Results of Coulomb Functions
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
33.2.E1 | diff(w, [rho$(2)])+(1 -(2*eta)/(rho)-(ell*(ell + 1))/((rho)^(2)))* w = 0 |
D[w, {\[Rho], 2}]+(1 -Divide[2*\[Eta],\[Rho]]-Divide[\[ScriptL]*(\[ScriptL]+ 1),\[Rho]^(2)])* w == 0 |
Failure | Failure | Failed [300 / 300] 300/300]: [[-11.25833025+5.499999998*I <- {eta = 1/2*3^(1/2)+1/2*I, rho = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, ell = 3} -5.499999998-11.25833025*I <- {eta = 1/2*3^(1/2)+1/2*I, rho = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2), ell = 3} |
Failed [294 / 300]
{Complex[-11.258330249197703, 5.5] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ℓ, 3], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[10.2583302491977, -3.767949192431125] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ℓ, 3], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} | |
33.4.E2 | R[ell]*X[ell - 1]- T[ell]*X[ell]+ R[ell + 1]*X[ell + 1] = 0 |
Subscript[R, \[ScriptL]]*Subscript[X, \[ScriptL]- 1]- Subscript[T, \[ScriptL]]*Subscript[X, \[ScriptL]]+ Subscript[R, \[ScriptL]+ 1]*Subscript[X, \[ScriptL]+ 1] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.5#Ex7 | CoulombF(ell, 0, rho) = (Pi*rho/ 2)^(1/ 2)* BesselJ(ell +(1)/(2), rho) |
Error |
Failure | Missing Macro Error | Error | - | |
33.5#Ex9 | CoulombF(0, 0, rho) = sin(rho) |
Error |
Successful | Missing Macro Error | - | - | |
33.5.E6 | ((2)^(ell)* factorial(ell))/(factorial(2*ell + 1)) = (1)/(doublefactorial(2*ell + 1)) |
Divide[(2)^\[ScriptL]* (\[ScriptL])!,(2*\[ScriptL]+ 1)!] == Divide[1,(2*\[ScriptL]+ 1)!!] |
Failure | Failure | Error | Failed [1 / 1]
{Plus[Times[Power[2.0, ℓ], Factorial[ℓ], Power[Factorial[Plus[1.0, Times[2.0, ℓ]]], -1]], Times[-1.0, Power[Factorial2[Plus[1.0, Times[2.0, ℓ]]], -1]]] <- {} | |
33.6.E3 | (k + ell)*(k - ell - 1)* (A[k])^(ell) = 2*eta*(A[k - 1])^(ell)- (A[k - 2])^(ell) |
(k + \[ScriptL])*(k - \[ScriptL]- 1)* (Subscript[A, k])^\[ScriptL] == 2*\[Eta]*(Subscript[A, k - 1])^\[ScriptL]- (Subscript[A, k - 2])^\[ScriptL] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.6.E4 | (A[k])^(ell)*(eta) = ((- I)^(k - ell - 1))/(factorial(k - ell - 1))* hypergeom([ell + 1 - k , ell + 1 - I*eta], [2*ell + 2], 2) |
(Subscript[A, k])^\[ScriptL]*(\[Eta]) == Divide[(- I)^(k - \[ScriptL]- 1),(k - \[ScriptL]- 1)!]* HypergeometricPFQ[{\[ScriptL]+ 1 - k , \[ScriptL]+ 1 - I*\[Eta]}, {2*\[ScriptL]+ 2}, 2] |
Failure | Failure | Error | Failed [293 / 300]
{Complex[0.5000000000000001, 0.8660254037844386] <- {Rule[k, 1], Rule[ℓ, 1], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[A, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.0, 1.0] <- {Rule[k, 1], Rule[ℓ, 2], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[A, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} | |
33.7.E1 | CoulombF(ell, eta, rho) = ((rho)^(ell + 1)* (2)^(ell)* exp(I*rho -(Pi*eta/ 2)))/(abs(GAMMA(ell + 1 + I*eta)))*int(exp(- 2*I*rho*t)*(t)^(ell + I*eta)*(1 - t)^(ell - I*eta), t = 0..1) |
Error |
Failure | Missing Macro Error | Error | - | |
33.8#Ex4 | CoulombF(ell, =, +)*((q)^(- 1)*(u - p)^(2)+ q)^(- 1/ 2) |
Error |
Translation Error | Missing Macro Error | - | - | |
33.8#Ex4 | CoulombF(ell, =, -)*((q)^(- 1)*(u - p)^(2)+ q)^(- 1/ 2) |
Error |
Translation Error | Missing Macro Error | - | - | |
33.9.E2 | (k*(k + 2*ell + 1))/(2*k + 2*ell + 1)*a[k]- 2*eta*a[k - 1]+((k - 2)*(k + 2*ell - 1))/(2*k + 2*ell - 3)*a[k - 2] = 0 |
Divide[k*(k + 2*\[ScriptL]+ 1),2*k + 2*\[ScriptL]+ 1]*Subscript[a, k]- 2*\[Eta]*Subscript[a, k - 1]+Divide[(k - 2)*(k + 2*\[ScriptL]- 1),2*k + 2*\[ScriptL]- 3]*Subscript[a, k - 2] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.9.E5 | 4*(eta)^(2)*(k - 2*ell)* b[k + 1]+ k*b[k - 1]+ b[k - 2] = 0 |
4*\[Eta]^(2)*(k - 2*\[ScriptL])* Subscript[b, k + 1]+ k*Subscript[b, k - 1]+ Subscript[b, k - 2] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.12#Ex6 | B[1] = -(1)/(5)*x |
Subscript[B, 1] == -Divide[1,5]*x |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.12#Ex7 | B[2] = (1)/(350)*(7*(x)^(5)- 30*(x)^(2)) |
Subscript[B, 2] == Divide[1,350]*(7*(x)^(5)- 30*(x)^(2)) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.12#Ex8 | B[3] = (1)/(15750)*(264*(x)^(6)- 290*(x)^(3)- 560) |
Subscript[B, 3] == Divide[1,15750]*(264*(x)^(6)- 290*(x)^(3)- 560) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.12.E8 | diff(w, [z$(2)]) = (4*(eta)^(2)*((1 - z)/(z))+(ell*(ell + 1))/((z)^(2)))* w |
D[w, {z, 2}] == (4*\[Eta]^(2)*(Divide[1 - z,z])+Divide[\[ScriptL]*(\[ScriptL]+ 1),(z)^(2)])* w |
Failure | Failure | Error | Failed [296 / 300]
{Complex[-3.7320508075688767, 1.5358983848622458] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ℓ, 1], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-7.196152422706632, 3.535898384862246] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ℓ, 2], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} | |
33.14.E1 | diff(w, [r$(2)])+(epsilon +(2)/(r)-(ell*(ell + 1))/((r)^(2)))* w = 0 |
D[w, {r, 2}]+(\[Epsilon]+Divide[2,r]-Divide[\[ScriptL]*(\[ScriptL]+ 1),(r)^(2)])* w == 0 |
Failure | Failure | Error | Failed [300 / 300]
{Complex[-1.0584754935143141, -0.611111111111111] <- {Rule[r, Rational[-3, 2]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ℓ, 1], Rule[ϵ, 1]} Complex[-0.19245008972987526, -0.11111111111111109] <- {Rule[r, Rational[-3, 2]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ℓ, 1], Rule[ϵ, 2]} | |
33.14#Ex1 | r = - eta*rho |
r == - \[Eta]*\[Rho] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.14#Ex2 | epsilon = 1/ (eta)^(2) |
\[Epsilon] == 1/ \[Eta]^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.14.E12 | A*(epsilon , ell) = (GAMMA(1 + ell + kappa))/(GAMMA(kappa - ell))*(kappa)^(- 2*ell - 1) |
A*(\[Epsilon], \[ScriptL]) == Divide[Gamma[1 + \[ScriptL]+ \[Kappa]],Gamma[\[Kappa]- \[ScriptL]]]*\[Kappa]^(- 2*\[ScriptL]- 1) |
Failure | Failure | Error | Failed [6 / 6]
{1.4444444444444444 <- {Rule[ℓ, 1], Rule[ϵ, 1], Rule[κ, Rational[3, 2]]} Complex[2.4444444444444446, 0.0] <- {Rule[ℓ, 1], Rule[ϵ, 2], Rule[κ, Rational[3, 2]]} | |
33.14.E15 | int(phi[m , ell]*(r)* phi[n , ell]*(r), r = 0..infinity) = KroneckerDelta[m, n] |
Integrate[Subscript[\[Phi], m , \[ScriptL]]*(r)* Subscript[\[Phi], n , \[ScriptL]]*(r), {r, 0, Infinity}, GenerateConditions->None] == KroneckerDelta[m, n] |
Translation Error | Translation Error | - | - | |
33.19.E4 | gamma[k]- gamma[k - 1]+(1)/(4)*(k - 1)*(k - 2*ell - 2)* epsilon*gamma[k - 2] = 0 |
Subscript[\[Gamma], k]- Subscript[\[Gamma], k - 1]+Divide[1,4]*(k - 1)*(k - 2*\[ScriptL]- 2)* \[Epsilon]*Subscript[\[Gamma], k - 2] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.19.E6 | k*(k + 2*ell + 1)* delta[k]+ 2*delta[k - 1]+ epsilon*delta[k - 2]+ 2*(2*k + 2*ell + 1)* A*(epsilon , ell)* alpha[k] = 0 |
k*(k + 2*\[ScriptL]+ 1)* Subscript[\[Delta], k]+ 2*Subscript[\[Delta], k - 1]+ \[Epsilon]*Subscript[\[Delta], k - 2]+ 2*(2*k + 2*\[ScriptL]+ 1)* A*(\[Epsilon], \[ScriptL])* Subscript[\[Alpha], k] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.19.E7 | beta[k]- beta[k - 1]+(1)/(4)*(k - 1)*(k - 2*ell - 2)* epsilon*beta[k - 2]+(1)/(2)*(k - 1)* epsilon*gamma[k - 2] = 0 |
Subscript[\[Beta], k]- Subscript[\[Beta], k - 1]+Divide[1,4]*(k - 1)*(k - 2*\[ScriptL]- 2)* \[Epsilon]*Subscript[\[Beta], k - 2]+Divide[1,2]*(k - 1)* \[Epsilon]*Subscript[\[Gamma], k - 2] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.20#Ex5 | C[k , p] = 0 |
Subscript[C, k , p] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.20#Ex6 | C[k , p] = (-(2*ell + p)*C[k - 1 , p - 2]+ C[k - 1 , p - 3])/(4*p) |
Subscript[C, k , p] == (-(2*\[ScriptL]+ p)*Subscript[C, k - 1 , p - 2]+ Subscript[C, k - 1 , p - 3])/(4*p) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.22.E3 | diff(w, [x$(2)])+((k)^(2)-(2*Z)/(x)-(ell*(ell + 1))/((x)^(2)))* w = 0 |
D[w, {x, 2}]+((k)^(2)-Divide[2*Z,x]-Divide[\[ScriptL]*(\[ScriptL]+ 1),(x)^(2)])* w == 0 |
Failure | Failure | Error | Failed [297 / 300]
{Complex[-0.5704416218017292, -1.0991449828236957] <- {Rule[k, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, Rational[3, 2]], Rule[Z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ℓ, 1]} Complex[-2.110042339640732, -1.9880338717125847] <- {Rule[k, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, Rational[3, 2]], Rule[Z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ℓ, 2]} | |
33.22#Ex10 | r = - eta*rho |
r == - \[Eta]*\[Rho] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.22#Ex11 | epsilon = 1/ (eta)^(2) |
\[Epsilon] == 1/ \[Eta]^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.22#Ex12 | z = 2*I*rho |
z == 2*I*\[Rho] |
Failure | Failure | Failed [70 / 70] 70/70]: [[1.866025404-1.232050808*I <- {rho = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} .5000000000-.8660254040*I <- {rho = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} |
Failed [70 / 70]
{Complex[1.8660254037844386, -1.2320508075688774] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[2.598076211353316, 1.4999999999999996] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} | |
33.22#Ex13 | kappa = I*eta |
\[Kappa] == I*\[Eta] |
Failure | Failure | Failed [96 / 100] 96/100]: [[1.366025404-.3660254040*I <- {eta = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I} 1.000000000-1.732050808*I <- {eta = 1/2*3^(1/2)+1/2*I, kappa = 1/2-1/2*I*3^(1/2)} |
Failed [96 / 100]
{Complex[1.3660254037844386, -0.36602540378443876] <- {Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[1.0, -1.7320508075688772] <- {Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} | |
33.22#Ex14 | rho = z/(2*I) |
\[Rho] == z/(2*I) |
Failure | Failure | Failed [70 / 70] 70/70]: [[.6160254040+.9330127020*I <- {rho = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} .4330127020+.2500000000*I <- {rho = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} |
Failed [70 / 70]
{Complex[0.6160254037844387, 0.9330127018922193] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.7499999999999998, 1.299038105676658] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} | |
33.22#Ex15 | eta = kappa/ I |
\[Eta] == \[Kappa]/ I |
Failure | Failure | Failed [96 / 100] 96/100]: [[.3660254040+1.366025404*I <- {eta = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I} 1.732050808+1.000000000*I <- {eta = 1/2*3^(1/2)+1/2*I, kappa = 1/2-1/2*I*3^(1/2)} |
Failed [96 / 100]
{Complex[0.36602540378443876, 1.3660254037844386] <- {Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[1.7320508075688772, 1.0] <- {Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} | |
33.22#Ex16 | r = kappa*z/ 2 |
r == \[Kappa]*z/ 2 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.22#Ex17 | epsilon = - 1/ (kappa)^(2) |
\[Epsilon] == - 1/ \[Kappa]^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.22#Ex18 | eta = + (epsilon)^(- 1/ 2) |
\[Eta] == + \[Epsilon]^(- 1/ 2) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.22#Ex19 | rho = - r/ eta |
\[Rho] == - r/ \[Eta] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.22#Ex20 | kappa = +(- epsilon)^(- 1/ 2) |
\[Kappa] == +(- \[Epsilon])^(- 1/ 2) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
33.22#Ex21 | z = 2*r/ kappa |
z == 2*r/ \[Kappa] |
Skipped - no semantic math | Skipped - no semantic math | - | - |