Orthogonal Polynomials - 18.23 Hahn Class: Generating Functions

From testwiki
Revision as of 17:25, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.23.E5 e z ( 1 - z a ) x = n = 0 C n ( x ; a ) n ! z n superscript 𝑒 𝑧 superscript 1 𝑧 𝑎 𝑥 superscript subscript 𝑛 0 Charlier-polynomial-C 𝑛 𝑥 𝑎 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle e^{z}\left(1-\frac{z}{a}\right)^{x}=\sum_{n=0}^{% \infty}\frac{C_{n}\left(x;a\right)}{n!}z^{n}}}
e^{z}\left(1-\frac{z}{a}\right)^{x} = \sum_{n=0}^{\infty}\frac{\CharlierpolyC{n}@{x}{a}}{n!}z^{n}

Error
Exp[x + y*I]*(1 -Divide[x + y*I,a])^(x) == Sum[Divide[HypergeometricPFQ[{-(n), -(x)}, {}, -Divide[1,a]],(n)!]*(x + y*I)^(n), {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Missing Macro Error - -
18.23.E6 F 1 1 ( a + i x 2 a ; - i z ) F 1 1 ( b ¯ - i x 2 b ; i z ) = n = 0 p n ( x ; a , b , a ¯ , b ¯ ) ( 2 a ) n ( 2 b ) n z n Kummer-confluent-hypergeometric-M-as-1F1 𝑎 imaginary-unit 𝑥 2 𝑎 imaginary-unit 𝑧 Kummer-confluent-hypergeometric-M-as-1F1 𝑏 imaginary-unit 𝑥 2 𝑏 imaginary-unit 𝑧 superscript subscript 𝑛 0 continuous-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑎 𝑏 Pochhammer 2 𝑎 𝑛 Pochhammer 2 𝑏 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle{{}_{1}F_{1}}\left({a+\mathrm{i}x\atop 2\Re a};-% \mathrm{i}z\right){{}_{1}F_{1}}\left({\overline{b}-\mathrm{i}x\atop 2\Re b};% \mathrm{i}z\right)=\sum_{n=0}^{\infty}\frac{p_{n}\left(x;a,b,\overline{a},% \overline{b}\right)}{{\left(2\Re a\right)_{n}}{\left(2\Re b\right)_{n}}}z^{n}}}
\genhyperF{1}{1}@@{a+\iunit x}{2\realpart@@{a}}{-\iunit z}\genhyperF{1}{1}@@{\conj{b}-\iunit x}{2\realpart@@{b}}{\iunit z} = \sum_{n=0}^{\infty}\frac{\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}}}{\Pochhammersym{2\realpart@@{a}}{n}\Pochhammersym{2\realpart@@{b}}{n}}z^{n}

Error
HypergeometricPFQ[{a + I*x}, {2*Re[a]}, - I*(x + y*I)]*HypergeometricPFQ[{Conjugate[b]- I*x}, {2*Re[b]}, I*(x + y*I)] == Sum[Divide[I^(n)*Divide[Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[a + b] - 1, a + I*(x)}, {a + Conjugate[a], a + Conjugate[b]}, 1],Pochhammer[2*Re[a], n]*Pochhammer[2*Re[b], n]]*(x + y*I)^(n), {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Missing Macro Error - -