DLMF:13.14.E26 (Q4518)

From testwiki
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:13.14.E26
No description defined

    Statements

    𝒲 { M κ , μ ( z ) , W κ , μ ( z ) } = - Γ ( 1 + 2 μ ) Γ ( 1 2 + μ - κ ) , Wronskian Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 Whittaker-confluent-hypergeometric-W 𝜅 𝜇 𝑧 Euler-Gamma 1 2 𝜇 Euler-Gamma 1 2 𝜇 𝜅 {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,\mu}\left(z\right),W_{% \kappa,\mu}\left(z\right)\right\}=-\frac{\Gamma\left(1+2\mu\right)}{\Gamma% \left(\frac{1}{2}+\mu-\kappa\right)},}}
    0 references
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2aidec
    0 references
    M κ , μ ( z ) Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle M_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}
    C13.S14.E2.m2akdec
    0 references
    W κ , μ ( z ) Whittaker-confluent-hypergeometric-W 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle W_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}
    C13.S14.E3.m2andec
    0 references
    𝒲 Wronskian {\displaystyle{\displaystyle\mathscr{W}}}
    C1.S13.Px2.p1.m3aadec
    0 references
    z 𝑧 {\displaystyle{\displaystyle z}}
    C13.S1.XMD6.m1ydec
    0 references