Results of Functions of Number Theory
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
27.2.E1 | n product(p(p[r])^(a[r]), r = 1..ifactor(n)) |
Error |
Error | Translation Error | - | - | |
27.2.E7 | Error |
EulerPhi[n] == Sum[If[CoprimeQ[n, m], m^(0), 0], {m, 1, n}] |
Missing Macro Error | Failure | - | Failed [3 / 3]
{1.0 <- {Rule[n, 1]} 1.0 <- {Rule[n, 2]} | |
27.2.E9 | numelems(Divisors(n)) = sum(1, d**n in - infinity) |
Error |
Translation Error | Missing Macro Error | - | - | |
27.2.E10 | add(divisors(alpha)) = sum((d)^(alpha), d**n in - infinity) |
Error |
Translation Error | Missing Macro Error | - | - | |
27.3.E3 | phi(n) = n*product(1 - (p)^(- 1), p**n in - infinity) |
EulerPhi[n] == n*Product[1 - (p)^(- 1), {p**n, - Infinity}, GenerateConditions->None] |
Translation Error | Translation Error | - | - | |
27.3.E5 | numelems(Divisors(n)) = product(1 + a[r], r = 1..ifactor(n)) |
Error |
Error | Missing Macro Error | - | - | |
27.3.E6 | product((p(p[r])^(alpha*(1 + a[r]))- 1)/(p(p[r])^(alpha)- 1), r = 1..ifactor(n)) |
Error |
Failure | Missing Macro Error | Error | - | |
27.3.E8 | phi(m)*phi(n) = phi(m*n)*phi(gcd(m , n))/ gcd(m , n) |
EulerPhi[m]*EulerPhi[n] == EulerPhi[m*n]*EulerPhi[GCD[m , n]]/ GCD[m , n] |
Failure | Failure | Failed [2 / 9] 2/9]: [[-1. <- {m = 2, n = 2} -2. <- {m = 3, n = 3} |
Successful [Tested: 9] | |
27.4.E3 | Zeta(s) = sum((n)^(- s), n = 1..infinity) |
Zeta[s] == Sum[(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 2] | |
27.4.E3 | sum((n)^(- s), n = 1..infinity) = product((1 - (p)^(- s))^(- 1), p = - infinity..infinity) |
Sum[(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] == Product[(1 - (p)^(- s))^(- 1), {p, - Infinity, Infinity}, GenerateConditions->None] |
Failure | Failure | Error | Failed [2 / 2]
{Plus[2.612375348685488, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -1.5]]], -1] <- {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 1.5]} Plus[1.6449340668482262, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -2]]], -1] <- {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 2]} | |
27.4.E6 | sum(phi(n)*(n)^(- s), n = 1..infinity) = (Zeta(s - 1))/(Zeta(s)) |
Sum[EulerPhi[n]*(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] == Divide[Zeta[s - 1],Zeta[s]] |
Failure | Successful | Error | Successful [Tested: 0] | |
27.4.E9 | sum((2)^(ifactor(n))* (n)^(- s), n = 1..infinity) = ((Zeta(s))^(2))/(Zeta(2*s)) |
Error |
Error | Missing Macro Error | - | - | |
27.4.E11 | sum(add(divisors(alpha))*(n)^(- s), n = 1..infinity) = Zeta(s)*Zeta(s - alpha) |
Error |
Failure | Missing Macro Error | Failed [18 / 18] 18/18]: [[Float(infinity) <- {alpha = 3/2, s = -3/2} 5.224750698 <- {alpha = 3/2, s = 3/2} |
- | |
27.4.E13 | sum((ln(n))* (n)^(- s), n = 2..infinity) = - diff( Zeta(s), s$(1) ) |
Sum[(Log[n])* (n)^(- s), {n, 2, Infinity}, GenerateConditions->None] == - D[Zeta[s], {s, 1}] |
Successful | Successful | - | Successful [Tested: 2] | |
27.7.E4 | sum(phi(n)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = (x)/((1 - x)^(2)) |
Sum[EulerPhi[n]*Divide[(x)^(n),1 - (x)^(n)], {n, 1, Infinity}, GenerateConditions->None] == Divide[x,(1 - x)^(2)] |
Failure | Successful | Successful [Tested: 1] | Successful [Tested: 1] | |
27.7.E5 | sum((n)^(alpha)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = sum(add(divisors(alpha))*(x)^(n), n = 1..infinity) |
Error |
Failure | Missing Macro Error | Failed [3 / 3] 3/3]: [[2.671514971 <- {alpha = 3/2, x = 1/2} 1.507450946 <- {alpha = 1/2, x = 1/2} |
- | |
27.9.E1 | LegendreSymbol(- 1, p) = (- 1)^((p - 1)/ 2) |
Error |
Failure | Missing Macro Error | Error | - | |
27.9.E2 | LegendreSymbol(2, p) = (- 1)^(((p)^(2)- 1)/ 8) |
Error |
Failure | Missing Macro Error | Error | - | |
27.9.E3 | LegendreSymbol(p, q)*LegendreSymbol(q, p) = (- 1)^((p - 1)*(q - 1)/ 4) |
Error |
Failure | Missing Macro Error | Error | - | |
27.10.E7 | s[k]*(n) = sum(a[k]*(m)* exp(2*Pi*I*m*n/ k), m = 1..k) |
Subscript[s, k]*(n) == Sum[Subscript[a, k]*(m)* Exp[2*Pi*I*m*n/ k], {m, 1, k}, GenerateConditions->None] |
Failure | Failure | Failed [297 / 300] 297/300]: [[2971422279.-5146654356.*I <- {a[k] = 1/2*3^(1/2)+1/2*I, s[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1} -1114283352.+1929995386.*I <- {a[k] = 1/2*3^(1/2)+1/2*I, s[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2} |
Failed [297 / 300]
{Indeterminate <- {Rule[k, 1], Rule[n, 1], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Indeterminate <- {Rule[k, 1], Rule[n, 2], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} | |
27.12.E1 | limit((p[n])/(n*ln(n)), n = infinity) = 1 |
Limit[Divide[Subscript[p, n],n*Log[n]], n -> Infinity, GenerateConditions->None] == 1 |
Failure | Failure | Skip - No test values generated | Failed [10 / 10]
{-1.0 <- {Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} -1.0 <- {Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} | |
27.12.E2 | p[n] > n*ln(n) |
Subscript[p, n] > n*Log[n] |
Failure | Failure | Failed [6 / 10] 6/10]: [[3.295836867 < -1.500000000 <- {p[n] = -3/2, n = 3} 3.295836867 < 1.500000000 <- {p[n] = 3/2, n = 3} |
Failed [25 / 30]
{Greater[Complex[0.8660254037844387, 0.49999999999999994], 0.0] <- {Rule[n, 1], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Greater[Complex[0.8660254037844387, 0.49999999999999994], 1.3862943611198906] <- {Rule[n, 2], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} | |
27.13.E4 | 1+2*(sum((x)^(m^2), m = 1 .. infinity)) = 1 + 2*sum((x)^((m)^(2)), m = 1..infinity) |
Error |
Successful | Missing Macro Error | - | - | |
27.13.E6 | (1+2*(sum((x)^(m^2), m = 1 .. infinity)))^(2) = 1 + 4*sum((delta[1]*(n)- delta[3]*(n))* (x)^(n), n = 1..infinity) |
Error |
Failure | Missing Macro Error | Failed [300 / 300] 300/300]: [[3.532372013 <- {delta = 1/2*3^(1/2)+1/2*I, x = 1/2, delta[1] = 1/2*3^(1/2)+1/2*I, delta[3] = 1/2*3^(1/2)+1/2*I} -7.395831219+2.928203232*I <- {delta = 1/2*3^(1/2)+1/2*I, x = 1/2, delta[1] = 1/2*3^(1/2)+1/2*I, delta[3] = -1/2+1/2*I*3^(1/2)} |
- | |
27.14.E2 | product(1-(x)^k, k = 1 .. infinity) = product(1 - (x)^(m), m = 1..infinity) |
QPochhammer[x,x] == Product[1 - (x)^(m), {m, 1, Infinity}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 1] | Successful [Tested: 1] | |
27.14.E3 | (1)/(product(1-(x)^k, k = 1 .. infinity)) = sum(nops(partition(n))*(x)^(n), n = 0..infinity) |
Error |
Failure | Missing Macro Error | Error | - | |
27.14.E6 | nops(partition(n)) = sum((- 1)^(k + 1)*(nops(partition(n - omega*(k)))+ nops(partition(n - omega*(- k)))), k = 1..infinity) |
Error |
Error | Missing Macro Error | - | - | |
27.14.E7 | n*nops(partition(n)) = sum(add(divisors(1))*nops(partition(n - k)), k = 1..n) |
Error |
Error | Missing Macro Error | - | - | |
27.14.E9 | nops(partition(n)) = (1)/(Pi*sqrt(2))*sum(sqrt(k)*A[k]*(n)*[diff((sinh((K*sqrt(t))/(k)))/(sqrt(t)), t)][t = n -(1/ 24)], k = 1..infinity) |
Error |
Error | Missing Macro Error | - | - | |
27.14.E12 | Error |
DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/ 12]*Product[1 - Exp[2*Pi*I*n*\[Tau]], {n, 1, Infinity}, GenerateConditions->None] |
Missing Macro Error | Failure | - | Successful [Tested: 1] | |
27.14.E13 | Error |
DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/ 12]*QPochhammer[Exp[2*Pi*I*\[Tau]],Exp[2*Pi*I*\[Tau]]] |
Missing Macro Error | Failure | - | Successful [Tested: 1] | |
27.14.E14 | Error |
DedekindEta[Divide[a*\[Tau]+ b,c*\[Tau]+ d]] == \[CurlyEpsilon]*(- I*(c*\[Tau]+ d))^(Divide[1,2])* DedekindEta[\[Tau]] |
Missing Macro Error | Failure | - | Failed [135 / 300]
{Complex[0.13319594449577687, -0.32363546143707655] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 1], Rule[τ, Complex[0, 1]]} Complex[-0.41002146111087723, -1.4100702726503846] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 2], Rule[τ, Complex[0, 1]]} | |
27.14.E15 | 5*((product(1-((x)^(5))^k, k = 1 .. infinity))^(5))/((product(1-(x)^k, k = 1 .. infinity))^(6)) = sum(nops(partition(5*n + 4))*(x)^(n), n = 0..infinity) |
Error |
Failure | Missing Macro Error | Error | - | |
27.14.E18 | Error |
x*Product[(1 - (x)^(n))^(24), {n, 1, Infinity}, GenerateConditions->None] == Sum[RamanujanTau[n]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None] |
Missing Macro Error | Successful | - | Successful [Tested: 1] |