Weierstrass Elliptic and Modular Functions - 23.17 Elementary Properties

From testwiki
Revision as of 17:42, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.17#Ex1 Ξ» ⁑ ( i ) = 1 2 modular-Lambda 𝑖 1 2 {\displaystyle{\displaystyle\lambda\left(i\right)=\tfrac{1}{2}}}
\modularlambdatau@{i} = \tfrac{1}{2}

Error
ModularLambda[I] == Divide[1,2]
Missing Macro Error Successful - Successful [Tested: 1]
23.17#Ex3 J ⁑ ( i ) = 1 Kleins-invariant-modular-J 𝑖 1 {\displaystyle{\displaystyle J\left(i\right)=1}}
\KleincompinvarJtau@{i} = 1

Error
KleinInvariantJ[I] == 1
Missing Macro Error Successful - Successful [Tested: 1]
23.17#Ex5 Ξ· ⁑ ( i ) = Ξ“ ⁑ ( 1 4 ) 2 ⁒ Ο€ 3 / 4 Dedekind-modular-Eta 𝑖 Euler-Gamma 1 4 2 superscript πœ‹ 3 4 {\displaystyle{\displaystyle\eta\left(i\right)=\frac{\Gamma\left(\tfrac{1}{4}% \right)}{2\pi^{3/4}}}}
\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}

Error
DedekindEta[I] == Divide[Gamma[Divide[1,4]],2*(Pi)^(3/4)]
Missing Macro Error Successful - Successful [Tested: 1]
23.17.E6 Ξ· ⁑ ( Ο„ ) = βˆ‘ n = - ∞ ∞ ( - 1 ) n ⁒ q ( 6 ⁒ n + 1 ) 2 / 12 Dedekind-modular-Eta 𝜏 superscript subscript 𝑛 superscript 1 𝑛 superscript π‘ž superscript 6 𝑛 1 2 12 {\displaystyle{\displaystyle\eta\left(\tau\right)=\sum_{n=-\infty}^{\infty}(-1% )^{n}q^{(6n+1)^{2}/12}}}
\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}

Error
DedekindEta[\[Tau]] == Sum[(- 1)^(n)* (q)^((6*n + 1)^(2)/12), {n, - Infinity, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [10 / 10]
Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο„, Complex[0, 1]]}

Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ο„, Complex[0, 1]]}

... skip entries to safe data
23.17.E7 Ξ» ⁑ ( Ο„ ) = 16 ⁒ q ⁒ ∏ n = 1 ∞ ( 1 + q 2 ⁒ n 1 + q 2 ⁒ n - 1 ) 8 modular-Lambda 𝜏 16 π‘ž superscript subscript product 𝑛 1 superscript 1 superscript π‘ž 2 𝑛 1 superscript π‘ž 2 𝑛 1 8 {\displaystyle{\displaystyle\lambda\left(\tau\right)=16q\prod_{n=1}^{\infty}% \left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}}}
\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}

Error
ModularLambda[\[Tau]] == 16*q*Product[(Divide[1 + (q)^(2*n),1 + (q)^(2*n - 1)])^(8), {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [24 / 100]
Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ο„, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ο„, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.17.E8 Ξ· ⁑ ( Ο„ ) = q 1 / 12 ⁒ ∏ n = 1 ∞ ( 1 - q 2 ⁒ n ) Dedekind-modular-Eta 𝜏 superscript π‘ž 1 12 superscript subscript product 𝑛 1 1 superscript π‘ž 2 𝑛 {\displaystyle{\displaystyle\eta\left(\tau\right)=q^{1/12}\prod_{n=1}^{\infty}% (1-q^{2n})}}
\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})

Error
DedekindEta[\[Tau]] == (q)^(1/12)* Product[1 - (q)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [4 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ο„, Complex[0, 1]]}

Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Ο„, Complex[0, 1]]}

... skip entries to safe data