Legendre and Related Functions - 14.25 Integral Representations

From testwiki
Revision as of 17:14, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
14.25.E1 P ν - μ ( z ) = ( z 2 - 1 ) μ / 2 2 ν Γ ( μ - ν ) Γ ( ν + 1 ) 0 ( sinh t ) 2 ν + 1 ( z + cosh t ) ν + μ + 1 d t Legendre-P-first-kind 𝜇 𝜈 𝑧 superscript superscript 𝑧 2 1 𝜇 2 superscript 2 𝜈 Euler-Gamma 𝜇 𝜈 Euler-Gamma 𝜈 1 superscript subscript 0 superscript 𝑡 2 𝜈 1 superscript 𝑧 𝑡 𝜈 𝜇 1 𝑡 {\displaystyle{\displaystyle P^{-\mu}_{\nu}\left(z\right)=\frac{\left(z^{2}-1% \right)^{\mu/2}}{2^{\nu}\Gamma\left(\mu-\nu\right)\Gamma\left(\nu+1\right)}% \int_{0}^{\infty}\frac{(\sinh t)^{2\nu+1}}{(z+\cosh t)^{\nu+\mu+1}}\mathrm{d}t}}
\assLegendreP[-\mu]{\nu}@{z} = \frac{\left(z^{2}-1\right)^{\mu/2}}{2^{\nu}\EulerGamma@{\mu-\nu}\EulerGamma@{\nu+1}}\int_{0}^{\infty}\frac{(\sinh@@{t})^{2\nu+1}}{(z+\cosh@@{t})^{\nu+\mu+1}}\diff{t}
μ > ν , ν > - 1 , ( μ - ν ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜇 𝜈 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝜈 0 𝜈 1 0 {\displaystyle{\displaystyle\Re\mu>\Re\nu,\Re\nu>-1,\Re(\mu-\nu)>0,\Re(\nu+1)>% 0}}
LegendreP(nu, - mu, z) = (((z)^(2)- 1)^(mu/2))/((2)^(nu)* GAMMA(mu - nu)*GAMMA(nu + 1))*int(((sinh(t))^(2*nu + 1))/((z + cosh(t))^(nu + mu + 1)), t = 0..infinity)
LegendreP[\[Nu], - \[Mu], 3, z] == Divide[((z)^(2)- 1)^(\[Mu]/2),(2)^\[Nu]* Gamma[\[Mu]- \[Nu]]*Gamma[\[Nu]+ 1]]*Integrate[Divide[(Sinh[t])^(2*\[Nu]+ 1),(z + Cosh[t])^(\[Nu]+ \[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
14.25.E2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 - 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν - μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 - 1 ) 1 / 2 cosh t ) ν + μ + 1 d t associated-Legendre-black-Q 𝜇 𝜈 𝑧 superscript 𝜋 1 2 superscript superscript 𝑧 2 1 𝜇 2 superscript 2 𝜇 Euler-Gamma 𝜇 1 2 Euler-Gamma 𝜈 𝜇 1 superscript subscript 0 superscript 𝑡 2 𝜇 superscript 𝑧 superscript superscript 𝑧 2 1 1 2 𝑡 𝜈 𝜇 1 𝑡 {\displaystyle{\displaystyle\boldsymbol{Q}^{\mu}_{\nu}\left(z\right)=\frac{\pi% ^{1/2}\left(z^{2}-1\right)^{\mu/2}}{2^{\mu}\Gamma\left(\mu+\frac{1}{2}\right)% \Gamma\left(\nu-\mu+1\right)}\*\int_{0}^{\infty}\frac{(\sinh t)^{2\mu}}{\left(% z+(z^{2}-1)^{1/2}\cosh t\right)^{\nu+\mu+1}}\mathrm{d}t}}
\assLegendreOlverQ[\mu]{\nu}@{z} = \frac{\pi^{1/2}\left(z^{2}-1\right)^{\mu/2}}{2^{\mu}\EulerGamma@{\mu+\frac{1}{2}}\EulerGamma@{\nu-\mu+1}}\*\int_{0}^{\infty}\frac{(\sinh@@{t})^{2\mu}}{\left(z+(z^{2}-1)^{1/2}\cosh@@{t}\right)^{\nu+\mu+1}}\diff{t}
( ν + 1 ) > μ , μ > - 1 2 , ( μ + 1 2 ) > 0 , ( ν - μ + 1 ) > 0 formulae-sequence 𝜈 1 𝜇 formulae-sequence 𝜇 1 2 formulae-sequence 𝜇 1 2 0 𝜈 𝜇 1 0 {\displaystyle{\displaystyle\Re\left(\nu+1\right)>\Re\mu,\Re\mu>-\tfrac{1}{2},% \Re(\mu+\frac{1}{2})>0,\Re(\nu-\mu+1)>0}}
exp(-(mu)*Pi*I)*LegendreQ(nu,mu,z)/GAMMA(nu+mu+1) = ((Pi)^(1/2)*((z)^(2)- 1)^(mu/2))/((2)^(mu)* GAMMA(mu +(1)/(2))*GAMMA(nu - mu + 1))* int(((sinh(t))^(2*mu))/((z +((z)^(2)- 1)^(1/2)* cosh(t))^(nu + mu + 1)), t = 0..infinity)
Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, z]/Gamma[\[Nu] + \[Mu] + 1] == Divide[(Pi)^(1/2)*((z)^(2)- 1)^(\[Mu]/2),(2)^\[Mu]* Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]- \[Mu]+ 1]]* Integrate[Divide[(Sinh[t])^(2*\[Mu]),(z +((z)^(2)- 1)^(1/2)* Cosh[t])^(\[Nu]+ \[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out