DLMF:4.23.E42
(Q1794)
From testwiki
Jump to navigation
Jump to search
No description defined
Language
Label
Description
Also known as
English
DLMF:4.23.E42
No description defined
Statements
test
gd
-
1
(
x
)
=
ln
tan
(
1
2
x
+
1
4
π
)
=
ln
(
sec
x
+
tan
x
)
=
arcsinh
(
tan
x
)
=
arccsch
(
cot
x
)
=
arccosh
(
sec
x
)
=
arcsech
(
cos
x
)
=
arctanh
(
sin
x
)
=
arccoth
(
csc
x
)
.
inverse-Gudermannian
𝑥
1
2
𝑥
1
4
𝜋
𝑥
𝑥
hyperbolic-inverse-sine
𝑥
hyperbolic-inverse-cosecant
𝑥
hyperbolic-inverse-cosine
𝑥
hyperbolic-inverse-secant
𝑥
hyperbolic-inverse-tangent
𝑥
hyperbolic-inverse-cotangent
𝑥
{\displaystyle{\displaystyle{\operatorname{gd}^{-1}}\left(x\right)=\ln\tan% \left(\tfrac{1}{2}x+\tfrac{1}{4}\pi\right)=\ln\left(\sec x+\tan x\right)=% \operatorname{arcsinh}\left(\tan x\right)=\operatorname{arccsch}\left(\cot x% \right)=\operatorname{arccosh}\left(\sec x\right)=\operatorname{arcsech}\left(% \cos x\right)=\operatorname{arctanh}\left(\sin x\right)=\operatorname{arccoth}% \left(\csc x\right).}}
0 references
DLMF id
DLMF:4.23.E42
0 references
Symbols used
the ratio of the circumference of a circle to its diameter
test
π
{\displaystyle{\displaystyle\pi}}
xml-id
C3.S12.E1.m2apdec
0 references
cosecant function
test
csc
z
𝑧
{\displaystyle{\displaystyle\csc\NVar{z}}}
xml-id
C4.S14.E5.m2adec
0 references
cosine function
test
cos
z
𝑧
{\displaystyle{\displaystyle\cos\NVar{z}}}
xml-id
C4.S14.E2.m2aadec
0 references
cotangent function
test
cot
z
𝑧
{\displaystyle{\displaystyle\cot\NVar{z}}}
xml-id
C4.S14.E7.m2adec
0 references
inverse hyperbolic cosecant function
test
arccsch
z
hyperbolic-inverse-cosecant
𝑧
{\displaystyle{\displaystyle\operatorname{arccsch}\NVar{z}}}
xml-id
C4.S37.E7.m2adec
0 references
Q11246
test
arccosh
z
hyperbolic-inverse-cosine
𝑧
{\displaystyle{\displaystyle\operatorname{arccosh}\NVar{z}}}
xml-id
C4.S37.SS2.p1.m9adec
0 references
inverse hyperbolic cotangent function
test
arccoth
z
hyperbolic-inverse-cotangent
𝑧
{\displaystyle{\displaystyle\operatorname{arccoth}\NVar{z}}}
xml-id
C4.S37.E9.m2adec
0 references
inverse hyperbolic secant function
test
arcsech
z
hyperbolic-inverse-secant
𝑧
{\displaystyle{\displaystyle\operatorname{arcsech}\NVar{z}}}
xml-id
C4.S37.E8.m2adec
0 references
Q11247
test
arcsinh
z
hyperbolic-inverse-sine
𝑧
{\displaystyle{\displaystyle\operatorname{arcsinh}\NVar{z}}}
xml-id
C4.S37.SS2.p1.m8adec
0 references
Q11248
test
arctanh
z
hyperbolic-inverse-tangent
𝑧
{\displaystyle{\displaystyle\operatorname{arctanh}\NVar{z}}}
xml-id
C4.S37.SS2.p1.m10adec
0 references
inverse Gudermannian function
test
gd
-
1
(
x
)
inverse-Gudermannian
𝑥
{\displaystyle{\displaystyle{\operatorname{gd}^{-1}}\left(\NVar{x}\right)}}
xml-id
C4.S23.E41.m2aadec
0 references
principal branch of logarithm function
test
ln
z
𝑧
{\displaystyle{\displaystyle\ln\NVar{z}}}
xml-id
C4.S2.E2.m2aldec
0 references
secant function
test
sec
z
𝑧
{\displaystyle{\displaystyle\sec\NVar{z}}}
xml-id
C4.S14.E6.m2aadec
0 references
sine function
test
sin
z
𝑧
{\displaystyle{\displaystyle\sin\NVar{z}}}
xml-id
C4.S14.E1.m2aadec
0 references
tangent function
test
tan
z
𝑧
{\displaystyle{\displaystyle\tan\NVar{z}}}
xml-id
C4.S14.E4.m2aadec
0 references
Sitelinks
Wikipedia
(0 entries)
Navigation menu
Personal tools
Log in
Namespaces
Item
Discussion
English
Views
Read
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
Concept URI
In other projects
In other languages
Add links