Weierstrass Elliptic and Modular Functions - 23.5 Special Lattices

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.5.E2 Ξ· 1 = i ⁒ Ξ· 3 subscript πœ‚ 1 𝑖 subscript πœ‚ 3 {\displaystyle{\displaystyle\eta_{1}=i\eta_{3}}}
\eta_{1} = i\eta_{3}

eta[1] = I*eta[3]
Subscript[\[Eta], 1] == I*Subscript[\[Eta], 3]
Skipped - no semantic math Skipped - no semantic math - -
23.5#Ex7 k 2 = 1 2 superscript π‘˜ 2 1 2 {\displaystyle{\displaystyle k^{2}=\tfrac{1}{2}}}
k^{2} = \tfrac{1}{2}

(k)^(2) = (1)/(2)
(k)^(2) == Divide[1,2]
Skipped - no semantic math Skipped - no semantic math - -
23.5#Ex8 K ⁑ ( k ) = K β€² ⁑ ( k ) complete-elliptic-integral-first-kind-K π‘˜ diffop complete-elliptic-integral-first-kind-K 1 π‘˜ {\displaystyle{\displaystyle K\left(k\right)=K'\left(k\right)}}
\compellintKk@{k} = \compellintKk'@{k}

EllipticK(k) = diff( EllipticK(k), k$(1) )
EllipticK[(k)^2] == D[EllipticK[(k)^2], {k, 1}]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[1.3320292471861073, -1.3934110303935494]
Test Values: {Rule[k, 2]}

... skip entries to safe data
23.5#Ex8 K β€² ⁑ ( k ) = ( Ξ“ ⁑ ( 1 4 ) ) 2 / ( 4 ⁒ Ο€ ) diffop complete-elliptic-integral-first-kind-K 1 π‘˜ superscript Euler-Gamma 1 4 2 4 πœ‹ {\displaystyle{\displaystyle K'\left(k\right)=\ifrac{\left(\Gamma\left(\tfrac{% 1}{4}\right)\right)^{2}}{\left(4\sqrt{\pi}\right)}}}
\compellintKk'@{k} = \ifrac{\left(\EulerGamma@{\tfrac{1}{4}}\right)^{2}}{\left(4\sqrt{\pi}\right)}

diff( EllipticK(k), k$(1) ) = ((GAMMA((1)/(4)))^(2))/(4*sqrt(Pi))
D[EllipticK[(k)^2], {k, 1}] == Divide[(Gamma[Divide[1,4]])^(2),4*Sqrt[Pi]]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.343228747081181, 0.3151532066437278]
Test Values: {Rule[k, 2]}

... skip entries to safe data
23.5.E6 Ξ· 1 = e Ο€ ⁒ i / 3 ⁒ Ξ· 3 subscript πœ‚ 1 superscript 𝑒 πœ‹ 𝑖 3 subscript πœ‚ 3 {\displaystyle{\displaystyle\eta_{1}=e^{\pi i/3}\eta_{3}}}
\eta_{1} = e^{\pi i/3}\eta_{3}

eta[1] = exp(Pi*I/3)*eta[3]
Subscript[\[Eta], 1] == Exp[Pi*I/3]*Subscript[\[Eta], 3]
Skipped - no semantic math Skipped - no semantic math - -
23.5#Ex11 k 2 = e i ⁒ Ο€ / 3 superscript π‘˜ 2 superscript 𝑒 imaginary-unit πœ‹ 3 {\displaystyle{\displaystyle k^{2}=e^{\mathrm{i}\pi/3}}}
k^{2} = e^{\iunit\pi/3}

(k)^(2) = exp(I*Pi/3)
(k)^(2) == Exp[I*Pi/3]
Failure Failure
Failed [3 / 3]
Result: .5000000000-.8660254040*I
Test Values: {k = 1}

Result: 3.500000000-.8660254040*I
Test Values: {k = 2}

... skip entries to safe data
Failed [3 / 3]
Result: Complex[0.4999999999999999, -0.8660254037844386]
Test Values: {Rule[k, 1]}

Result: Complex[3.5, -0.8660254037844386]
Test Values: {Rule[k, 2]}

... skip entries to safe data
23.5#Ex12 K ⁑ ( k ) = e i ⁒ Ο€ / 6 ⁒ K β€² ⁑ ( k ) complete-elliptic-integral-first-kind-K π‘˜ superscript 𝑒 imaginary-unit πœ‹ 6 diffop complete-elliptic-integral-first-kind-K 1 π‘˜ {\displaystyle{\displaystyle K\left(k\right)=e^{\mathrm{i}\pi/6}K'\left(k% \right)}}
\compellintKk@{k} = e^{\iunit\pi/6}\compellintKk'@{k}

EllipticK(k) = exp(I*Pi/6)*diff( EllipticK(k), k$(1) )
EllipticK[(k)^2] == Exp[I*Pi/6]*D[EllipticK[(k)^2], {k, 1}]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[1.4240716315220228, -1.1066114718975122]
Test Values: {Rule[k, 2]}

... skip entries to safe data
23.5#Ex12 e i ⁒ Ο€ / 6 ⁒ K β€² ⁑ ( k ) = e i ⁒ Ο€ / 12 ⁒ 3 1 / 4 ⁒ ( Ξ“ ⁑ ( 1 3 ) ) 3 2 7 / 3 ⁒ Ο€ superscript 𝑒 imaginary-unit πœ‹ 6 diffop complete-elliptic-integral-first-kind-K 1 π‘˜ superscript 𝑒 imaginary-unit πœ‹ 12 superscript 3 1 4 superscript Euler-Gamma 1 3 3 superscript 2 7 3 πœ‹ {\displaystyle{\displaystyle e^{\mathrm{i}\pi/6}K'\left(k\right)=e^{\mathrm{i}% \pi/12}\frac{3^{1/4}\left(\Gamma\left(\frac{1}{3}\right)\right)^{3}}{2^{7/3}% \pi}}}
e^{\iunit\pi/6}\compellintKk'@{k} = e^{\iunit\pi/12}\frac{3^{1/4}\left(\EulerGamma@{\frac{1}{3}}\right)^{3}}{2^{7/3}\pi}

exp(I*Pi/6)*diff( EllipticK(k), k$(1) ) = exp(I*Pi/12)*((3)^(1/4)*(GAMMA((1)/(3)))^(3))/((2)^(7/3)* Pi)
Exp[I*Pi/6]*D[EllipticK[(k)^2], {k, 1}] == Exp[I*Pi/12]*Divide[(3)^(1/4)*(Gamma[Divide[1,3]])^(3),(2)^(7/3)* Pi]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.1248830880335463, -0.38527593877730804]
Test Values: {Rule[k, 2]}

... skip entries to safe data