 / 63] Result: -1.971501919+2.706233555*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1} Result: -.7368261646+.3579119854*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2} ... skip entries to safe data |
Failed [48 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.736826162742255, 0.3579119863626685]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
10.34.E6 | \modBesselK{n}@{ze^{m\pi i}} = +(-1)^{n(m-1)}m\modBesselK{n}@{ze^{+\pi i}}-(-1)^{nm}(m- 1)\modBesselK{n}@{z} |
|
BesselK(n, z*exp(m*Pi*I)) = +(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(+ Pi*I))-(- 1)^(n*m)*(m - 1)*BesselK(n, z) |
BesselK[n, z*Exp[m*Pi*I]] == +(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[+ Pi*I]]-(- 1)^(n*m)*(m - 1)*BesselK[n, z] |
Failure | Failure | Failed [51 / 63] Result: -1.971501920+2.706233556*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 1} Result: .7368261602-.357911988*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 2} ... skip entries to safe data |
Failed [42 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 2], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.736826162742255, -0.3579119863626685]
Test Values: {Rule[m, 2], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
10.34.E6 | \modBesselK{n}@{ze^{m\pi i}} = -(-1)^{n(m-1)}m\modBesselK{n}@{ze^{-\pi i}}+(-1)^{nm}(m+ 1)\modBesselK{n}@{z} |
|
BesselK(n, z*exp(m*Pi*I)) = -(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(- Pi*I))+(- 1)^(n*m)*(m + 1)*BesselK(n, z) |
BesselK[n, z*Exp[m*Pi*I]] == -(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[- Pi*I]]+(- 1)^(n*m)*(m + 1)*BesselK[n, z] |
Failure | Failure | Failed [54 / 63] Result: -1.971501919+2.706233556*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1} Result: -.7368261645+.357911985*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2} ... skip entries to safe data |
Failed [63 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.736826162742255, 0.3579119863626685]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
10.34#Ex1 | \modBesselI{\nu}@{\conj{z}} = \conj{\modBesselI{\nu}@{z}} |
BesselI(nu, conjugate(z)) = conjugate(BesselI(nu, z)) |
BesselI[\[Nu], Conjugate[z]] == Conjugate[BesselI[\[Nu], z]] |
Failure | Failure | Skipped - Because timed out | Failed [28 / 70]
Result: Complex[-0.1457476573229447, -0.7449450592023206]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.100244133383339, 1.2347828003590728]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.34#Ex2 | \modBesselK{\nu}@{\conj{z}} = \conj{\modBesselK{\nu}@{z}} |
|
BesselK(nu, conjugate(z)) = conjugate(BesselK(nu, z)) |
BesselK[\[Nu], Conjugate[z]] == Conjugate[BesselK[\[Nu], z]] |
Failure | Failure | Failed [28 / 70] Result: -.3322466664+.1347267497*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: .8978926857-1.555608423*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [28 / 70]
Result: Complex[-0.332246666369582, 0.13472674975137633]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.23222824698313052, -0.12812607679285354]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
10.35.E1 | e^{\frac{1}{2}z(t+t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\modBesselI{m}@{z} |
exp((1)/(2)*z*(t + (t)^(- 1))) = sum((t)^(m)* BesselI(m, z), m = - infinity..infinity) |
Exp[Divide[1,2]*z*(t + (t)^(- 1))] == Sum[(t)^(m)* BesselI[m, z], {m, - Infinity, Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
10.35.E2 | e^{z\cos@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\modBesselI{k}@{z}\cos@{k\theta} |
exp(z*cos(theta)) = BesselI(0, z)+ 2*sum(BesselI(k, z)*cos(k*theta), k = 1..infinity) |
Exp[z*Cos[\[Theta]]] == BesselI[0, z]+ 2*Sum[BesselI[k, z]*Cos[k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Successful | Skipped - Because timed out | Successful [Tested: 70] | |
10.35.E3 | e^{z\sin@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=0}^{\infty}(-1)^{k}\modBesselI{2k+1}@{z}\sin@{(2k+1)\theta}+2\sum_{k=1}^{\infty}(-1)^{k}\modBesselI{2k}@{z}\cos@{2k\theta} |
exp(z*sin(theta)) = BesselI(0, z)+ 2*sum((- 1)^(k)* BesselI(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)+ 2*sum((- 1)^(k)* BesselI(2*k, z)*cos(2*k*theta), k = 1..infinity) |
Exp[z*Sin[\[Theta]]] == BesselI[0, z]+ 2*Sum[(- 1)^(k)* BesselI[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselI[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None] |
Aborted | Failure | Manual Skip! | Skipped - Because timed out | |
10.35.E4 | 1 = \modBesselI{0}@{z}-2\modBesselI{2}@{z}+2\modBesselI{4}@{z}-2\modBesselI{6}@{z}+\dotsb |
1 = BesselI(0, z)- 2*BesselI(2, z)+ 2*BesselI(4, z)- 2*BesselI(6, z)+ .. |
1 == BesselI[0, z]- 2*BesselI[2, z]+ 2*BesselI[4, z]- 2*BesselI[6, z]+ \[Ellipsis] |
Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[-9.440290591519046*^-8, -1.7199789187696823*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[-9.924736610669727*^-8, -1.6360842739013975*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.35.E5 | e^{+ z} = \modBesselI{0}@{z}+ 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}+ 2\modBesselI{3}@{z}+\dotsb |
exp(+ z) = BesselI(0, z)+ 2*BesselI(1, z)+ 2*BesselI(2, z)+ 2*BesselI(3, z)+ .. |
Exp[+ z] == BesselI[0, z]+ 2*BesselI[1, z]+ 2*BesselI[2, z]+ 2*BesselI[3, z]+ \[Ellipsis] |
Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[-0.003384051289485407, 0.00475177611436145], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[-0.002576303532707505, 0.004074841322498801], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.35.E5 | e^{- z} = \modBesselI{0}@{z}- 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}- 2\modBesselI{3}@{z}+\dotsb |
exp(- z) = BesselI(0, z)- 2*BesselI(1, z)+ 2*BesselI(2, z)- 2*BesselI(3, z)+ .. |
Exp[- z] == BesselI[0, z]- 2*BesselI[1, z]+ 2*BesselI[2, z]- 2*BesselI[3, z]+ \[Ellipsis] |
Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[-0.0024389937896763803, 0.0042567403420422645], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[-0.0020316532349716754, 0.004934003265463338], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.37.E1 | |\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}| |
|
abs(BesselK(nu, z)) < abs(BesselK(mu, z)) |
Abs[BesselK[\[Nu], z]] < Abs[BesselK[\[Mu], z]] |
Failure | Failure | Failed [204 / 300] Result: .6496143723 < .6496143723
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: 3.110500858 < 3.110500858
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [184 / 300]
Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
10.38.E1 | \pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!} |
diff(BesselI(+ nu, z), nu) = + BesselI(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity) |
D[BesselI[+ \[Nu], z], \[Nu]] == + BesselI[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]} ... skip entries to safe data | |
10.38.E1 | \pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!} |
diff(BesselI(- nu, z), nu) = - BesselI(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity) |
D[BesselI[- \[Nu], z], \[Nu]] == - BesselI[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]} ... skip entries to safe data | |
10.38.E2 | \pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z} |
diff(BesselK(nu, z), nu) = (1)/(2)*Pi*csc(nu*Pi)*(diff(BesselI(- nu, z), nu)- diff(BesselI(nu, z), nu))- Pi*cot(nu*Pi)*BesselK(nu, z) |
D[BesselK[\[Nu], z], \[Nu]] == Divide[1,2]*Pi*Csc[\[Nu]*Pi]*(D[BesselI[- \[Nu], z], \[Nu]]- D[BesselI[\[Nu], z], \[Nu]])- Pi*Cot[\[Nu]*Pi]*BesselK[\[Nu], z] |
Successful | Failure | - | Successful [Tested: 7] | |
10.39#Ex1 | \modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z} |
BesselI((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sinh(z) |
BesselI[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sinh[z] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
10.39#Ex2 | \modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z} |
BesselI(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* cosh(z) |
BesselI[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Cosh[z] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
10.39.E2 | \modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z} |
|
BesselK((1)/(2), z) = BesselK(-(1)/(2), z) |
BesselK[Divide[1,2], z] == BesselK[-Divide[1,2], z] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
10.39.E2 | \modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z} |
|
BesselK(-(1)/(2), z) = ((Pi)/(2*z))^((1)/(2))* exp(- z) |
BesselK[-Divide[1,2], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39.E3 | \modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}} |
|
BesselK((1)/(4), z) = (Pi)^((1)/(2))* (z)^(-(1)/(4))* CylinderU(0, 2*(z)^((1)/(2))) |
BesselK[Divide[1,4], z] == (Pi)^(Divide[1,2])* (z)^(-Divide[1,4])* ParabolicCylinderD[- 1/2 -(0), 2*(z)^(Divide[1,2])] |
Successful | Failure | - | Successful [Tested: 7] |
10.39.E4 | \modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right) |
|
BesselK((3)/(4), z) = (1)/(2)*(Pi)^((1)/(2))* (z)^(-(3)/(4))*((1)/(2)*CylinderU(1, 2*(z)^((1)/(2)))+ CylinderU(- 1, 2*(z)^((1)/(2)))) |
BesselK[Divide[3,4], z] == Divide[1,2]*(Pi)^(Divide[1,2])* (z)^(-Divide[3,4])*(Divide[1,2]*ParabolicCylinderD[- 1/2 -(1), 2*(z)^(Divide[1,2])]+ ParabolicCylinderD[- 1/2 -(- 1), 2*(z)^(Divide[1,2])]) |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39.E5 | \modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z} |
BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(+ z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, - 2*z) |
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[+ z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, - 2*z] |
Failure | Successful | Failed [7 / 56] Result: -.800260207-.3396157390*I
Test Values: {nu = -1/2, z = 1/2*3^(1/2)+1/2*I} Result: -.4588638571-.5759587792*I
Test Values: {nu = -1/2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [7 / 56]
Result: Complex[-0.8002602062152042, -0.3396157389151986]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]} Result: Complex[-0.45886385712966904, -0.5759587792371148]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]} ... skip entries to safe data | |
10.39.E5 | \modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z} |
BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(- z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*z) |
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*z] |
Successful | Successful | Skip - symbolical successful subtest | Failed [7 / 56]
Result: Complex[0.8002602062152032, 0.3396157389151989]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]} Result: Complex[0.4588638571296689, 0.575958779237115]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]} ... skip entries to safe data | |
10.39.E6 | \modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} |
|
BesselK(nu, z) = (Pi)^((1)/(2))*(2*z)^(nu)* exp(- z)*KummerU(nu +(1)/(2), 2*nu + 1, 2*z) |
BesselK[\[Nu], z] == (Pi)^(Divide[1,2])*(2*z)^\[Nu]* Exp[- z]*HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z] |
Successful | Successful | - | Successful [Tested: 70] |
10.39.E7 | \modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}} |
BesselI(nu, z) = ((2*z)^(-(1)/(2))* WhittakerM(0, nu, 2*z))/((2)^(2*nu)* GAMMA(nu + 1)) |
BesselI[\[Nu], z] == Divide[(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], 2*z],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]] |
Successful | Successful | - | Successful [Tested: 7] | |
10.39.E8 | \modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z} |
|
BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* WhittakerW(0, nu, 2*z) |
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* WhittakerW[0, \[Nu], 2*z] |
Failure | Failure | Successful [Tested: 70] | Successful [Tested: 70] |
10.39.E9 | \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}} |
BesselI(nu, z) = (((1)/(2)*z)^(nu))/(GAMMA(nu + 1))*hypergeom([-], [nu + 1], (1)/(4)*(z)^(2)) |
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+ 1]]*HypergeometricPFQ[{-}, {\[Nu]+ 1}, Divide[1,4]*(z)^(2)] |
Error | Failure | - | Error | |
10.40.E10 | \modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\left(\sum_{k=0}^{\ell-1}\frac{a_{k}(\nu)}{z^{k}}+R_{\ell}(\nu,z)\right) |
BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)*(sum((((4*(nu)^(2)- (1)^(2))*(4*(nu)^(2)- (3)^(2)) .. (4*(nu)^(2)-(2*k - 1)^(2)))/(factorial(k)*(8)^(k)))/((z)^(k)), k = 0..ell - 1)+ R[ell](nu , z)) |
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*(Sum[Divide[Divide[(4*\[Nu]^(2)- (1)^(2))*(4*\[Nu]^(2)- (3)^(2)) \[Ellipsis](4*\[Nu]^(2)-(2*k - 1)^(2)),(k)!*(8)^(k)],(z)^(k)], {k, 0, \[ScriptL]- 1}, GenerateConditions->None]+ Subscript[R, \[ScriptL]][\[Nu], z]) |
Failure | Failure | Error | Error | |
10.41.E8 | p = (1+z^{2})^{-\frac{1}{2}} |
|
p = (1 + (z)^(2))^(-(1)/(2)) |
p == (1 + (z)^(2))^(-Divide[1,2]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex3 | U_{1}(p) = \tfrac{1}{24}(3p-5p^{3}) |
|
U[1](p) = (1)/(24)*(3*p - 5*(p)^(3)) |
Subscript[U, 1][p] == Divide[1,24]*(3*p - 5*(p)^(3)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex4 | U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6}) |
|
U[2](p) = (1)/(1152)*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6)) |
Subscript[U, 2][p] == Divide[1,1152]*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex5 | U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9}) |
|
U[3](p) = (1)/(414720)*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9)) |
Subscript[U, 3][p] == Divide[1,414720]*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex6 | V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3}) |
|
V[1](p) = (1)/(24)*(- 9*p + 7*(p)^(3)) |
Subscript[V, 1][p] == Divide[1,24]*(- 9*p + 7*(p)^(3)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex7 | V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6}) |
|
V[2](p) = (1)/(1152)*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6)) |
Subscript[V, 2][p] == Divide[1,1152]*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.41#Ex8 | V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9}) |
|
V[3](p) = (1)/(414720)*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9)) |
Subscript[V, 3][p] == Divide[1,414720]*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
10.43.E4 | \int_{0}^{x}\frac{\modBesselI{0}@{t}-1}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} |
int((BesselI(0, t)- 1)/(t), t = 0..x) = (1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity) |
Integrate[Divide[BesselI[0, t]- 1,t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 3] | Failed [3 / 3]
Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]} Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]} ... skip entries to safe data | |
10.43.E4 | \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} = \frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\digamma@{k+2}-\digamma@{1})\modBesselI{2k+3}@{x} |
(1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity) = (2)/(x)*sum((- 1)^(k)*(2*k + 3)*(Psi(k + 2)- Psi(1))*BesselI(2*k + 3, x), k = 0..infinity) |
Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None] == Divide[2,x]*Sum[(- 1)^(k)*(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselI[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 3] | Failed [3 / 3]
Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.3333333333333333, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 1.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]} Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-4.0, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 0.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]} ... skip entries to safe data | |
10.43.E5 | \int_{x}^{\infty}\frac{\modBesselK{0}@{t}}{t}\diff{t} = \frac{1}{2}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}} |
|
int((BesselK(0, t))/(t), t = x..infinity) = (1)/(2)*(ln((1)/(2)*x)+ gamma)^(2)+((Pi)^(2))/(24)- sum((Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity) |
Integrate[Divide[BesselK[0, t],t], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[(Pi)^(2),24]- Sum[(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Aborted | Successful [Tested: 3] | Skipped - Because timed out |
10.43.E6 | \int_{0}^{x}e^{-t}\modBesselI{n}@{t}\diff{t} = xe^{-x}(\modBesselI{0}@{x}+\modBesselI{1}@{x})+n(e^{-x}\modBesselI{0}@{x}-1)+2e^{-x}\sum_{k=1}^{n-1}(n-k)\modBesselI{k}@{x} |
int(exp(- t)*BesselI(n, t), t = 0..x) = x*exp(- x)*(BesselI(0, x)+ BesselI(1, x))+ n*(exp(- x)*BesselI(0, x)- 1)+ 2*exp(- x)*sum((n - k)*BesselI(k, x), k = 1..n - 1) |
Integrate[Exp[- t]*BesselI[n, t], {t, 0, x}, GenerateConditions->None] == x*Exp[- x]*(BesselI[0, x]+ BesselI[1, x])+ n*(Exp[- x]*BesselI[0, x]- 1)+ 2*Exp[- x]*Sum[(n - k)*BesselI[k, x], {k, 1, n - 1}, GenerateConditions->None] |
Failure | Aborted | Successful [Tested: 3] | Failed [2 / 3]
Result: Plus[1.0269197346695518, Times[-0.44626032029685964, Plus[-4.940169569318671, Times[3.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[1.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 1.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[1.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 1.5]], Equal[[2], Plus[BesselI[0, 1.5], BesselI[1, 1.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 1.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 1.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[, 1.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 1.5]], Equal[[3], Plus[Times[2, Power[1.5, -1], Plus[Times[1.5, BesselI[0, 1.5]], Times[-2, BesselI[1, 1.5]]]], BesselI[1, 1.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 1.5]} Result: Plus[0.6643873281588137, Times[-1.2130613194252668, Plus[-3.19045011222397, Times[3.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[0.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 0.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[0.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 0.5]], Equal[[2], Plus[BesselI[0, 0.5], BesselI[1, 0.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 0.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 0.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[, 0.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 0.5]], Equal[[3], Plus[Times[2, Power[0.5, -1], Plus[Times[0.5, BesselI[0, 0.5]], Times[-2, BesselI[1, 0.5]]]], BesselI[1, 0.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 0.5]} | |
10.43.E7 | \int_{0}^{x}e^{+ t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}-\modBesselI{\nu+1}@{x}) |
int(exp(+ t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)- BesselI(nu + 1, x)) |
Integrate[Exp[+ t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]+ 1, x]) |
Failure | Successful | Successful [Tested: 15] | Successful [Tested: 15] | |
10.43.E7 | \int_{0}^{x}e^{- t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}+\modBesselI{\nu+1}@{x}) |
int(exp(- t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)+ BesselI(nu + 1, x)) |
Integrate[Exp[- t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]+ 1, x]) |
Failure | Successful | Skipped - Because timed out | Successful [Tested: 15] | |
10.43.E8 | \int_{0}^{x}e^{+ t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{+ x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}-\modBesselI{\nu-1}@{x})-\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}} |
int(exp(+ t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(+ x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)- BesselI(nu - 1, x))-((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu)) |
Integrate[Exp[+ t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[+ x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]- 1, x])-Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]] |
Failure | Successful | Manual Skip! | Failed [3 / 12]
Result: 0.39894228040143315
Test Values: {Rule[x, 1.5], Rule[ν, 1.5]} Result: 0.39894228040143254
Test Values: {Rule[x, 0.5], Rule[ν, 1.5]} ... skip entries to safe data | |
10.43.E8 | \int_{0}^{x}e^{- t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{- x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}+\modBesselI{\nu-1}@{x})+\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}} |
int(exp(- t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(- x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)+ BesselI(nu - 1, x))+((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu)) |
Integrate[Exp[- t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[- x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]- 1, x])+Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]] |
Failure | Successful | Manual Skip! | Successful [Tested: 12] | |
10.43.E9 | \int_{0}^{x}e^{+ t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}+\modBesselK{\nu+1}@{x})-\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1} |
int(exp(+ t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)+ BesselK(nu + 1, x))-((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1) |
Integrate[Exp[+ t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]+ 1, x])-Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1] |
Failure | Aborted | Manual Skip! | Failed [9 / 15]
Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 1.5]} Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 0.5]} ... skip entries to safe data | |
10.43.E9 | \int_{0}^{x}e^{- t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}-\modBesselK{\nu+1}@{x})+\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1} |
int(exp(- t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)- BesselK(nu + 1, x))+((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1) |
Integrate[Exp[- t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]- BesselK[\[Nu]+ 1, x])+Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1] |
Failure | Successful | Manual Skip! | Failed [3 / 15]
Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 2]} Result: DirectedInfinity[]
Test Values: {Rule[x, 0.5], Rule[ν, 2]} ... skip entries to safe data | |
10.43.E10 | \int_{x}^{\infty}e^{t}t^{-\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{x}x^{-\nu+1}}{2\nu-1}(\modBesselK{\nu}@{x}+\modBesselK{\nu-1}@{x}) |
int(exp(t)*(t)^(- nu)* BesselK(nu, t), t = x..infinity) = (exp(x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselK(nu, x)+ BesselK(nu - 1, x)) |
Integrate[Exp[t]*(t)^(- \[Nu])* BesselK[\[Nu], t], {t, x, Infinity}, GenerateConditions->None] == Divide[Exp[x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]- 1, x]) |
Failure | Successful | Manual Skip! | Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, 2]} Result: DirectedInfinity[]
Test Values: {Rule[x, 0.5], Rule[ν, 2]} ... skip entries to safe data | |
10.43.E18 | \int_{0}^{\infty}\modBesselK{\nu}@{t}\diff{t} = \tfrac{1}{2}\pi\sec@{\tfrac{1}{2}\pi\nu} |
int(BesselK(nu, t), t = 0..infinity) = (1)/(2)*Pi*sec((1)/(2)*Pi*nu) |
Integrate[BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*Sec[Divide[1,2]*Pi*\[Nu]] |
Successful | Successful | - | Successful [Tested: 6] | |
10.43.E19 | \int_{0}^{\infty}t^{\mu-1}\modBesselK{\nu}@{t}\diff{t} = 2^{\mu-2}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu} |
int((t)^(mu - 1)* BesselK(nu, t), t = 0..infinity) = (2)^(mu - 2)* GAMMA((1)/(2)*mu -(1)/(2)*nu)*GAMMA((1)/(2)*mu +(1)/(2)*nu) |
Integrate[(t)^(\[Mu]- 1)* BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^(\[Mu]- 2)* Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]] |
Successful | Successful | - | Successful [Tested: 18] | |
10.43.E20 | \int_{0}^{\infty}\cos@{at}\modBesselK{0}@{t}\diff{t} = \frac{\pi}{2(1+a^{2})^{\frac{1}{2}}} |
int(cos(a*t)*BesselK(0, t), t = 0..infinity) = (Pi)/(2*(1 + (a)^(2))^((1)/(2))) |
Integrate[Cos[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2*(1 + (a)^(2))^(Divide[1,2])] |
Successful | Aborted | - | Successful [Tested: 6] | |
10.43.E21 | \int_{0}^{\infty}\sin@{at}\modBesselK{0}@{t}\diff{t} = \frac{\asinh@@{a}}{(1+a^{2})^{\frac{1}{2}}} |
int(sin(a*t)*BesselK(0, t), t = 0..infinity) = (arcsinh(a))/((1 + (a)^(2))^((1)/(2))) |
Integrate[Sin[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[ArcSinh[a],(1 + (a)^(2))^(Divide[1,2])] |
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 6] | |
10.43.E23 | \int_{0}^{\infty}t^{\nu+1}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{\frac{b^{2}}{4p^{2}}} |
int((t)^(nu + 1)* BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(((b)^(2))/(4*(p)^(2))) |
Integrate[(t)^(\[Nu]+ 1)* BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[Divide[(b)^(2),4*(p)^(2)]] |
Error | Aborted | - | Skip - No test values generated | |
10.43.E24 | \int_{0}^{\infty}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselI{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}} |
int(BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(((b)^(2))/(8*(p)^(2)))*BesselI((1)/(2)*nu, ((b)^(2))/(8*(p)^(2))) |
Integrate[BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]] |
Failure | Aborted | Failed [228 / 300] Result: -.7585567167+3.675115279*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I} Result: -.9489546609+2.381017603*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [152 / 300]
Result: Complex[-0.19039794459564638, -1.294097675814569]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[2.992047945390181, -4.249025046528451]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.43.E25 | \int_{0}^{\infty}\modBesselK{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{4p}\sec@{\tfrac{1}{2}\pi\nu}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselK{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}} |
int(BesselK(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(4*p)*sec((1)/(2)*Pi*nu)*exp(((b)^(2))/(8*(p)^(2)))*BesselK((1)/(2)*nu, ((b)^(2))/(8*(p)^(2))) |
Integrate[BesselK[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*p]*Sec[Divide[1,2]*Pi*\[Nu]]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselK[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]] |
Failure | Aborted | Failed [144 / 288] Result: -.4056916296-1.844454275*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I} Result: -.2830456904e-1-1.996429597*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 3/2} ... skip entries to safe data |
Failed [144 / 288]
Result: Complex[0.40569163152223653, 1.8444542715605226]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.4232355421098407, -0.8203643961026106]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.43.E26 | \int_{0}^{\infty}\frac{\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{b^{\nu}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2}}}{2^{\lambda+1}a^{\nu-\lambda+1}}\*\hyperOlverF@{\frac{\nu-\lambda+\mu+1}{2}}{\frac{\nu-\lambda-\mu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}} |
int((BesselK(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((b)^(nu)* GAMMA((1)/(2)*nu -(1)/(2)*lambda +(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*nu -(1)/(2)*lambda -(1)/(2)*mu +(1)/(2)))/((2)^(lambda + 1)* (a)^(nu - lambda + 1))* hypergeom([(nu - lambda + mu + 1)/(2), (nu - lambda - mu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1) |
Integrate[Divide[BesselK[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu]* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]-Divide[1,2]*\[Mu]+Divide[1,2]],(2)^(\[Lambda]+ 1)* (a)^(\[Nu]- \[Lambda]+ 1)]* Hypergeometric2F1Regularized[Divide[\[Nu]- \[Lambda]+ \[Mu]+ 1,2], Divide[\[Nu]- \[Lambda]- \[Mu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]] |
Error | Aborted | - | Skip - No test values generated | |
10.43.E27 | \int_{0}^{\infty}t^{\mu+\nu+1}\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(2a)^{\mu}(2b)^{\nu}\EulerGamma@{\mu+\nu+1}}{(a^{2}+b^{2})^{\mu+\nu+1}} |
int((t)^(mu + nu + 1)* BesselK(mu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = ((2*a)^(mu)*(2*b)^(nu)* GAMMA(mu + nu + 1))/(((a)^(2)+ (b)^(2))^(mu + nu + 1)) |
Integrate[(t)^(\[Mu]+ \[Nu]+ 1)* BesselK[\[Mu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2*a)^\[Mu]*(2*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]+ 1],((a)^(2)+ (b)^(2))^(\[Mu]+ \[Nu]+ 1)] |
Error | Aborted | - | Skip - No test values generated | |
10.43.E28 | \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{\nu}@{at}\modBesselI{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}@{\frac{ab}{2p^{2}}} |
int(t*exp(- (p)^(2)* (t)^(2))*BesselI(nu, a*t)*BesselI(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2))) |
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[\[Nu], a*t]*BesselI[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]] |
Error | Aborted | - | Skipped - Because timed out | |
10.43.E29 | \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{0}@{at}\modBesselK{0}@{at}\diff{t} = \frac{1}{4p^{2}}\exp@{\frac{a^{2}}{2p^{2}}}\modBesselK{0}@{\frac{a^{2}}{2p^{2}}} |
int(t*exp(- (p)^(2)* (t)^(2))*BesselI(0, a*t)*BesselK(0, a*t), t = 0..infinity) = (1)/(4*(p)^(2))*exp(((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2))) |
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[0, a*t]*BesselK[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,4*(p)^(2)]*Exp[Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]] |
Failure | Aborted | Skipped - Because timed out | Successful [Tested: 48] | |
10.44#Ex1 | \modBesselI{\nu}@{z} = \sum_{k=0}^{\infty}\frac{z^{k}}{k!}\BesselJ{\nu+k}@{z} |
BesselI(nu, z) = sum(((z)^(k))/(factorial(k))*BesselJ(nu + k, z), k = 0..infinity) |
BesselI[\[Nu], z] == Sum[Divide[(z)^(k),(k)!]*BesselJ[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Successful | Skipped - Because timed out | Successful [Tested: 70] | |
10.44#Ex2 | \BesselJ{\nu}@{z} = \sum_{k=0}^{\infty}(-1)^{k}\frac{z^{k}}{k!}\modBesselI{\nu+k}@{z} |
BesselJ(nu, z) = sum((- 1)^(k)*((z)^(k))/(factorial(k))*BesselI(nu + k, z), k = 0..infinity) |
BesselJ[\[Nu], z] == Sum[(- 1)^(k)*Divide[(z)^(k),(k)!]*BesselI[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [70 / 70]
Result: Plus[Complex[0.4358908643715884, -0.07192294931339177], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[1.0679098760861825, 0.09257666026367889], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
10.44.E4 | \left(\tfrac{1}{2}z\right)^{\nu} = \sum_{k=0}^{\infty}(-1)^{k}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\modBesselI{\nu+2k}@{z} |
((1)/(2)*z)^(nu) = sum((- 1)^(k)*((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselI(nu + 2*k, z), k = 0..infinity) |
(Divide[1,2]*z)^\[Nu] == Sum[(- 1)^(k)*Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselI[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Manual Skip! | Failed [7 / 7]
Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1]} Result: Plus[Complex[-0.2499999999999999, 0.43301270189221935], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 1]} ... skip entries to safe data | |
10.44.E5 | \modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\frac{\modBesselI{2k}@{z}}{k} |
BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+ 2*sum((BesselI(2*k, z))/(k), k = 1..infinity) |
BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+ 2*Sum[Divide[BesselI[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
10.44.E6 | \modBesselK{n}@{z} = \frac{n!(\tfrac{1}{2}z)^{-n}}{2}\sum_{k=0}^{n-1}(-1)^{k}\frac{(\tfrac{1}{2}z)^{k}\modBesselI{k}@{z}}{k!(n-k)}+(-1)^{n-1}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\modBesselI{n}@{z}+(-1)^{n}\sum_{k=1}^{\infty}\frac{(n+2k)\modBesselI{n+2k}@{z}}{k(n+k)} |
BesselK(n, z) = (factorial(n)*((1)/(2)*z)^(- n))/(2)*sum((- 1)^(k)*(((1)/(2)*z)^(k)* BesselI(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(- 1)^(n - 1)*(ln((1)/(2)*z)- Psi(n + 1))*BesselI(n, z)+(- 1)^(n)* sum(((n + 2*k)*BesselI(n + 2*k, z))/(k*(n + k)), k = 1..infinity) |
BesselK[n, z] == Divide[(n)!*(Divide[1,2]*z)^(- n),2]*Sum[(- 1)^(k)*Divide[(Divide[1,2]*z)^(k)* BesselI[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n - 1)*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselI[n, z]+(- 1)^(n)* Sum[Divide[(n + 2*k)*BesselI[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Aborted | Manual Skip! | Failed [21 / 21]
Result: Plus[Complex[1.084080291505059, -0.3914662527648858], NSum[Times[Power[k, -1], Power[Plus[1, k], -1], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]], Times[Complex[-0.8660254037844387, 0.49999999999999994], DifferenceRoot[Function[{, }, {Equal[Plus[Times[-1, Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[-1, , Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.001928095904955185, 0.0030033056761246957], Times[-1.0, NSum[Times[Power[k, -1], Power[Plus[2, k], -1], Plus[2, Times[2, k]], BesselI[Plus[2, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |