Multidimensional Theta Functions - 21.9 Integrable Equations
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
21.9.E1 | 4u_{t} = 6uu_{x}+u_{xxx} |
|
4*u[t] = 6*u*u[x]+ u[x, x, x] |
4*Subscript[u, t] == 6*u*Subscript[u, x]+ Subscript[u, x, x, x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
21.9.E2 | iu_{t} = -\tfrac{1}{2}u_{xx}+|u|^{2}u |
|
I*u[t] = -(1)/(2)*u[x, x]+(abs(u))^(2)* u |
I*Subscript[u, t] == -Divide[1,2]*Subscript[u, x, x]+(Abs[u])^(2)* u |
Skipped - no semantic math | Skipped - no semantic math | - | - |
21.9.E3 | (-4u_{t}+6uu_{x}+u_{xxx})_{x}+3u_{yy} = 0 |
|
- 4*u[t]+ 6*u*u[x]+ u[x, x, x][x]+ 3*u[y, y] = 0 |
Subscript[- 4*Subscript[u, t]+ 6*u*Subscript[u, x]+ Subscript[u, x, x, x], x]+ 3*Subscript[u, y, y] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
21.9.E4 | u(x,y,t) = c+2\pderiv[2]{}{x}\ln@{\Riemanntheta@{\mathbf{k}x+\mathbf{l}y+\boldsymbol{{\omega}}t+\boldsymbol{{\phi}}}{\boldsymbol{{\Omega}}}} |
|
u(x , y , t) = c + 2*diff(ln(RiemannTheta(k*x + l*y + omega*t + phi, Omega)), [x$(2)])
|
Error
|
Missing Macro Error | Missing Macro Error | - | - |