Combinatorial Analysis - 26.12 Plane Partitions

From testwiki
Revision as of 17:48, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.12.E23 h = 1 r 1 - q 3 h - 1 1 - q 3 h - 2 1 h < j r 1 - q 3 ( h + 2 j - 1 ) 1 - q 3 ( h + j - 1 ) = h = 1 r ( 1 - q 3 h - 1 1 - q 3 h - 2 j = h r 1 - q 3 ( r + h + j - 1 ) 1 - q 3 ( 2 h + j - 1 ) ) superscript subscript product 1 𝑟 1 superscript 𝑞 3 1 1 superscript 𝑞 3 2 subscript product 1 𝑗 𝑟 1 superscript 𝑞 3 2 𝑗 1 1 superscript 𝑞 3 𝑗 1 superscript subscript product 1 𝑟 1 superscript 𝑞 3 1 1 superscript 𝑞 3 2 superscript subscript product 𝑗 𝑟 1 superscript 𝑞 3 𝑟 𝑗 1 1 superscript 𝑞 3 2 𝑗 1 {\displaystyle{\displaystyle\prod_{h=1}^{r}\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_% {1\leq h<j\leq r}\frac{1-q^{3(h+2j-1)}}{1-q^{3(h+j-1)}}=\prod_{h=1}^{r}\left(% \frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{j=h}^{r}\frac{1-q^{3(r+h+j-1)}}{1-q^{3(2h+% j-1)}}\right)}}
\prod_{h=1}^{r}\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{1\leq h<j\leq r}\frac{1-q^{3(h+2j-1)}}{1-q^{3(h+j-1)}} = \prod_{h=1}^{r}\left(\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{j=h}^{r}\frac{1-q^{3(r+h+j-1)}}{1-q^{3(2h+j-1)}}\right)

product((1 - (q)^(3*h - 1))/(1 - (q)^(3*h - 2)), h = 1..r)*product(product((1 - (q)^(3*(h + 2*j - 1)))/(1 - (q)^(3*(h + j - 1))), j = h + 1..r), h = 1..j - 1) = product((1 - (q)^(3*h - 1))/(1 - (q)^(3*h - 2))*product((1 - (q)^(3*(r + h + j - 1)))/(1 - (q)^(3*(2*h + j - 1))), j = h..r), h = 1..r)
Product[Divide[1 - (q)^(3*h - 1),1 - (q)^(3*h - 2)], {h, 1, r}, GenerateConditions->None]*Product[Product[Divide[1 - (q)^(3*(h + 2*j - 1)),1 - (q)^(3*(h + j - 1))], {j, h + 1, r}, GenerateConditions->None], {h, 1, j - 1}, GenerateConditions->None] == Product[Divide[1 - (q)^(3*h - 1),1 - (q)^(3*h - 2)]*Product[Divide[1 - (q)^(3*(r + h + j - 1)),1 - (q)^(3*(2*h + j - 1))], {j, h, r}, GenerateConditions->None], {h, 1, r}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
26.12#Ex7 ζ ( 3 ) = 1.20205 69032 Riemann-zeta 3 1.20205 69032 {\displaystyle{\displaystyle\zeta\left(3\right)=1.20205\;69032}}
\Riemannzeta@{3} = 1.20205\;69032

Zeta(3) = 1.2020569032
Zeta[3] == 1.2020569032
Successful Failure - Successful [Tested: 1]
26.12#Ex8 ζ ( - 1 ) = - 0.16542 11437 diffop Riemann-zeta 1 1 0.16542 11437 {\displaystyle{\displaystyle\zeta'\left(-1\right)=-0.16542\;11437}}
\Riemannzeta'@{-1} = -0.16542\;11437

subs( temp=- 1, diff( Zeta(temp), temp$(1) ) ) = - 0.1654211437
(D[Zeta[temp], {temp, 1}]/.temp-> - 1) == - 0.1654211437
Successful Failure - Successful [Tested: 1]