Multidimensional Theta Functions - 21.9 Integrable Equations

From testwiki
Revision as of 17:37, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
21.9.E1 4 u t = 6 u u x + u x x x 4 subscript 𝑢 𝑡 6 𝑢 subscript 𝑢 𝑥 subscript 𝑢 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle 4u_{t}=6uu_{x}+u_{xxx}}}
4u_{t} = 6uu_{x}+u_{xxx}

4*u[t] = 6*u*u[x]+ u[x, x, x]
4*Subscript[u, t] == 6*u*Subscript[u, x]+ Subscript[u, x, x, x]
Skipped - no semantic math Skipped - no semantic math - -
21.9.E2 i u t = - 1 2 u x x + | u | 2 u 𝑖 subscript 𝑢 𝑡 1 2 subscript 𝑢 𝑥 𝑥 superscript 𝑢 2 𝑢 {\displaystyle{\displaystyle iu_{t}=-\tfrac{1}{2}u_{xx}+|u|^{2}u}}
iu_{t} = -\tfrac{1}{2}u_{xx}+|u|^{2}u

I*u[t] = -(1)/(2)*u[x, x]+(abs(u))^(2)* u
I*Subscript[u, t] == -Divide[1,2]*Subscript[u, x, x]+(Abs[u])^(2)* u
Skipped - no semantic math Skipped - no semantic math - -
21.9.E3 ( - 4 u t + 6 u u x + u x x x ) x + 3 u y y = 0 subscript 4 subscript 𝑢 𝑡 6 𝑢 subscript 𝑢 𝑥 subscript 𝑢 𝑥 𝑥 𝑥 𝑥 3 subscript 𝑢 𝑦 𝑦 0 {\displaystyle{\displaystyle(-4u_{t}+6uu_{x}+u_{xxx})_{x}+3u_{yy}=0}}
(-4u_{t}+6uu_{x}+u_{xxx})_{x}+3u_{yy} = 0

- 4*u[t]+ 6*u*u[x]+ u[x, x, x][x]+ 3*u[y, y] = 0
Subscript[- 4*Subscript[u, t]+ 6*u*Subscript[u, x]+ Subscript[u, x, x, x], x]+ 3*Subscript[u, y, y] == 0
Skipped - no semantic math Skipped - no semantic math - -
21.9.E4 u ( x , y , t ) = c + 2 2 x 2 ln ( θ ( 𝐤 x + 𝐥 y + 𝝎 t + ϕ | 𝛀 ) ) 𝑢 𝑥 𝑦 𝑡 𝑐 2 partial-derivative 𝑥 2 Riemann-theta 𝐤 𝑥 𝐥 𝑦 𝝎 𝑡 bold-italic-ϕ 𝛀 {\displaystyle{\displaystyle u(x,y,t)=c+2\frac{{\partial}^{2}}{{\partial x}^{2% }}\ln\left(\theta\left(\mathbf{k}x+\mathbf{l}y+\boldsymbol{{\omega}}t+% \boldsymbol{{\phi}}\middle|\boldsymbol{{\Omega}}\right)\right)}}
u(x,y,t) = c+2\pderiv[2]{}{x}\ln@{\Riemanntheta@{\mathbf{k}x+\mathbf{l}y+\boldsymbol{{\omega}}t+\boldsymbol{{\phi}}}{\boldsymbol{{\Omega}}}}

u(x , y , t) = c + 2*diff(ln(RiemannTheta(k*x + l*y + omega*t + phi, Omega)), [x$(2)])
Error
Missing Macro Error Missing Macro Error - -