Mathieu Functions and Hill’s Equation - 28.11 Expansions in Series of Mathieu Functions

From testwiki
Revision as of 17:50, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.11.E3 1 = 2 n = 0 A 0 2 n ( q ) ce 2 n ( z , q ) 1 2 superscript subscript 𝑛 0 superscript subscript 𝐴 0 2 𝑛 𝑞 Mathieu-ce 2 𝑛 𝑧 𝑞 {\displaystyle{\displaystyle 1=2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\mathrm{ce}_{2% n}\left(z,q\right)}}
1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}

1 = 2*sum((A[0])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)
1 == 2*Sum[(Subscript[A, 0])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.11.E4 cos 2 m z = n = 0 A 2 m 2 n ( q ) ce 2 n ( z , q ) 2 𝑚 𝑧 superscript subscript 𝑛 0 superscript subscript 𝐴 2 𝑚 2 𝑛 𝑞 Mathieu-ce 2 𝑛 𝑧 𝑞 {\displaystyle{\displaystyle\cos 2mz=\sum_{n=0}^{\infty}A_{2m}^{2n}(q)\mathrm{% ce}_{2n}\left(z,q\right)}}
\cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}
m 0 𝑚 0 {\displaystyle{\displaystyle m\neq 0}}
cos(2*m*z) = sum((A[2*m])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)
Cos[2*m*z] == Sum[(Subscript[A, 2*m])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.11.E5 cos ( 2 m + 1 ) z = n = 0 A 2 m + 1 2 n + 1 ( q ) ce 2 n + 1 ( z , q ) 2 𝑚 1 𝑧 superscript subscript 𝑛 0 superscript subscript 𝐴 2 𝑚 1 2 𝑛 1 𝑞 Mathieu-ce 2 𝑛 1 𝑧 𝑞 {\displaystyle{\displaystyle\cos(2m+1)z=\sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)% \mathrm{ce}_{2n+1}\left(z,q\right)}}
\cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}

cos((2*m + 1)*z) = sum((A[2*m + 1])^(2*n + 1)(q)* MathieuCE(2*n + 1, q, z), n = 0..infinity)
Cos[(2*m + 1)*z] == Sum[(Subscript[A, 2*m + 1])^(2*n + 1)[q]* MathieuC[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.11.E6 sin ( 2 m + 1 ) z = n = 0 B 2 m + 1 2 n + 1 ( q ) se 2 n + 1 ( z , q ) 2 𝑚 1 𝑧 superscript subscript 𝑛 0 superscript subscript 𝐵 2 𝑚 1 2 𝑛 1 𝑞 Mathieu-se 2 𝑛 1 𝑧 𝑞 {\displaystyle{\displaystyle\sin(2m+1)z=\sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)% \mathrm{se}_{2n+1}\left(z,q\right)}}
\sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}

sin((2*m + 1)*z) = sum((B[2*m + 1])^(2*n + 1)(q)* MathieuSE(2*n + 1, q, z), n = 0..infinity)
Sin[(2*m + 1)*z] == Sum[(Subscript[B, 2*m + 1])^(2*n + 1)[q]* MathieuS[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.11.E7 sin ( 2 m + 2 ) z = n = 0 B 2 m + 2 2 n + 2 ( q ) se 2 n + 2 ( z , q ) 2 𝑚 2 𝑧 superscript subscript 𝑛 0 superscript subscript 𝐵 2 𝑚 2 2 𝑛 2 𝑞 Mathieu-se 2 𝑛 2 𝑧 𝑞 {\displaystyle{\displaystyle\sin(2m+2)z=\sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)% \mathrm{se}_{2n+2}\left(z,q\right)}}
\sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}

sin((2*m + 2)*z) = sum((B[2*m + 2])^(2*n + 2)(q)* MathieuSE(2*n + 2, q, z), n = 0..infinity)
Sin[(2*m + 2)*z] == Sum[(Subscript[B, 2*m + 2])^(2*n + 2)[q]* MathieuS[2*n + 2, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out