Results of Elliptic Integrals I

From testwiki
Revision as of 20:00, 15 October 2020 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This is the first half of the chapter Elliptic Integrals. It shows results from Section 19.1 to 19.21. For Section 19.22 to 19.36 go to Elliptic Integrals II.

DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r(s,t) = \frac{(p_{1}+p_{2}s)(p_{3}-p_{4}s)s}{(p_{3}+p_{4}s)(p_{3}-p_{4}s)s}} r*(s , t) = ((p[1]+ p[2]*s)*(p[3]- p[4]*s)* s)/((p[3]+ p[4]*s)*(p[3]- p[4]*s)* s) r*(s , t) == Divide[(Subscript[p, 1]+ Subscript[p, 2]*s)*(Subscript[p, 3]- Subscript[p, 4]*s)* s,(Subscript[p, 3]+ Subscript[p, 4]*s)*(Subscript[p, 3]- Subscript[p, 4]*s)* s] Skipped - no semantic math Skipped - no semantic math - -
19.2.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} = \int_{0}^{\phi}\frac{\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}}} EllipticF(sin(phi), k) = int((1)/(sqrt(1 - (k)^(2)* (sin(theta))^(2))), theta = 0..phi) EllipticF[\[Phi], (k)^2] == Integrate[Divide[1,Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]], {\[Theta], 0, \[Phi]}, GenerateConditions->None] Failure Aborted
Failed [6 / 30]
6/30]: [[Float(infinity) <- {phi = -2, k = 1}
.2e-9-.5175477340*I <- {phi = -2, k = 2}
Skipped - Because timed out
19.2.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\phi}\frac{\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}} = \int_{0}^{\sin@@{\phi}}\frac{\diff{t}}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}}} int((1)/(sqrt(1 - (k)^(2)* (sin(theta))^(2))), theta = 0..phi) = int((1)/(sqrt(1 - (t)^(2))*sqrt(1 - (k)^(2)* (t)^(2))), t = 0..sin(phi)) Integrate[Divide[1,Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]], {\[Theta], 0, \[Phi]}, GenerateConditions->None] == Integrate[Divide[1,Sqrt[1 - (t)^(2)]*Sqrt[1 - (k)^(2)* (t)^(2)]], {t, 0, Sin[\[Phi]]}, GenerateConditions->None] Failure Aborted
Failed [6 / 30]
6/30]: [[Float(-infinity) <- {phi = -2, k = 1}
-.2e-9+.5175477340*I <- {phi = -2, k = 2}
Skipped - Because timed out
19.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = \int_{0}^{\phi}\sqrt{1-k^{2}\sin^{2}@@{\theta}}\diff{\theta}\\} EllipticE(sin(phi), k) = int(sqrt(1 - (k)^(2)* (sin(theta))^(2)), theta = 0..phi) EllipticE[\[Phi], (k)^2] == Integrate[Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)], {\[Theta], 0, \[Phi]}, GenerateConditions->None] Failure Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\phi}\sqrt{1-k^{2}\sin^{2}@@{\theta}}\diff{\theta}\\ = \int_{0}^{\sin@@{\phi}}\frac{\sqrt{1-k^{2}t^{2}}}{\sqrt{1-t^{2}}}\diff{t}} int(sqrt(1 - (k)^(2)* (sin(theta))^(2)), theta = 0..phi) = int((sqrt(1 - (k)^(2)* (t)^(2)))/(sqrt(1 - (t)^(2))), t = 0..sin(phi)) Integrate[Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)], {\[Theta], 0, \[Phi]}, GenerateConditions->None] == Integrate[Divide[Sqrt[1 - (k)^(2)* (t)^(2)],Sqrt[1 - (t)^(2)]], {t, 0, Sin[\[Phi]]}, GenerateConditions->None] Failure Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintDk@{\phi}{k} = \int_{0}^{\phi}\frac{\sin^{2}@@{\theta}\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}}} (EllipticF(sin(phi), k) - EllipticE(sin(phi), k))/(k)^2 = int(((sin(theta))^(2))/(sqrt(1 - (k)^(2)* (sin(theta))^(2))), theta = 0..phi) Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4] == Integrate[Divide[(Sin[\[Theta]])^(2),Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]], {\[Theta], 0, \[Phi]}, GenerateConditions->None] Failure Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\phi}\frac{\sin^{2}@@{\theta}\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}} = \int_{0}^{\sin@@{\phi}}\frac{t^{2}\diff{t}}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}}} int(((sin(theta))^(2))/(sqrt(1 - (k)^(2)* (sin(theta))^(2))), theta = 0..phi) = int(((t)^(2))/(sqrt(1 - (t)^(2))*sqrt(1 - (k)^(2)* (t)^(2))), t = 0..sin(phi)) Integrate[Divide[(Sin[\[Theta]])^(2),Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]], {\[Theta], 0, \[Phi]}, GenerateConditions->None] == Integrate[Divide[(t)^(2),Sqrt[1 - (t)^(2)]*Sqrt[1 - (k)^(2)* (t)^(2)]], {t, 0, Sin[\[Phi]]}, GenerateConditions->None] Failure Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\sin@@{\phi}}\frac{t^{2}\diff{t}}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}} = (\incellintFk@{\phi}{k}-\incellintEk@{\phi}{k})/k^{2}} int(((t)^(2))/(sqrt(1 - (t)^(2))*sqrt(1 - (k)^(2)* (t)^(2))), t = 0..sin(phi)) = (EllipticF(sin(phi), k)- EllipticE(sin(phi), k))/ (k)^(2) Integrate[Divide[(t)^(2),Sqrt[1 - (t)^(2)]*Sqrt[1 - (k)^(2)* (t)^(2)]], {t, 0, Sin[\[Phi]]}, GenerateConditions->None] == (EllipticF[\[Phi], (k)^2]- EllipticE[\[Phi], (k)^2])/ (k)^(2) Failure Aborted Successful [Tested: 0] Skipped - Because timed out
19.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{\alpha^{2}}{k} = \int_{0}^{\phi}\frac{\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}(1-\alpha^{2}\sin^{2}@@{\theta})}} EllipticPi(sin(phi), (alpha)^(2), k) = int((1)/(sqrt(1 - (k)^(2)* (sin(theta))^(2))*(1 - (alpha)^(2)* (sin(theta))^(2))), theta = 0..phi) EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == Integrate[Divide[1,Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]*(1 - \[Alpha]^(2)* (Sin[\[Theta]])^(2))], {\[Theta], 0, \[Phi]}, GenerateConditions->None] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\phi}\frac{\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}(1-\alpha^{2}\sin^{2}@@{\theta})} = \int_{0}^{\sin@@{\phi}}\frac{\diff{t}}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}(1-\alpha^{2}t^{2})}} int((1)/(sqrt(1 - (k)^(2)* (sin(theta))^(2))*(1 - (alpha)^(2)* (sin(theta))^(2))), theta = 0..phi) = int((1)/(sqrt(1 - (t)^(2))*sqrt(1 - (k)^(2)* (t)^(2))*(1 - (alpha)^(2)* (t)^(2))), t = 0..sin(phi)) Integrate[Divide[1,Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]*(1 - \[Alpha]^(2)* (Sin[\[Theta]])^(2))], {\[Theta], 0, \[Phi]}, GenerateConditions->None] == Integrate[Divide[1,Sqrt[1 - (t)^(2)]*Sqrt[1 - (k)^(2)* (t)^(2)]*(1 - \[Alpha]^(2)* (t)^(2))], {t, 0, Sin[\[Phi]]}, GenerateConditions->None] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \incellintFk@{\pi/2}{k}} EllipticK(k) = EllipticF(sin(Pi/ 2), k) EllipticK[(k)^2] == EllipticF[Pi/ 2, (k)^2] Successful Successful - Successful [Tested: 3]
19.2#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} = \incellintEk@{\pi/2}{k}} EllipticE(k) = EllipticE(sin(Pi/ 2), k) EllipticE[(k)^2] == EllipticE[Pi/ 2, (k)^2] Successful Successful - Successful [Tested: 3]
19.2#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintDk@{k} = \incellintDk@{\pi/2}{k}} (EllipticK(k) - EllipticE(k))/(k)^2 = (EllipticF(sin(Pi/ 2), k) - EllipticE(sin(Pi/ 2), k))/(k)^2 Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] == Divide[EllipticF[Pi/ 2, (k)^2] - EllipticE[Pi/ 2, (k)^2], (k)^4] Successful Successful - Successful [Tested: 3]
19.2#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintDk@{\pi/2}{k} = (\compellintKk@{k}-\compellintEk@{k})/k^{2}} (EllipticF(sin(Pi/ 2), k) - EllipticE(sin(Pi/ 2), k))/(k)^2 = (EllipticK(k)- EllipticE(k))/ (k)^(2) Divide[EllipticF[Pi/ 2, (k)^2] - EllipticE[Pi/ 2, (k)^2], (k)^4] == (EllipticK[(k)^2]- EllipticE[(k)^2])/ (k)^(2) Successful Failure -
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-0.08185805455243832, 0.4541460103381725] <- {Rule[k, 2]}
19.2#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{k} = \incellintPik@{\pi/2}{\alpha^{2}}{k}} EllipticPi((alpha)^(2), k) = EllipticPi(sin(Pi/ 2), (alpha)^(2), k) EllipticPi[\[Alpha]^(2), (k)^2] == EllipticPi[\[Alpha]^(2), Pi/ 2,(k)^2] Successful Successful - Successful [Tested: 9]
19.2#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ccompellintKk@{k} = \compellintKk@{k^{\prime}}} EllipticCK(k) = EllipticK(sqrt(1 - (k)^(2))) EllipticK[1-(k)^2] == EllipticK[(Sqrt[1 - (k)^(2)])^2] Successful Successful - Successful [Tested: 3]
19.2#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ccompellintEk@{k} = \compellintEk@{k^{\prime}}} EllipticCE(k) = EllipticE(sqrt(1 - (k)^(2))) EllipticE[1-(k)^2] == EllipticE[(Sqrt[1 - (k)^(2)])^2] Successful Successful - Successful [Tested: 3]
19.2#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k^{\prime} = \sqrt{1-k^{2}}} sqrt(1 - (k)^(2)) = sqrt(1 - (k)^(2)) Sqrt[1 - (k)^(2)] == Sqrt[1 - (k)^(2)] Successful Successful - Successful [Tested: 3]
19.2#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{m\pi+\phi}{k} = 2m\compellintKk@{k}+\incellintFk@{\phi}{k}} EllipticF(sin(m*Pi + phi), k) = 2*m*EllipticK(k)+ EllipticF(sin(phi), k) EllipticF[m*Pi + \[Phi], (k)^2] == 2*m*EllipticK[(k)^2]+ EllipticF[\[Phi], (k)^2] Failure Failure Error
Failed [30 / 90]
{Indeterminate <- {Rule[k, 1], Rule[m, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[k, 1], Rule[m, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.2#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{m\pi-\phi}{k} = 2m\compellintKk@{k}-\incellintFk@{\phi}{k}} EllipticF(sin(m*Pi - phi), k) = 2*m*EllipticK(k)- EllipticF(sin(phi), k) EllipticF[m*Pi - \[Phi], (k)^2] == 2*m*EllipticK[(k)^2]- EllipticF[\[Phi], (k)^2] Failure Failure Error
Failed [30 / 90]
{Indeterminate <- {Rule[k, 1], Rule[m, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[k, 1], Rule[m, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.2#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{m\pi+\phi}{k} = 2m\compellintEk@{k}+\incellintEk@{\phi}{k}} EllipticE(sin(m*Pi + phi), k) = 2*m*EllipticE(k)+ EllipticE(sin(phi), k) EllipticE[m*Pi + \[Phi], (k)^2] == 2*m*EllipticE[(k)^2]+ EllipticE[\[Phi], (k)^2] Failure Failure
Failed [90 / 90]
90/90]: [[-3.717960670-.6751929261*I <- {phi = 1/2*3^(1/2)+1/2*I, k = 1, m = 1}
-4.000000000-.3e-9*I <- {phi = 1/2*3^(1/2)+1/2*I, k = 1, m = 2}
Successful [Tested: 90]
19.2#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{m\pi-\phi}{k} = 2m\compellintEk@{k}-\incellintEk@{\phi}{k}} EllipticE(sin(m*Pi - phi), k) = 2*m*EllipticE(k)- EllipticE(sin(phi), k) EllipticE[m*Pi - \[Phi], (k)^2] == 2*m*EllipticE[(k)^2]- EllipticE[\[Phi], (k)^2] Failure Failure
Failed [90 / 90]
90/90]: [[-.2820393315+.6751929264*I <- {phi = 1/2*3^(1/2)+1/2*I, k = 1, m = 1}
-4.000000000-.4e-9*I <- {phi = 1/2*3^(1/2)+1/2*I, k = 1, m = 2}
Successful [Tested: 90]
19.2#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintDk@{m\pi+\phi}{k} = 2m\compellintDk@{k}+\incellintDk@{\phi}{k}} (EllipticF(sin(m*Pi + phi), k) - EllipticE(sin(m*Pi + phi), k))/(k)^2 = 2*m*(EllipticK(k) - EllipticE(k))/(k)^2 + (EllipticF(sin(phi), k) - EllipticE(sin(phi), k))/(k)^2 Divide[EllipticF[m*Pi + \[Phi], (k)^2] - EllipticE[m*Pi + \[Phi], (k)^2], (k)^4] == 2*m*Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4]+ Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4] Failure Failure Error
Failed [30 / 90]
{Indeterminate <- {Rule[k, 1], Rule[m, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[k, 1], Rule[m, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.2#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintDk@{m\pi-\phi}{k} = 2m\compellintDk@{k}-\incellintDk@{\phi}{k}} (EllipticF(sin(m*Pi - phi), k) - EllipticE(sin(m*Pi - phi), k))/(k)^2 = 2*m*(EllipticK(k) - EllipticE(k))/(k)^2 - (EllipticF(sin(phi), k) - EllipticE(sin(phi), k))/(k)^2 Divide[EllipticF[m*Pi - \[Phi], (k)^2] - EllipticE[m*Pi - \[Phi], (k)^2], (k)^4] == 2*m*Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4]- Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4] Failure Failure Error
Failed [30 / 90]
{Indeterminate <- {Rule[k, 1], Rule[m, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[k, 1], Rule[m, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.2.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\atan@@{x}}\frac{\diff{\theta}}{(\cos^{2}@@{\theta}+p\sin^{2}@@{\theta})\sqrt{\cos^{2}@@{\theta}+k_{c}^{2}\sin^{2}@@{\theta}}} = \incellintPik@{\atan@@{x}}{1-p}{k}} int((1)/(((cos(theta))^(2)+ p*(sin(theta))^(2))*sqrt((cos(theta))^(2)+ k(k[c])^(2)*(sin(theta))^(2))), theta = 0..arctan(x)) = EllipticPi(sin(arctan(x)), 1 - p, k) Integrate[Divide[1,((Cos[\[Theta]])^(2)+ p*(Sin[\[Theta]])^(2))*Sqrt[(Cos[\[Theta]])^(2)+ k(Subscript[k, c])^(2)*(Sin[\[Theta]])^(2)]], {\[Theta], 0, ArcTan[x]}, GenerateConditions->None] == EllipticPi[1 - p, ArcTan[x],(k)^2] Error Aborted - Skipped - Because timed out
19.2.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{y} = \frac{1}{2}\int_{0}^{\infty}\frac{\diff{t}}{\sqrt{t+x}(t+y)}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Divide[1,2]*Integrate[Divide[1,Sqrt[t + x]*(t + y)], {t, 0, Infinity}, GenerateConditions->None] Missing Macro Error Failure -
Failed [12 / 18]
{Complex[-1.0177225554447185, 0.0] <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.2.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{y} = \frac{1}{\sqrt{y-x}}\atan@@{\sqrt{\frac{y-x}{x}}}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Divide[1,Sqrt[y - x]]*ArcTan[Sqrt[Divide[y - x,x]]] Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 3]
19.2.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\sqrt{y-x}}\atan@@{\sqrt{\frac{y-x}{x}}} = \frac{1}{\sqrt{y-x}}\acos@@{\sqrt{x/y}}} (1)/(sqrt(y - x))*arctan(sqrt((y - x)/(x))) = (1)/(sqrt(y - x))*arccos(sqrt(x/ y)) Divide[1,Sqrt[y - x]]*ArcTan[Sqrt[Divide[y - x,x]]] == Divide[1,Sqrt[y - x]]*ArcCos[Sqrt[x/ y]] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.2.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{y} = \frac{1}{\sqrt{x-y}}\atanh@@{\sqrt{\frac{x-y}{x}}}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Divide[1,Sqrt[x - y]]*ArcTanh[Sqrt[Divide[x - y,x]]] Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 3]
19.2.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\sqrt{x-y}}\atanh@@{\sqrt{\frac{x-y}{x}}} = \frac{1}{\sqrt{x-y}}\ln@@{\frac{\sqrt{x}+\sqrt{x-y}}{\sqrt{y}}}} (1)/(sqrt(x - y))*arctanh(sqrt((x - y)/(x))) = (1)/(sqrt(x - y))*ln((sqrt(x)+sqrt(x - y))/(sqrt(y))) Divide[1,Sqrt[x - y]]*ArcTanh[Sqrt[Divide[x - y,x]]] == Divide[1,Sqrt[x - y]]*Log[Divide[Sqrt[x]+Sqrt[x - y],Sqrt[y]]] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.2.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{y} = \sqrt{\frac{x}{x-y}}\CarlsonellintRC@{x-y}{-y}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Sqrt[Divide[x,x - y]]*1/Sqrt[- y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x - y)/(- y)] Missing Macro Error Failure Skip - symbolical successful subtest
Failed [9 / 9]
{Complex[-1.0177225554447187, -0.906899682117109] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-1.862459718905424, -1.1107207345395915] <- {Rule[x, 1.5], Rule[y, -0.5]}
19.2.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\frac{x}{x-y}}\CarlsonellintRC@{x-y}{-y} = \frac{1}{\sqrt{x-y}}\atanh@@{\sqrt{\frac{x}{x-y}}}} Error Sqrt[Divide[x,x - y]]*1/Sqrt[- y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x - y)/(- y)] == Divide[1,Sqrt[x - y]]*ArcTanh[Sqrt[Divide[x,x - y]]] Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 9]
19.2.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\sqrt{x-y}}\atanh@@{\sqrt{\frac{x}{x-y}}} = \frac{1}{\sqrt{x-y}}\ln@@{\frac{\sqrt{x}+\sqrt{x-y}}{\sqrt{-y}}}} (1)/(sqrt(x - y))*arctanh(sqrt((x)/(x - y))) = (1)/(sqrt(x - y))*ln((sqrt(x)+sqrt(x - y))/(sqrt(- y))) Divide[1,Sqrt[x - y]]*ArcTanh[Sqrt[Divide[x,x - y]]] == Divide[1,Sqrt[x - y]]*Log[Divide[Sqrt[x]+Sqrt[x - y],Sqrt[- y]]] Failure Failure Successful [Tested: 9] Successful [Tested: 9]
19.2.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{y} = \int_{0}^{1}(v^{2}x+(1-v^{2})y)^{-1/2}\diff{v}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Integrate[((v)^(2)* x +(1 - (v)^(2))*y)^(- 1/ 2), {v, 0, 1}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
19.2.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{y} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{x\cos^{2}@@{\theta}+y\sin^{2}@@{\theta}}\diff{\theta}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Divide[2,Pi]*Integrate[1/Sqrt[x*(Cos[\[Theta]])^(2)+ y*(Sin[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/(x*(Cos[\[Theta]])^(2)+ y*(Sin[\[Theta]])^(2))], {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
19.4#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{\compellintKk@{k}}{k} = \frac{\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k}}{k{k^{\prime}}^{2}}} diff(EllipticK(k), k) = (EllipticE(k)-1 - (k)^(2)*EllipticK(k))/(k*1 - (k)^(2)) D[EllipticK[(k)^2], k] == Divide[EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2],k*1 - (k)^(2)] Failure Failure Error
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-2.4717549813624253, 3.1435959698369205] <- {Rule[k, 2]}
19.4#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{(\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k})}{k} = k\compellintKk@{k}} diff(EllipticE(k)-1 - (k)^(2)*EllipticK(k), k) = k*EllipticK(k) D[EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2], k] == k*EllipticK[(k)^2] Failure Failure Error
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-3.3189229307917216, 6.419990143492479] <- {Rule[k, 2]}
19.4#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{\compellintEk@{k}}{k} = \frac{\compellintEk@{k}-\compellintKk@{k}}{k}} diff(EllipticE(k), k) = (EllipticE(k)- EllipticK(k))/(k) D[EllipticE[(k)^2], k] == Divide[EllipticE[(k)^2]- EllipticK[(k)^2],k] Successful Successful - Successful [Tested: 3]
19.4#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{(\compellintEk@{k}-\compellintKk@{k})}{k} = -\frac{k\compellintEk@{k}}{{k^{\prime}}^{2}}} diff(EllipticE(k)- EllipticK(k), k) = -(k*EllipticE(k))/(1 - (k)^(2)) D[EllipticE[(k)^2]- EllipticK[(k)^2], k] == -Divide[k*EllipticE[(k)^2],1 - (k)^(2)] Successful Successful -
Failed [1 / 3]
{Indeterminate <- {Rule[k, 1]}
19.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{\compellintEk@{k}}{k} = -\frac{1}{k}\deriv{\compellintKk@{k}}{k}} diff(EllipticE(k), [k$(2)]) = -(1)/(k)*diff(EllipticK(k), k) D[EllipticE[(k)^2], {k, 2}] == -Divide[1,k]*D[EllipticK[(k)^2], k] Successful Successful -
Failed [1 / 3]
{Indeterminate <- {Rule[k, 1]}
19.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\frac{1}{k}\deriv{\compellintKk@{k}}{k} = \frac{{k^{\prime}}^{2}\compellintKk@{k}-\compellintEk@{k}}{k^{2}{k^{\prime}}^{2}}} -(1)/(k)*diff(EllipticK(k), k) = (1 - (k)^(2)*EllipticK(k)- EllipticE(k))/((k)^(2)*1 - (k)^(2)) -Divide[1,k]*D[EllipticK[(k)^2], k] == Divide[1 - (k)^(2)*EllipticK[(k)^2]- EllipticE[(k)^2],(k)^(2)*1 - (k)^(2)] Error Failure -
Failed [3 / 3]
{DirectedInfinity[] <- {Rule[k, 1]}
DirectedInfinity[] <- {Rule[k, 2]}
19.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\compellintPik@{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}(\compellintEk@{k}-{k^{\prime}}^{2}\compellintPik@{\alpha^{2}}{k})} diff(EllipticPi((alpha)^(2), k), k) = (k)/(1 - (k)^(2)*((k)^(2)- (alpha)^(2)))*(EllipticE(k)-1 - (k)^(2)*EllipticPi((alpha)^(2), k)) D[EllipticPi[\[Alpha]^(2), (k)^2], k] == Divide[k,1 - (k)^(2)*((k)^(2)- \[Alpha]^(2))]*(EllipticE[(k)^2]-1 - (k)^(2)*EllipticPi[\[Alpha]^(2), (k)^2]) Failure Failure Error
Failed [9 / 9]
{Indeterminate <- {Rule[k, 1], Rule[α, 1.5]}
Complex[0.38994760629924174, 1.2322724929931343] <- {Rule[k, 2], Rule[α, 1.5]}
19.4.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\incellintFk@{\phi}{k}}{k} = {\frac{\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintFk@{\phi}{k}}{k{k^{\prime}}^{2}}-\frac{k\sin@@{\phi}\cos@@{\phi}}{{k^{\prime}}^{2}\sqrt{1-k^{2}\sin^{2}@@{\phi}}}}} diff(EllipticF(sin(phi), k), k) = (EllipticE(sin(phi), k)-1 - (k)^(2)*EllipticF(sin(phi), k))/(k*1 - (k)^(2))-(k*sin(phi)*cos(phi))/(1 - (k)^(2)*sqrt(1 - (k)^(2)* (sin(phi))^(2))) D[EllipticF[\[Phi], (k)^2], k] == Divide[EllipticE[\[Phi], (k)^2]-1 - (k)^(2)*EllipticF[\[Phi], (k)^2],k*1 - (k)^(2)]-Divide[k*Sin[\[Phi]]*Cos[\[Phi]],1 - (k)^(2)*Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]] Failure Failure
Failed [30 / 30]
30/30]: [[Float(infinity)+Float(infinity)*I <- {phi = 1/2*3^(1/2)+1/2*I, k = 1}
-1.296981010-1.781988683*I <- {phi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [30 / 30]
{Indeterminate <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.2927667883728842, -0.7915995039632082] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.4.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\incellintEk@{\phi}{k}}{k} = \frac{\incellintEk@{\phi}{k}-\incellintFk@{\phi}{k}}{k}} diff(EllipticE(sin(phi), k), k) = (EllipticE(sin(phi), k)- EllipticF(sin(phi), k))/(k) D[EllipticE[\[Phi], (k)^2], k] == Divide[EllipticE[\[Phi], (k)^2]- EllipticF[\[Phi], (k)^2],k] Successful Successful - Successful [Tested: 30]
19.4.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\incellintPik@{\phi}{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}\left({\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintPik@{\phi}{\alpha^{2}}{k}}-\frac{k^{2}\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}\right)} diff(EllipticPi(sin(phi), (alpha)^(2), k), k) = (k)/(1 - (k)^(2)*((k)^(2)- (alpha)^(2)))*(EllipticE(sin(phi), k)-1 - (k)^(2)*EllipticPi(sin(phi), (alpha)^(2), k)-((k)^(2)* sin(phi)*cos(phi))/(sqrt(1 - (k)^(2)* (sin(phi))^(2)))) D[EllipticPi[\[Alpha]^(2), \[Phi],(k)^2], k] == Divide[k,1 - (k)^(2)*((k)^(2)- \[Alpha]^(2))]*(EllipticE[\[Phi], (k)^2]-1 - (k)^(2)*EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]-Divide[(k)^(2)* Sin[\[Phi]]*Cos[\[Phi]],Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]]) Failure Aborted
Failed [90 / 90]
90/90]: [[Float(undefined)+Float(undefined)*I <- {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}
-5.135398794+1.052011331*I <- {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [90 / 90]
{Indeterminate <- {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.1264235284707635, -0.9763567309038728] <- {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.4.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (k{k^{\prime}}^{2}D_{k}^{2}+(1-3k^{2})D_{k}-k)\incellintFk@{\phi}{k} = \frac{-k\sin@@{\phi}\cos@@{\phi}}{(1-k^{2}\sin^{2}@@{\phi})^{3/2}}} (k*1 - (k)^(2)*D(D[k])^(2)+(1 - 3*(k)^(2))*D[k]- k)* EllipticF(sin(phi), k) = (- k*sin(phi)*cos(phi))/((1 - (k)^(2)* (sin(phi))^(2))^(3/ 2)) (k*1 - (k)^(2)*D(Subscript[D, k])^(2)+(1 - 3*(k)^(2))*Subscript[D, k]- k)* EllipticF[\[Phi], (k)^2] == Divide[- k*Sin[\[Phi]]*Cos[\[Phi]],(1 - (k)^(2)* (Sin[\[Phi]])^(2))^(3/ 2)] Error Failure -
Failed [300 / 300]
{Plus[Complex[0.4174282354972822, 0.36074991075375373], Times[Complex[0.43180375739814203, 0.27142936483528934], Plus[Complex[-0.8660254037844387, -0.49999999999999994], Times[Complex[-0.12500000000000003, -0.21650635094610965], D]]]] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[-0.38000132033999284, 0.977947559972491], Times[Complex[0.3965687056216178, 0.33175091278780894], Plus[Complex[-4.763139720814413, -2.7499999999999996], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.4.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (k{k^{\prime}}^{2}D_{k}^{2}+{k^{\prime}}^{2}D_{k}+k)\incellintEk@{\phi}{k} = \frac{k\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}} (k*1 - (k)^(2)*D(D[k])^(2)+1 - (k)^(2)*D[k]+ k)* EllipticE(sin(phi), k) = (k*sin(phi)*cos(phi))/(sqrt(1 - (k)^(2)* (sin(phi))^(2))) (k*1 - (k)^(2)*D(Subscript[D, k])^(2)+1 - (k)^(2)*Subscript[D, k]+ k)* EllipticE[\[Phi], (k)^2] == Divide[k*Sin[\[Phi]]*Cos[\[Phi]],Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]] Error Failure -
Failed [300 / 300]
{Plus[Complex[-0.4327885168580316, -0.2292976446734403], Times[Complex[0.43278851685803155, 0.22929764467344024], Plus[Complex[2.566987298107781, -0.24999999999999997], Times[Complex[-0.12500000000000003, -0.21650635094610965], D]]]] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[-0.6011783848834926, -0.7526006723022071], Times[Complex[0.44208095936294645, 0.16535187593702125], Plus[Complex[3.2679491924311224, -0.9999999999999999], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m}} EllipticK(k) = (Pi)/(2)*sum((pochhammer((1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity) EllipticK[(k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] Failure Successful Error Successful [Tested: 3]
19.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m} = \frac{\pi}{2}\genhyperF{2}{1}@{\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}}} (Pi)/(2)*sum((pochhammer((1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(2)*hypergeom([(1)/(2),(1)/(2)], [1], (k)^(2)) Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*HypergeometricPFQ[{Divide[1,2],Divide[1,2]}, {1}, (k)^(2)] Failure Successful
Failed [3 / 3]
3/3]: [[Float(infinity)+Float(infinity)*I <- {k = 1}
Float(infinity)+1.078257824*I <- {k = 2}
Successful [Tested: 3]
19.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} = \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{-\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m}} EllipticE(k) = (Pi)/(2)*sum((pochhammer(-(1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity) EllipticE[(k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[-Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] Failure Successful
Failed [2 / 3]
2/3]: [[Float(infinity)+1.343854231*I <- {k = 2}
Float(infinity)+2.498348128*I <- {k = 3}
Successful [Tested: 3]
19.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{-\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m} = \frac{\pi}{2}\genhyperF{2}{1}@{-\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}}} (Pi)/(2)*sum((pochhammer(-(1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(2)*hypergeom([-(1)/(2),(1)/(2)], [1], (k)^(2)) Divide[Pi,2]*Sum[Divide[Pochhammer[-Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*HypergeometricPFQ[{-Divide[1,2],Divide[1,2]}, {1}, (k)^(2)] Failure Successful
Failed [2 / 3]
2/3]: [[Float(-infinity)-1.343854232*I <- {k = 2}
Float(-infinity)-2.498348127*I <- {k = 3}
Successful [Tested: 3]
19.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintDk@{k} = \frac{\pi}{4}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{3}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{(m+1)!\;m!}k^{2m}} (EllipticK(k) - EllipticE(k))/(k)^2 = (Pi)/(4)*sum((pochhammer((3)/(2), m)*pochhammer((1)/(2), m))/(factorial(m + 1)*factorial(m))*(k)^(2*m), m = 0..infinity) Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] == Divide[Pi,4]*Sum[Divide[Pochhammer[Divide[3,2], m]*Pochhammer[Divide[1,2], m],(m + 1)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] Failure Failure Error
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-0.08185805455243848, 0.4541460103381727] <- {Rule[k, 2]}
19.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\pi}{4}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{3}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{(m+1)!\;m!}k^{2m} = \frac{\pi}{4}\genhyperF{2}{1}@{\tfrac{3}{2},\tfrac{1}{2}}{2}{k^{2}}} (Pi)/(4)*sum((pochhammer((3)/(2), m)*pochhammer((1)/(2), m))/(factorial(m + 1)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(4)*hypergeom([(3)/(2),(1)/(2)], [2], (k)^(2)) Divide[Pi,4]*Sum[Divide[Pochhammer[Divide[3,2], m]*Pochhammer[Divide[1,2], m],(m + 1)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,4]*HypergeometricPFQ[{Divide[3,2],Divide[1,2]}, {2}, (k)^(2)] Failure Successful
Failed [3 / 3]
3/3]: [[Float(infinity)+Float(infinity)*I <- {k = 1}
Float(infinity)+.6055280139*I <- {k = 2}
Failed [1 / 3]
{Indeterminate <- {Rule[k, 1]}
19.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{k} = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{n}}{n!}\sum_{m=0}^{n}\frac{\Pochhammersym{\tfrac{1}{2}}{m}}{m!}k^{2m}\alpha^{2n-2m}} EllipticPi((alpha)^(2), k) = (Pi)/(2)*sum((pochhammer((1)/(2), n))/(factorial(n))*sum((pochhammer((1)/(2), m))/(factorial(m))*(k)^(2*m)* (alpha)^(2*n - 2*m), m = 0..n), n = 0..infinity) EllipticPi[\[Alpha]^(2), (k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], n],(n)!]*Sum[Divide[Pochhammer[Divide[1,2], m],(m)!]*(k)^(2*m)* \[Alpha]^(2*n - 2*m), {m, 0, n}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] Aborted Failure Error Skipped - Because timed out
19.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{n}}{n!}\sum_{m=0}^{n}\frac{\Pochhammersym{\tfrac{1}{2}}{m}}{m!}k^{2m}\alpha^{2n-2m} = \frac{\pi}{2}\AppellF{1}@{\tfrac{1}{2}}{\tfrac{1}{2}}{1}{1}{k^{2}}{\alpha^{2}}} Error Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], n],(n)!]*Sum[Divide[Pochhammer[Divide[1,2], m],(m)!]*(k)^(2*m)* \[Alpha]^(2*n - 2*m), {m, 0, n}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*AppellF[1, , Divide[1,2], Divide[1,2], 1, 1]*(k)^(2)*\[Alpha]^(2) Missing Macro Error Failure Skip - symbolical successful subtest Skipped - Because timed out
19.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q = \exp@{-\pi\ccompellintKk@{k}/\compellintKk@{k}}} q = exp(- Pi*EllipticCK(k)/ EllipticK(k)) q == Exp[- Pi*EllipticK[1-(k)^2]/ EllipticK[(k)^2]] Successful Successful - Successful [Tested: 1]
19.5.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lambda = (1-\sqrt{k^{\prime}})/(2(1+\sqrt{k^{\prime}}))} lambda = (1 -sqrt(sqrt(1 - (k)^(2))))/(2*(1 +sqrt(sqrt(1 - (k)^(2))))) \[Lambda] == (1 -Sqrt[Sqrt[1 - (k)^(2)]])/(2*(1 +Sqrt[Sqrt[1 - (k)^(2)]])) Skipped - no semantic math Skipped - no semantic math - -
19.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \frac{\pi}{2}\left(1+2\sum_{n=1}^{\infty}q^{n^{2}}\right)^{2}} EllipticK(k) = (Pi)/(2)*(1 + 2*sum((q)^((n)^(2)), n = 1..infinity))^(2) EllipticK[(k)^2] == Divide[Pi,2]*((1 + 2*Sum[(q)^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None]))^(2) Failure Failure Error
Failed [1 / 3]
{DirectedInfinity[] <- {Rule[k, 1]}
19.5.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} = \compellintKk@{k}+\frac{2\pi^{2}}{\compellintKk@{k}}\,\frac{\sum_{n=1}^{\infty}(-1)^{n}n^{2}q^{n^{2}}}{1+2\sum_{n=1}^{\infty}(-1)^{n}q^{n^{2}}}} EllipticE(k) = EllipticK(k)+(2*(Pi)^(2))/(EllipticK(k))*(sum((- 1)^(n)* (n)^(2)* (q)^((n)^(2)), n = 1..infinity))/(1 + 2*sum((- 1)^(n)* (q)^((n)^(2)), n = 1..infinity)) EllipticE[(k)^2] == EllipticK[(k)^2]+Divide[2*(Pi)^(2),EllipticK[(k)^2]]*Divide[Sum[(- 1)^(n)* (n)^(2)* (q)^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None],1 + 2*Sum[(- 1)^(n)* (q)^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None]] Failure Failure Error Skipped - Because timed out
19.5.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \frac{\pi}{2}\prod_{m=1}^{\infty}(1+k_{m})} EllipticK(k) = (Pi)/(2)*product(1 + k[m], m = 1..infinity) EllipticK[(k)^2] == Divide[Pi,2]*Product[1 + Subscript[k, m], {m, 1, Infinity}, GenerateConditions->None] Failure Failure Error
Failed [30 / 30]
{Plus[DirectedInfinity[], Times[-1.5707963267948966, NProduct[Plus[1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {m, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[k, 1], Rule[Subscript[k, m], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[0.8428751774062981, -1.0782578237498217], Times[-1.5707963267948966, NProduct[Plus[1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {m, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[k, 2], Rule[Subscript[k, m], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.5.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k_{m+1} = \frac{1-\sqrt{1-k_{m}^{2}}}{1+\sqrt{1-k_{m}^{2}}}} (1 -sqrt(1 - k(k[m])^(2)))/(1 +sqrt(1 - k(k[m])^(2))) Divide[1 -Sqrt[1 - k(Subscript[k, m])^(2)],1 +Sqrt[1 - k(Subscript[k, m])^(2)]] Skipped - no semantic math Skipped - no semantic math - -
19.6#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{0} = \compellintEk@{0}} EllipticK(0) = EllipticE(0) EllipticK[(0)^2] == EllipticE[(0)^2] Successful Successful - Successful [Tested: 1]
19.6#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{0} = \ccompellintKk@{1}} EllipticE(0) = EllipticCK(1) EllipticE[(0)^2] == EllipticK[1-(1)^2] Successful Successful - Successful [Tested: 1]
19.6#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ccompellintKk@{1} = \ccompellintEk@{1}} EllipticCK(1) = EllipticCE(1) EllipticK[1-(1)^2] == EllipticE[1-(1)^2] Successful Successful - Successful [Tested: 1]
19.6#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ccompellintEk@{1} = \tfrac{1}{2}\pi} EllipticCE(1) = (1)/(2)*Pi EllipticE[1-(1)^2] == Divide[1,2]*Pi Successful Successful - Successful [Tested: 1]
19.6#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1} = \ccompellintKk@{0}} EllipticK(1) = EllipticCK(0) EllipticK[(1)^2] == EllipticK[1-(0)^2] Error Failure -
Failed [1 / 1]
{Indeterminate <- {}
19.6#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ccompellintKk@{0} = \infty} EllipticCK(0) = infinity EllipticK[1-(0)^2] == Infinity Error Failure -
Failed [1 / 1]
{Indeterminate <- {}
19.6#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1} = \ccompellintEk@{0}} EllipticE(1) = EllipticCE(0) EllipticE[(1)^2] == EllipticE[1-(0)^2] Successful Successful - Successful [Tested: 1]
19.6#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ccompellintEk@{0} = 1} EllipticCE(0) = 1 EllipticE[1-(0)^2] == 1 Successful Successful - Successful [Tested: 1]
19.6#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{k^{2}}{k} = \compellintEk@{k}/{k^{\prime}}^{2}} EllipticPi((k)^(2), k) = EllipticE(k)/(1 - (k)^(2)) EllipticPi[(k)^(2), (k)^2] == EllipticE[(k)^2]/(1 - (k)^(2)) Successful Successful - Successful [Tested: 0]
19.6#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{-k}{k} = \tfrac{1}{4}\pi(1+k)^{-1}+\tfrac{1}{2}\compellintKk@{k}} EllipticPi(- k, k) = (1)/(4)*Pi*(1 + k)^(- 1)+(1)/(2)*EllipticK(k) EllipticPi[- k, (k)^2] == Divide[1,4]*Pi*(1 + k)^(- 1)+Divide[1,2]*EllipticK[(k)^2] Failure Failure Error Skip - No test values generated
19.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{0} = \pi/(2\sqrt{1-\alpha^{2}}),\quad\compellintPik@{0}{k}} EllipticPi((alpha)^(2), 0) = Pi/(2*sqrt(1 - (alpha)^(2))), EllipticPi(0, k) EllipticPi[\[Alpha]^(2), (0)^2] == Pi/(2*Sqrt[1 - \[Alpha]^(2)]), EllipticPi[0, (k)^2] Successful Failure Skip - symbolical successful subtest Error
19.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pi/(2\sqrt{1-\alpha^{2}}),\quad\compellintPik@{0}{k} = \compellintKk@{k}} Pi/(2*sqrt(1 - (alpha)^(2))), EllipticPi(0, k) = EllipticK(k) Pi/(2*Sqrt[1 - \[Alpha]^(2)]), EllipticPi[0, (k)^2] == EllipticK[(k)^2] Failure Failure Error Error
19.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{k} = \compellintKk@{k}-\compellintPik@{k^{2}/\alpha^{2}}{k}} EllipticPi((alpha)^(2), k) = EllipticK(k)- EllipticPi((k)^(2)/ (alpha)^(2), k) EllipticPi[\[Alpha]^(2), (k)^2] == EllipticK[(k)^2]- EllipticPi[(k)^(2)/ \[Alpha]^(2), (k)^2] Failure Failure Error
Failed [9 / 9]
{Indeterminate <- {Rule[k, 1], Rule[α, 1.5]}
Complex[-1.593078238683172, 2.4424906541753444*^-15] <- {Rule[k, 2], Rule[α, 1.5]}
19.6#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{0} = 0} EllipticPi((alpha)^(2), 0) = 0 EllipticPi[\[Alpha]^(2), (0)^2] == 0 Failure Failure
Failed [3 / 3]
3/3]: [[-1.404962946*I <- {alpha = 3/2}
1.813799364 <- {alpha = 1/2}
Failed [3 / 3]
{Complex[0.0, -1.4049629462081452] <- {Rule[α, 1.5]}
1.813799364234218 <- {Rule[α, 0.5]}
19.6#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{0}{k} = 0} EllipticF(sin(0), k) = 0 EllipticF[0, (k)^2] == 0 Successful Successful - Successful [Tested: 3]
19.6#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{0} = \phi} EllipticF(sin(phi), 0) = phi EllipticF[\[Phi], (0)^2] == \[Phi] Failure Successful
Failed [2 / 10]
2/10]: [[.858407346 <- {phi = -2}
-.858407346 <- {phi = 2}
Successful [Tested: 10]
19.6#Ex13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\tfrac{1}{2}\pi}{1} = \infty} EllipticF(sin((1)/(2)*Pi), 1) = infinity EllipticF[Divide[1,2]*Pi, (1)^2] == Infinity Error Failure -
Failed [1 / 1]
{Indeterminate <- {}
19.6#Ex14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\tfrac{1}{2}\pi}{k} = \compellintKk@{k}} EllipticF(sin((1)/(2)*Pi), k) = EllipticK(k) EllipticF[Divide[1,2]*Pi, (k)^2] == EllipticK[(k)^2] Successful Successful - Successful [Tested: 3]
19.6#Ex15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{\phi\to 0}\ifrac{\incellintFk@{\phi}{k}}{\phi} = 1} limit((EllipticF(sin(phi), k))/(phi), phi = 0) = 1 Limit[Divide[EllipticF[\[Phi], (k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1 Successful Successful - Successful [Tested: 3]
19.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{1} = (\sin@@{\phi})\CarlsonellintRC@{1}{\cos^{2}@@{\phi}}} Error EllipticF[\[Phi], (1)^2] == (Sin[\[Phi]])* 1/Sqrt[(Cos[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cos[\[Phi]])^(2))] Missing Macro Error Failure -
Failed [2 / 10]
{DirectedInfinity[] <- {Rule[ϕ, -2]}
DirectedInfinity[] <- {Rule[ϕ, 2]}
19.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\sin@@{\phi})\CarlsonellintRC@{1}{\cos^{2}@@{\phi}} = \aGudermannian@{\phi}} Error (Sin[\[Phi]])* 1/Sqrt[(Cos[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cos[\[Phi]])^(2))] == InverseGudermannian[\[Phi]] Missing Macro Error Failure - Successful [Tested: 4]
19.6#Ex16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{0}{k} = 0} EllipticE(sin(0), k) = 0 EllipticE[0, (k)^2] == 0 Successful Successful - Successful [Tested: 3]
19.6#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{0} = \phi} EllipticE(sin(phi), 0) = phi EllipticE[\[Phi], (0)^2] == \[Phi] Failure Successful
Failed [2 / 10]
2/10]: [[.858407346 <- {phi = -2}
-.858407346 <- {phi = 2}
Successful [Tested: 10]
19.6#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\tfrac{1}{2}\pi}{1} = 1} EllipticE(sin((1)/(2)*Pi), 1) = 1 EllipticE[Divide[1,2]*Pi, (1)^2] == 1 Successful Successful - Successful [Tested: 1]
19.6#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{1} = \sin@@{\phi}} EllipticE(sin(phi), 1) = sin(phi) EllipticE[\[Phi], (1)^2] == Sin[\[Phi]] Successful Failure -
Failed [2 / 10]
{-0.1814051463486368 <- {Rule[ϕ, -2]}
0.1814051463486368 <- {Rule[ϕ, 2]}
19.6#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\tfrac{1}{2}\pi}{k} = \compellintEk@{k}} EllipticE(sin((1)/(2)*Pi), k) = EllipticE(k) EllipticE[Divide[1,2]*Pi, (k)^2] == EllipticE[(k)^2] Successful Successful - Successful [Tested: 3]
19.6.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{\phi\to 0}\ifrac{\incellintEk@{\phi}{k}}{\phi} = 1} limit((EllipticE(sin(phi), k))/(phi), phi = 0) = 1 Limit[Divide[EllipticE[\[Phi], (k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1 Successful Successful - Successful [Tested: 3]
19.6#Ex21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{0}{\alpha^{2}}{k} = 0} EllipticPi(sin(0), (alpha)^(2), k) = 0 EllipticPi[\[Alpha]^(2), 0,(k)^2] == 0 Successful Successful - Successful [Tested: 9]
19.6#Ex22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{0}{0} = \phi} EllipticPi(sin(phi), 0, 0) = phi EllipticPi[0, \[Phi],(0)^2] == \[Phi] Failure Successful
Failed [2 / 10]
2/10]: [[.858407346 <- {phi = -2}
-.858407346 <- {phi = 2}
Successful [Tested: 10]
19.6#Ex23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{1}{0} = \tan@@{\phi}} EllipticPi(sin(phi), 1, 0) = tan(phi) EllipticPi[1, \[Phi],(0)^2] == Tan[\[Phi]] Failure Successful
Failed [2 / 10]
2/10]: [[-4.370079726 <- {phi = -2}
4.370079726 <- {phi = 2}
Successful [Tested: 10]
19.6#Ex24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{\alpha^{2}}{0} = \CarlsonellintRC@{c-1}{c-\alpha^{2}}} Error EllipticPi[\[Alpha]^(2), \[Phi],(0)^2] == 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c - 1)/(c - \[Alpha]^(2))] Missing Macro Error Failure -
Failed [180 / 180]
{Complex[0.4032669574270382, 0.8997227991212673] <- {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.17167863497284278, 0.9673069947694621] <- {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.6#Ex25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{\alpha^{2}}{1} = \frac{1}{1-\alpha^{2}}\left(\CarlsonellintRC@{c}{c-1}-\alpha^{2}\CarlsonellintRC@{c}{c-\alpha^{2}}\right)} Error EllipticPi[\[Alpha]^(2), \[Phi],(1)^2] == Divide[1,1 - \[Alpha]^(2)]*(1/Sqrt[c - 1]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - 1)]- \[Alpha]^(2)* 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - \[Alpha]^(2))]) Missing Macro Error Failure -
Failed [180 / 180]
{Complex[0.39392267303966433, 0.8870442763896845] <- {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.15564928813724596, 0.9274825692848638] <- {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.6#Ex26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{1}{1} = \tfrac{1}{2}(\CarlsonellintRC@{c}{c-1}+\sqrt{c}(c-1)^{-1})} Error EllipticPi[1, \[Phi],(1)^2] == Divide[1,2]*(1/Sqrt[c - 1]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - 1)]+Sqrt[c]*(c - 1)^(- 1)) Missing Macro Error Failure -
Failed [60 / 60]
{Complex[0.42461599644771203, 0.9033982135739806] <- {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.19222674503116347, 1.0138365568937844] <- {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.6#Ex27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{0}{k} = \incellintFk@{\phi}{k}} EllipticPi(sin(phi), 0, k) = EllipticF(sin(phi), k) EllipticPi[0, \[Phi],(k)^2] == EllipticF[\[Phi], (k)^2] Successful Successful - Successful [Tested: 30]
19.6#Ex28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{k^{2}}{k} = \frac{1}{{k^{\prime}}^{2}}\left(\incellintEk@{\phi}{k}-\frac{k^{2}}{\Delta}\sin@@{\phi}\cos@@{\phi}\right)} EllipticPi(sin(phi), (k)^(2), k) = (1)/(1 - (k)^(2))*(EllipticE(sin(phi), k)-((k)^(2))/(Delta)*sin(phi)*cos(phi)) EllipticPi[(k)^(2), \[Phi],(k)^2] == Divide[1,1 - (k)^(2)]*(EllipticE[\[Phi], (k)^2]-Divide[(k)^(2),\[CapitalDelta]]*Sin[\[Phi]]*Cos[\[Phi]]) Failure Failure
Failed [300 / 300]
300/300]: [[Float(infinity)+Float(infinity)*I <- {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1}
-.4574406724+1.116997071*I <- {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Indeterminate <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.8161437733664769, 0.6845645198965172] <- {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.6#Ex29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{1}{k} = \incellintFk@{\phi}{k}-\frac{1}{{k^{\prime}}^{2}}(\incellintEk@{\phi}{k}-\Delta\tan@@{\phi})} EllipticPi(sin(phi), 1, k) = EllipticF(sin(phi), k)-(1)/(1 - (k)^(2))*(EllipticE(sin(phi), k)- Delta*tan(phi)) EllipticPi[1, \[Phi],(k)^2] == EllipticF[\[Phi], (k)^2]-Divide[1,1 - (k)^(2)]*(EllipticE[\[Phi], (k)^2]- \[CapitalDelta]*Tan[\[Phi]]) Failure Failure
Failed [300 / 300]
300/300]: [[Float(infinity)+Float(infinity)*I <- {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1}
-.5381374542+.4861981155*I <- {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Indeterminate <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.12805668293605252, 0.0652384492706456] <- {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.6#Ex30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\tfrac{1}{2}\pi}{\alpha^{2}}{k} = \compellintPik@{\alpha^{2}}{k}} EllipticPi(sin((1)/(2)*Pi), (alpha)^(2), k) = EllipticPi((alpha)^(2), k) EllipticPi[\[Alpha]^(2), Divide[1,2]*Pi,(k)^2] == EllipticPi[\[Alpha]^(2), (k)^2] Successful Successful - Successful [Tested: 9]
19.6#Ex31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{\phi\to 0}\ifrac{\incellintPik@{\phi}{\alpha^{2}}{k}}{\phi} = 1} limit((EllipticPi(sin(phi), (alpha)^(2), k))/(phi), phi = 0) = 1 Limit[Divide[EllipticPi[\[Alpha]^(2), \[Phi],(k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1 Successful Successful - Successful [Tested: 9]
19.6#Ex32 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{x} = x^{-1/2}} Error 1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(x)] == (x)^(- 1/ 2) Missing Macro Error Successful - Successful [Tested: 3]
19.6#Ex33 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{\lambda x}{\lambda y} = \lambda^{-1/2}\CarlsonellintRC@{x}{y}} Error 1/Sqrt[\[Lambda]*y]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Lambda]*x)/(\[Lambda]*y)] == \[Lambda]^(- 1/ 2)* 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] Missing Macro Error Failure -
Failed [75 / 180]
{Complex[2.0541315094196904, 2.1051836996148214] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[2.941079989400646, 0.036099349881403064] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.6#Ex35 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{0}{y} = \tfrac{1}{2}\pi y^{-1/2}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(0)/(y)] == Divide[1,2]*Pi*(y)^(- 1/ 2) Missing Macro Error Successful - Successful [Tested: 3]
19.6#Ex36 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{0}{y} = 0} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(0)/(y)] == 0 Missing Macro Error Failure -
Failed [3 / 3]
{Complex[0.0, -1.2825498301618643] <- {Rule[y, -1.5]}
Complex[0.0, -2.221441469079183] <- {Rule[y, -0.5]}
19.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi} EllipticE(k)*EllipticCK(k)+ EllipticCE(k)*EllipticK(k)- EllipticK(k)*EllipticCK(k) = (1)/(2)*Pi EllipticE[(k)^2]*EllipticK[1-(k)^2]+ EllipticE[1-(k)^2]*EllipticK[(k)^2]- EllipticK[(k)^2]*EllipticK[1-(k)^2] == Divide[1,2]*Pi Failure Failure Error
Failed [1 / 3]
{Indeterminate <- {Rule[k, 1]}
19.7#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}} EllipticK(I*k/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*EllipticK(k) EllipticK[(I*k/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*EllipticK[(k)^2] Failure Failure Error
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-2.220446049250313*^-16, -2.9198052634126777] <- {Rule[k, 2]}
19.7#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}} EllipticK(- I*sqrt(1 - (k)^(2))/ k) = k*EllipticK(sqrt(1 - (k)^(2))) EllipticK[(- I*Sqrt[1 - (k)^(2)]/ k)^2] == k*EllipticK[(Sqrt[1 - (k)^(2)])^2] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.7#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}} EllipticE(I*k/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))* EllipticE(k) EllipticE[(I*k/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))* EllipticE[(k)^2] Failure Failure
Failed [3 / 3]
3/3]: [[Float(infinity)+Float(infinity)*I <- {k = 1}
.6e-9+.4691535424*I <- {k = 2}
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-5.551115123125783*^-16, 0.46915354293820644] <- {Rule[k, 2]}
19.7#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}} EllipticE(- I*sqrt(1 - (k)^(2))/ k) = (1/ k)* EllipticE(sqrt(1 - (k)^(2))) EllipticE[(- I*Sqrt[1 - (k)^(2)]/ k)^2] == (1/ k)* EllipticE[(Sqrt[1 - (k)^(2)])^2] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.7#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})} EllipticK(1/ k) = k*(EllipticK(k)- I*EllipticK(sqrt(1 - (k)^(2)))) EllipticK[(1/ k)^2] == k*(EllipticK[(k)^2]- I*EllipticK[(Sqrt[1 - (k)^(2)])^2]) Failure Failure Error
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-2.220446049250313*^-16, 4.313031294999287] <- {Rule[k, 2]}
19.7#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})} EllipticK(1/ k) = k*(EllipticK(k)+ I*EllipticK(sqrt(1 - (k)^(2)))) EllipticK[(1/ k)^2] == k*(EllipticK[(k)^2]+ I*EllipticK[(Sqrt[1 - (k)^(2)])^2]) Failure Failure Error
Failed [1 / 3]
{Indeterminate <- {Rule[k, 1]}
19.7#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})} EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))+ I*EllipticK(k)) EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticK[(k)^2]) Failure Failure Error
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[2.9198052634126785, -3.7351946687866775] <- {Rule[k, 2]}
19.7#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})} EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))- I*EllipticK(k)) EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*EllipticK[(k)^2]) Failure Failure Error
Failed [1 / 3]
{Indeterminate <- {Rule[k, 1]}
19.7#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)} EllipticE(1/ k) = (1/ k)*(EllipticE(k)+ I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)- I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2)))) EllipticE[(1/ k)^2] == (1/ k)*(EllipticE[(k)^2]+ I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]- I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]) Failure Failure Error
Failed [3 / 3]
{DirectedInfinity[] <- {Rule[k, 1]}
Complex[3.4500631209220436, -1.8829831432620088] <- {Rule[k, 2]}
19.7#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)} EllipticE(1/ k) = (1/ k)*(EllipticE(k)- I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)+ I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2)))) EllipticE[(1/ k)^2] == (1/ k)*(EllipticE[(k)^2]- I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]+ I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]) Failure Failure Error
Failed [3 / 3]
{DirectedInfinity[] <- {Rule[k, 1]}
Complex[3.4500631209220436, -3.773902383124376] <- {Rule[k, 2]}
19.7#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)} EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))- I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))+ I*1 - (k)^(2)*EllipticK(k)) EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]- I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*1 - (k)^(2)*EllipticK[(k)^2]) Failure Failure Error
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-1.1384238737361991, -2.262384972182541] <- {Rule[k, 2]}
19.7#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)} EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))+ I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))- I*1 - (k)^(2)*EllipticK(k)) EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*1 - (k)^(2)*EllipticK[(k)^2]) Failure Failure Error
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-0.45287687829515355, -3.814134176668458] <- {Rule[k, 2]}
19.7#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}} EllipticF(sin(I*phi), k) = I*EllipticF(sin(psi), sqrt(1 - (k)^(2))) EllipticF[I*\[Phi], (k)^2] == I*EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2] Failure Failure
Failed [300 / 300]
300/300]: [[.1428695990-.263545696e-1*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}
.749290340e-1-.334629029e-1*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.020142137049999537, -0.0010462389457662757] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.015860617706546204, -0.003938067237051424] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.7#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)} EllipticE(sin(I*phi), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- EllipticE(sin(psi), sqrt(1 - (k)^(2)))+(tan(psi))*sqrt(1 -1 - (k)^(2)*(sin(psi))^(2))) EllipticE[I*\[Phi], (k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- EllipticE[\[Psi], (Sqrt[1 - (k)^(2)])^2]+(Tan[\[Psi]])*Sqrt[1 -1 - (k)^(2)*(Sin[\[Psi]])^(2)]) Failure Failure
Failed [300 / 300]
300/300]: [[-.9970133474-.1125517221*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}
-2.257467281-.7782721018*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[-0.3893501368763376, 0.20738614458301174] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.6710974690872284, 0.0060773305020283] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.7#Ex21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}} EllipticPi(sin(I*phi), (alpha)^(2), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- (alpha)^(2)* EllipticPi(sin(psi), 1 - (alpha)^(2), sqrt(1 - (k)^(2))))/(1 - (alpha)^(2)) EllipticPi[\[Alpha]^(2), I*\[Phi],(k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- \[Alpha]^(2)* EllipticPi[1 - \[Alpha]^(2), \[Psi],(Sqrt[1 - (k)^(2)])^2])/(1 - \[Alpha]^(2)) Failure Failure
Failed [292 / 300]
292/300]: [[.926834363e-2-.484444094e-1*I <- {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}
-.130749569e-2-.277524276e-1*I <- {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [298 / 300]
{Complex[0.013291772923717082, -0.006719909387202905] <- {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.00953602334602252, -0.007394575555177196] <- {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{n+1} = \frac{a_{n}+g_{n}}{2}} a[n + 1] = (a[n]+ g[n])/(2) Subscript[a, n + 1] == Divide[Subscript[a, n]+ Subscript[g, n],2] Skipped - no semantic math Skipped - no semantic math - -
19.8#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle g_{n+1} = \sqrt{a_{n}g_{n}}} g[n + 1] = sqrt(a[n]*g[n]) Subscript[g, n + 1] == Sqrt[Subscript[a, n]*Subscript[g, n]] Skipped - no semantic math Skipped - no semantic math - -
19.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c_{n} = \sqrt{a_{n}^{2}-g_{n}^{2}}} sqrt(a(a[n])^(2)- g(g[n])^(2)) Sqrt[a(Subscript[a, n])^(2)- g(Subscript[g, n])^(2)] Skipped - no semantic math Skipped - no semantic math - -
19.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c_{n+1} = \frac{a_{n}-g_{n}}{2}} c[n + 1] = (a[n]- g[n])/(2) Subscript[c, n + 1] == Divide[Subscript[a, n]- Subscript[g, n],2] Skipped - no semantic math Skipped - no semantic math - -
19.8.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\AGM@{a_{0}}{g_{0}}} = \frac{2}{\pi}\int_{0}^{\pi/2}\frac{\diff{\theta}}{\sqrt{a_{0}^{2}\cos^{2}@@{\theta}+g_{0}^{2}\sin^{2}@@{\theta}}}} (1)/(GaussAGM(a[0], g[0])) int((1)/(sqrt(a(a[0])^(2)*(cos(theta))^(2)+ g(g[0])^(2)*(sin(theta))^(2))), theta = 0..Pi/ 2) Error Failure Missing Macro Error Error Skip - symbolical successful subtest
19.8.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\pi/2}\frac{\diff{\theta}}{\sqrt{a_{0}^{2}\cos^{2}@@{\theta}+g_{0}^{2}\sin^{2}@@{\theta}}} = \frac{1}{\pi}\int_{0}^{\infty}\frac{\diff{t}}{\sqrt{t(t+a_{0}^{2})(t+g_{0}^{2})}}} int((1)/(sqrt(a(a[0])^(2)*(cos(theta))^(2)+ g(g[0])^(2)*(sin(theta))^(2))), theta = 0..Pi/ 2) int((1)/(sqrt(t*(t + a(a[0])^(2))*(t + g(g[0])^(2)))), t = 0..infinity) Integrate[Divide[1,Sqrt[a(Subscript[a, 0])^(2)*(Cos[\[Theta]])^(2)+ g(Subscript[g, 0])^(2)*(Sin[\[Theta]])^(2)]], {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Integrate[Divide[1,Sqrt[t*(t + a(Subscript[a, 0])^(2))*(t + g(Subscript[g, 0])^(2))]], {t, 0, Infinity}, GenerateConditions->None] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \frac{\pi}{2\AGM@{1}{k^{\prime}}}} EllipticK(k) = (Pi)/(2*GaussAGM(1, sqrt(1 - (k)^(2)))) Error Failure Missing Macro Error Error -
19.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} = \frac{\pi}{2\AGM@{1}{k^{\prime}}}\left(a_{0}^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right)} EllipticE(k) (a(a[0])^(2)- sum((2)^(n - 1)* c(c[n])^(2), n = 0..infinity)) Error Failure Missing Macro Error Error -
19.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\pi}{2\AGM@{1}{k^{\prime}}}\left(a_{0}^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right) = \compellintKk@{k}\left(a_{1}^{2}-\sum_{n=2}^{\infty}2^{n-1}c_{n}^{2}\right)} (a(a[0])^(2)- sum((2)^(n - 1)* c(c[n])^(2), n = 0..infinity)) (a(a[1])^(2)- sum((2)^(n - 1)* c(c[n])^(2), n = 2..infinity)) Error Failure Missing Macro Error Error -
19.8.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{k} = \frac{\pi}{4\AGM@{1}{k^{\prime}}}\left(2+\frac{\alpha^{2}}{1-\alpha^{2}}\sum_{n=0}^{\infty}Q_{n}\right)} EllipticPi((alpha)^(2), k) = (Pi)/(4*GaussAGM(1, sqrt(1 - (k)^(2))))*(2 +((alpha)^(2))/(1 - (alpha)^(2))*sum(Q[n], n = 0..infinity)) Error Failure Missing Macro Error Error -
19.8#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{n+1} = \frac{p_{n}^{2}+a_{n}g_{n}}{2p_{n}}} p[n + 1] (p(p[n])^(2)+ a[n]*g[n])/(2*p[n]) Subscript[p, n + 1] Divide[p(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n],2*Subscript[p, n]] Skipped - no semantic math Skipped - no semantic math - -
19.8#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \varepsilon_{n} = \frac{p_{n}^{2}-a_{n}g_{n}}{p_{n}^{2}+a_{n}g_{n}}} (p(p[n])^(2)- a[n]*g[n])/(p(p[n])^(2)+ a[n]*g[n]) Divide[p(Subscript[p, n])^(2)- Subscript[a, n]*Subscript[g, n],p(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n]] Skipped - no semantic math Skipped - no semantic math - -
19.8#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q_{n+1} = \tfrac{1}{2}Q_{n}\varepsilon_{n}} Q[n + 1] = (1)/(2)*Q[n]*varepsilon[n] Subscript[Q, n + 1] == Divide[1,2]*Subscript[Q, n]*Subscript[\[CurlyEpsilon], n] Skipped - no semantic math Skipped - no semantic math - -
19.8.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{k} = \frac{\pi}{4\AGM@{1}{k^{\prime}}}\frac{k^{2}}{k^{2}-\alpha^{2}}\sum_{n=0}^{\infty}Q_{n}} EllipticPi((alpha)^(2), k) = (Pi)/(4*GaussAGM(1, sqrt(1 - (k)^(2))))*((k)^(2))/((k)^(2)- (alpha)^(2))*sum(Q[n], n = 0..infinity) Error Failure Missing Macro Error Error -
19.8.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{0}^{2} = 1-(k^{2}/\alpha^{2})} (p[0])^(2) = 1 -((k)^(2)/ (alpha)^(2)) (Subscript[p, 0])^(2) == 1 -((k)^(2)/ \[Alpha]^(2)) Skipped - no semantic math Skipped - no semantic math - -
19.8#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = (1+k_{1})\compellintKk@{k_{1}}} EllipticK(k) = (1 + k[1])* EllipticK(k[1]) EllipticK[(k)^2] == (1 + Subscript[k, 1])* EllipticK[(Subscript[k, 1])^2] Failure Failure Error
Failed [30 / 30]
{DirectedInfinity[] <- {Rule[k, 1], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.44075376931664, -1.6191557371087932] <- {Rule[k, 2], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} = (1+k^{\prime})\compellintEk@{k_{1}}-k^{\prime}\compellintKk@{k}} EllipticE(k) = (1 +sqrt(1 - (k)^(2)))* EllipticE(k[1])-sqrt(1 - (k)^(2))*EllipticK(k) EllipticE[(k)^2] == (1 +Sqrt[1 - (k)^(2)])* EllipticE[(Subscript[k, 1])^2]-Sqrt[1 - (k)^(2)]*EllipticK[(k)^2] Failure Failure Error
Failed [30 / 30]
{Indeterminate <- {Rule[k, 1], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.595329372049606, 0.2521613076710463] <- {Rule[k, 2], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} = \tfrac{1}{2}(1+k_{1})\incellintFk@{\phi_{1}}{k_{1}}} EllipticF(sin(phi), k) = (1)/(2)*(1 + k[1])* EllipticF(sin(phi[1]), k[1]) EllipticF[\[Phi], (k)^2] == Divide[1,2]*(1 + Subscript[k, 1])* EllipticF[Subscript[\[Phi], 1], (Subscript[k, 1])^2] Failure Failure
Failed [300 / 300]
300/300]: [[.2591790565-.226164263e-1*I <- {phi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, k = 1}
.8581261265-.11942686e-2*I <- {phi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.15619877563526813, 0.03685530383845256] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.6672885103059906, -0.24203301849204312] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = \tfrac{1}{2}(1+k^{\prime})\incellintEk@{\phi_{1}}{k_{1}}-k^{\prime}\incellintFk@{\phi}{k}+\tfrac{1}{2}(1-k^{\prime})\sin@@{\phi_{1}}} EllipticE(sin(phi), k) = (1)/(2)*(1 +sqrt(1 - (k)^(2)))* EllipticE(sin(phi[1]), k[1])-sqrt(1 - (k)^(2))*EllipticF(sin(phi), k)+(1)/(2)*(1 -sqrt(1 - (k)^(2)))* sin(phi[1]) EllipticE[\[Phi], (k)^2] == Divide[1,2]*(1 +Sqrt[1 - (k)^(2)])* EllipticE[Subscript[\[Phi], 1], (Subscript[k, 1])^2]-Sqrt[1 - (k)^(2)]*EllipticF[\[Phi], (k)^2]+Divide[1,2]*(1 -Sqrt[1 - (k)^(2)])* Sin[Subscript[\[Phi], 1]] Failure Failure
Failed [300 / 300]
300/300]: [[-.627821156e-1-.413169945e-1*I <- {phi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, k = 1}
.886069620e-1-.4575597e-3*I <- {phi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[-0.0022565574667213206, -0.009009769525654576] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.11756483394447081, -0.05872123913100852] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2(k^{2}-\alpha^{2})\incellintPik@{\phi}{\alpha^{2}}{k} = \frac{\omega^{2}-\alpha^{2}}{1+k^{\prime}}\incellintPik@{\phi_{1}}{\alpha_{1}^{2}}{k_{1}}+k^{2}\incellintFk@{\phi}{k}-{(1+k^{\prime})\alpha_{1}^{2}\CarlsonellintRC@{c_{1}}{c_{1}-\alpha_{1}^{2}}}} Error 2*((k)^(2)- \[Alpha]^(2))* EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == EllipticPi[\[Alpha](Subscript[\[Alpha], 1])^(2), Subscript[\[Phi], 1],(Subscript[k, 1])^2]+ (k)^(2)* EllipticF[\[Phi], (k)^2]-(1 +Sqrt[1 - (k)^(2)])* 1/Sqrt[Subscript[c, 1]- \[Alpha](Subscript[\[Alpha], 1])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(Subscript[c, 1])/(Subscript[c, 1]- \[Alpha](Subscript[\[Alpha], 1])^(2))] Missing Macro Error Aborted -
Failed [300 / 300]
{Complex[-1.4115811709537147, -1.2227387134851169] <- {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[α, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.5976966939439394, -1.230515427208163] <- {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[α, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} = \frac{2}{1+k}\incellintFk@{\phi_{2}}{k_{2}}} EllipticF(sin(phi), k) = (2)/(1 + k)*EllipticF(sin(phi[2]), k[2]) EllipticF[\[Phi], (k)^2] == Divide[2,1 + k]*EllipticF[Subscript[\[Phi], 2], (Subscript[k, 2])^2] Failure Failure
Failed [300 / 300]
300/300]: [[.716161018e-1+.1278882161*I <- {phi = 1/2*3^(1/2)+1/2*I, k[2] = 1/2*3^(1/2)+1/2*I, phi[2] = 1/2*3^(1/2)+1/2*I, k = 1}
-.163142760e-1+.3519262665*I <- {phi = 1/2*3^(1/2)+1/2*I, k[2] = 1/2*3^(1/2)+1/2*I, phi[2] = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.0030858847214221274, 0.01883659064247678] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ϕ, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.11075679050380455, 0.16335572999260056] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ϕ, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = (1+k)\incellintEk@{\phi_{2}}{k_{2}}+(1-k)\incellintFk@{\phi_{2}}{k_{2}}-k\sin@@{\phi}} EllipticE(sin(phi), k) = (1 + k)* EllipticE(sin(phi[2]), k[2])+(1 - k)* EllipticF(sin(phi[2]), k[2])- k*sin(phi) EllipticE[\[Phi], (k)^2] == (1 + k)* EllipticE[Subscript[\[Phi], 2], (Subscript[k, 2])^2]+(1 - k)* EllipticF[Subscript[\[Phi], 2], (Subscript[k, 2])^2]- k*Sin[\[Phi]] Failure Failure
Failed [300 / 300]
300/300]: [[-.251128463-.1652679776*I <- {phi = 1/2*3^(1/2)+1/2*I, k[2] = 1/2*3^(1/2)+1/2*I, phi[2] = 1/2*3^(1/2)+1/2*I, k = 1}
.549972877-.903450862e-1*I <- {phi = 1/2*3^(1/2)+1/2*I, k[2] = 1/2*3^(1/2)+1/2*I, phi[2] = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[-0.009026229866885283, -0.03603907810261833] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ϕ, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.42447097038130677, 0.1345883883024661] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ϕ, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8#Ex22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} = (1+k_{1})\incellintFk@{\psi_{1}}{k_{1}}} EllipticF(sin(phi), k) = (1 + k[1])* EllipticF(sin(psi[1]), k[1]) EllipticF[\[Phi], (k)^2] == (1 + Subscript[k, 1])* EllipticF[Subscript[\[Psi], 1], (Subscript[k, 1])^2] Failure Failure
Failed [299 / 300]
299/300]: [[-.3025119160-.7226109033*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, psi[1] = 1/2*3^(1/2)+1/2*I, k = 1}
-.6401936029-.6817361311*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, psi[1] = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [299 / 300]
{Complex[-0.11940620612760577, -0.19771875715838422] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ψ, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.15464125790413003, -0.13739720920586462] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ψ, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8#Ex23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = (1+k^{\prime})\incellintEk@{\psi_{1}}{k_{1}}-k^{\prime}\incellintFk@{\phi}{k}+(1-\Delta)\cot@@{\phi}} EllipticE(sin(phi), k) = (1 +sqrt(1 - (k)^(2)))* EllipticE(sin(psi[1]), k[1])-sqrt(1 - (k)^(2))*EllipticF(sin(phi), k)+(1 - Delta)* cot(phi) EllipticE[\[Phi], (k)^2] == (1 +Sqrt[1 - (k)^(2)])* EllipticE[Subscript[\[Psi], 1], (Subscript[k, 1])^2]-Sqrt[1 - (k)^(2)]*EllipticF[\[Phi], (k)^2]+(1 - \[CapitalDelta])* Cot[\[Phi]] Failure Failure
Failed [300 / 300]
300/300]: [[-.5555013192-.1267358774*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, psi[1] = 1/2*3^(1/2)+1/2*I, k = 1}
-1.589246368-2.046785663*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, psi[1] = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[-0.22091089534718378, -0.1170454776590783] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ψ, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.9299237807056446, -0.7272990802320405] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ψ, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.8.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \rho\incellintPik@{\phi}{\alpha^{2}}{k} = \frac{4}{1+k^{\prime}}\incellintPik@{\psi_{1}}{\alpha_{1}^{2}}{k_{1}}+(\rho-1)\incellintFk@{\phi}{k}-\CarlsonellintRC@{c-1}{c-\alpha^{2}}} Error \[Rho]*EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == EllipticPi[\[Alpha](Subscript[\[Alpha], 1])^(2), Subscript[\[Psi], 1],(Subscript[k, 1])^2]+(\[Rho]- 1)* EllipticF[\[Phi], (k)^2]- 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c - 1)/(c - \[Alpha]^(2))] Missing Macro Error Failure - Skipped - Because timed out
19.9#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@@{4} \leq \compellintKk@{k}+\ln@@{k^{\prime}}} ln(4) <= EllipticK(k)+ ln(sqrt(1 - (k)^(2))) Log[4] <= EllipticK[(k)^2]+ Log[Sqrt[1 - (k)^(2)]] Failure Failure Error
Failed [3 / 3]
{LessEqual[1.3862943611198906, Indeterminate] <- {Rule[k, 1]}
LessEqual[1.3862943611198906, Complex[1.392181321740353, 0.49253850304507485]] <- {Rule[k, 2]}
19.9#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k}+\ln@@{k^{\prime}} \leq \pi/2} EllipticK(k)+ ln(sqrt(1 - (k)^(2))) <= Pi/ 2 EllipticK[(k)^2]+ Log[Sqrt[1 - (k)^(2)]] <= Pi/ 2 Failure Failure Error
Failed [3 / 3]
{LessEqual[Indeterminate, 1.5707963267948966] <- {Rule[k, 1]}
LessEqual[Complex[1.392181321740353, 0.49253850304507485], 1.5707963267948966] <- {Rule[k, 2]}
19.9#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 \leq \compellintEk@{k}} 1 <= EllipticE(k) 1 <= EllipticE[(k)^2] Failure Failure Successful [Tested: 3]
Failed [2 / 3]
{LessEqual[1.0, Complex[0.40629888645996043, 1.343854231387098]] <- {Rule[k, 2]}
LessEqual[1.0, Complex[0.2655964076372759, 2.498348127732516]] <- {Rule[k, 3]}
19.9#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} \leq \pi/2} EllipticE(k) <= Pi/ 2 EllipticE[(k)^2] <= Pi/ 2 Failure Failure Successful [Tested: 3]
Failed [2 / 3]
{LessEqual[Complex[0.40629888645996043, 1.343854231387098], 1.5707963267948966] <- {Rule[k, 2]}
LessEqual[Complex[0.2655964076372759, 2.498348127732516], 1.5707963267948966] <- {Rule[k, 3]}
19.9#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 \leq (2/\pi)\sqrt{1-\alpha^{2}}\compellintPik@{\alpha^{2}}{k}\leq 1/k^{\prime}} 1 <= (2/ Pi)*sqrt(1 - (alpha)^(2))*EllipticPi((alpha)^(2), k) <= 1/(sqrt(1 - (k)^(2))) 1 <= (2/ Pi)*Sqrt[1 - \[Alpha]^(2)]*EllipticPi[\[Alpha]^(2), (k)^2] <= 1/(Sqrt[1 - (k)^(2)]) Failure Failure Error
Failed [3 / 3]
{LessEqual[1.0, DirectedInfinity[], DirectedInfinity[]] <- {Rule[k, 1], Rule[α, 0.5]}
LessEqual[1.0, Complex[0.4804983499812288, -0.6957733039705274], Complex[0.0, -0.5773502691896258]] <- {Rule[k, 2], Rule[α, 0.5]}
19.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1+\frac{{k^{\prime}}^{2}}{8} < \frac{\compellintKk@{k}}{\ln@{4/k^{\prime}}}} 1 +(1 - (k)^(2))/(8) < (EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2))))) 1 +Divide[1 - (k)^(2),8] < Divide[EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]] Failure Failure Error
Failed [3 / 3]
{Less[1.0, Indeterminate] <- {Rule[k, 1]}
Less[0.625, Complex[0.7573351019929213, 0.13305010797062605]] <- {Rule[k, 2]}
19.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\compellintKk@{k}}{\ln@{4/k^{\prime}}} < 1+\frac{{k^{\prime}}^{2}}{4}} (EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2))))) < 1 +(1 - (k)^(2))/(4) Divide[EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]] < 1 +Divide[1 - (k)^(2),4] Failure Failure Error
Failed [3 / 3]
{Less[Indeterminate, 1.0] <- {Rule[k, 1]}
Less[Complex[0.7573351019929213, 0.13305010797062605], 0.25] <- {Rule[k, 2]}
19.9.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 9+\frac{k^{2}{k^{\prime}}^{2}}{8} < \frac{(8+k^{2})\compellintKk@{k}}{\ln@{4/k^{\prime}}}} 9 +((k)^(2)*1 - (k)^(2))/(8) < ((8 + (k)^(2))* EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2))))) 9 +Divide[(k)^(2)*1 - (k)^(2),8] < Divide[(8 + (k)^(2))* EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]] Failure Failure Error
Failed [3 / 3]
{Less[9.0, Indeterminate] <- {Rule[k, 1]}
Less[9.0, Complex[9.088021223915057, 1.5966012956475137]] <- {Rule[k, 2]}
19.9.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(8+k^{2})\compellintKk@{k}}{\ln@{4/k^{\prime}}} < 9.096} ((8 + (k)^(2))* EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2))))) < 9.096 Divide[(8 + (k)^(2))* EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]] < 9.096 Failure Failure Error
Failed [3 / 3]
{Less[Indeterminate, 9.096] <- {Rule[k, 1]}
Less[Complex[9.088021223915057, 1.5966012956475137], 9.096] <- {Rule[k, 2]}
19.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1+{k^{\prime}}^{3/2}}{2}\right)^{2/3} \leq \frac{2}{\pi}\compellintEk@{k}} ((1 +(sqrt(1 - (k)^(2)))^(3/ 2))/(2))^(2/ 3) <= (2)/(Pi)*EllipticE(k) (Divide[1 +(Sqrt[1 - (k)^(2)])^(3/ 2),2])^(2/ 3) <= Divide[2,Pi]*EllipticE[(k)^2] Failure Failure Successful [Tested: 3]
Failed [2 / 3]
{LessEqual[Complex[0.2518251425072316, 0.8700591952646104], Complex[0.2586579046113418, 0.8555241748808654]] <- {Rule[k, 2]}
LessEqual[Complex[0.1858923839966674, 1.6059081831429025], Complex[0.16908392457168991, 1.5904978163720476]] <- {Rule[k, 3]}
19.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\compellintEk@{k} \leq \left(\frac{1+{k^{\prime}}^{2}}{2}\right)^{1/2}} (2)/(Pi)*EllipticE(k) <= ((1 +1 - (k)^(2))/(2))^(1/ 2) Divide[2,Pi]*EllipticE[(k)^2] <= (Divide[1 +1 - (k)^(2),2])^(1/ 2) Failure Failure Successful [Tested: 3]
Failed [2 / 3]
{LessEqual[Complex[0.2586579046113418, 0.8555241748808654], Complex[0.0, 1.0]] <- {Rule[k, 2]}
LessEqual[Complex[0.16908392457168991, 1.5904978163720476], Complex[0.0, 1.8708286933869707]] <- {Rule[k, 3]}
19.9.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@@{\frac{(1+\sqrt{k^{\prime}})^{2}}{k}} < \frac{\pi\ccompellintKk@{k}}{2\compellintKk@{k}}} ln(((1 +sqrt(sqrt(1 - (k)^(2))))^(2))/(k)) < (Pi*EllipticCK(k))/(2*EllipticK(k)) Log[Divide[(1 +Sqrt[Sqrt[1 - (k)^(2)]])^(2),k]] < Divide[Pi*EllipticK[1-(k)^2],2*EllipticK[(k)^2]] Failure Failure Error
Failed [3 / 3]
{False <- {Rule[k, 1]}
Less[Complex[0.8314429455293103, 0.8983332083070389], Complex[0.762166367418117, 0.9750101446769989]] <- {Rule[k, 2]}
19.9.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\pi\ccompellintKk@{k}}{2\compellintKk@{k}} < \ln@@{\frac{2(1+k^{\prime})}{k}}} (Pi*EllipticCK(k))/(2*EllipticK(k)) < ln((2*(1 +sqrt(1 - (k)^(2))))/(k)) Divide[Pi*EllipticK[1-(k)^2],2*EllipticK[(k)^2]] < Log[Divide[2*(1 +Sqrt[1 - (k)^(2)]),k]] Failure Failure Error
Failed [2 / 3]
{Less[Complex[0.762166367418117, 0.9750101446769989], Complex[0.6931471805599452, 1.0471975511965976]] <- {Rule[k, 2]}
Less[Complex[0.7130154358988758, 1.1147297033963086], Complex[0.6931471805599453, 1.2309594173407747]] <- {Rule[k, 3]}
19.9.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (1-\tfrac{3}{4}k^{2})^{-1/2} < \frac{4}{\pi k^{2}}(\compellintKk@{k}-\compellintEk@{k})} (1 -(3)/(4)*(k)^(2))^(- 1/ 2) < (4)/(Pi*(k)^(2))*(EllipticK(k)- EllipticE(k)) (1 -Divide[3,4]*(k)^(2))^(- 1/ 2) < Divide[4,Pi*(k)^(2)]*(EllipticK[(k)^2]- EllipticE[(k)^2]) Failure Failure Error
Failed [3 / 3]
{Less[2.0, DirectedInfinity[]] <- {Rule[k, 1]}
Less[Complex[0.0, -0.7071067811865475], Complex[0.13896654948167025, -0.7709822125950203]] <- {Rule[k, 2]}
19.9.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{4}{\pi k^{2}}(\compellintKk@{k}-\compellintEk@{k}) < (k^{\prime})^{-3/4}} (4)/(Pi*(k)^(2))*(EllipticK(k)- EllipticE(k)) < (sqrt(1 - (k)^(2)))^(- 3/ 4) Divide[4,Pi*(k)^(2)]*(EllipticK[(k)^2]- EllipticE[(k)^2]) < (Sqrt[1 - (k)^(2)])^(- 3/ 4) Failure Failure Error
Failed [3 / 3]
{Less[DirectedInfinity[], DirectedInfinity[]] <- {Rule[k, 1]}
Less[Complex[0.13896654948167025, -0.7709822125950203], Complex[0.2534656958546175, -0.6119203205285516]] <- {Rule[k, 2]}
19.9.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (1-\tfrac{1}{4}k^{2})^{-1/2} < \frac{4}{\pi k^{2}}(\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k})} (1 -(1)/(4)*(k)^(2))^(- 1/ 2) < (4)/(Pi*(k)^(2))*(EllipticE(k)-1 - (k)^(2)*EllipticK(k)) (1 -Divide[1,4]*(k)^(2))^(- 1/ 2) < Divide[4,Pi*(k)^(2)]*(EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2]) Failure Failure Error
Failed [3 / 3]
{Less[1.1547005383792517, DirectedInfinity[]] <- {Rule[k, 1]}
Less[DirectedInfinity[], Complex[-1.2621629410274844, 1.800642588058783]] <- {Rule[k, 2]}
19.9.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k^{\prime} < \frac{\compellintEk@{k}}{\compellintKk@{k}}} sqrt(1 - (k)^(2)) < (EllipticE(k))/(EllipticK(k)) Sqrt[1 - (k)^(2)] < Divide[EllipticE[(k)^2],EllipticK[(k)^2]] Failure Failure Error
Failed [3 / 3]
{False <- {Rule[k, 1]}
Less[Complex[0.0, 1.7320508075688772], Complex[-0.5907718728609501, 0.8386174564999851]] <- {Rule[k, 2]}
19.9.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\compellintEk@{k}}{\compellintKk@{k}} < \left(\frac{1+k^{\prime}}{2}\right)^{2}} (EllipticE(k))/(EllipticK(k)) < ((1 +sqrt(1 - (k)^(2)))/(2))^(2) Divide[EllipticE[(k)^2],EllipticK[(k)^2]] < (Divide[1 +Sqrt[1 - (k)^(2)],2])^(2) Failure Failure Error
Failed [2 / 3]
{Less[Complex[-0.5907718728609501, 0.8386174564999851], Complex[-0.4999999999999999, 0.8660254037844386]] <- {Rule[k, 2]}
Less[Complex[-1.9604512687154212, 1.5690726247192568], Complex[-1.7500000000000004, 1.4142135623730951]] <- {Rule[k, 3]}
19.9.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle L(a,b) = 4a\compellintEk@{k}} L*(a , b) = 4*a*EllipticE(k) L*(a , b) == 4*a*EllipticE[(k)^2] Error Failure - Error
19.9.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi \leq \incellintFk@{\phi}{k}} phi <= EllipticF(sin(phi), k) \[Phi] <= EllipticF[\[Phi], (k)^2] Failure Failure
Failed [4 / 30]
4/30]: [[-1.500000000 <= -3.340677542 <- {phi = -3/2, k = 1}
-.5000000000 <= -.5222381033 <- {phi = -1/2, k = 1}
Failed [28 / 30]
{LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43180375739814203, 0.27142936483528934]] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.3965687056216178, 0.33175091278780894]] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} \leq \phi} EllipticE(sin(phi), k) <= phi EllipticE[\[Phi], (k)^2] <= \[Phi] Failure Failure
Failed [4 / 30]
4/30]: [[-.9974949866 <= -1.500000000 <- {phi = -3/2, k = 1}
-.4794255386 <= -.5000000000 <- {phi = -1/2, k = 1}
Failed [27 / 30]
{LessEqual[Complex[0.43278851685803155, 0.22929764467344024], Complex[0.43301270189221935, 0.24999999999999997]] <- {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[0.44208095936294645, 0.16535187593702125], Complex[0.43301270189221935, 0.24999999999999997]] <- {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{\alpha^{2}}{0} \leq \incellintPik@{\phi}{\alpha^{2}}{k}} EllipticPi(sin(phi), (alpha)^(2), 0) <= EllipticPi(sin(phi), (alpha)^(2), k) EllipticPi[\[Alpha]^(2), \[Phi],(0)^2] <= EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] Failure Failure
Failed [8 / 90]
8/90]: [[-.6351972518 <= -.6692391842 <- {alpha = 3/2, phi = -1/2, k = 1}
-.6351972518 <= -.9273807742 <- {alpha = 3/2, phi = -1/2, k = 2}
Failed [84 / 90]
{LessEqual[Complex[0.4032669574270382, 0.3492210121777662], Complex[0.39392267303966433, 0.37152709024037445]] <- {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[0.4032669574270382, 0.3492210121777662], Complex[0.33490711362096304, 0.4200642464932446]] <- {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{3}{1+\Delta+\cos@@{\phi}} < \frac{\incellintFk@{\phi}{k}}{\sin@@{\phi}}} (3)/(1 + Delta + cos(phi)) < (EllipticF(sin(phi), k))/(sin(phi)) Divide[3,1 + \[CapitalDelta]+ Cos[\[Phi]]] < Divide[EllipticF[\[Phi], (k)^2],Sin[\[Phi]]] Failure Failure
Failed [16 / 300]
16/300]: [[7.945282179 < 1.089299717 <- {Delta = -3/2, phi = -1/2, k = 1}
7.945282179 < 1.412977582 <- {Delta = -3/2, phi = -1/2, k = 2}
Failed [284 / 300]
{Less[Complex[1.261572446843062, -0.07667841479591199], Complex[1.0384958486950706, 0.07695378095553612]] <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Less[Complex[1.261572446843062, -0.07667841479591199], Complex[1.0325857379409573, 0.21946385233164167]] <- {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\incellintFk@{\phi}{k}}{\sin@@{\phi}} < \frac{1}{(\Delta\cos@@{\phi})^{1/3}}} (EllipticF(sin(phi), k))/(sin(phi)) < (1)/((Delta*cos(phi))^(1/ 3)) Divide[EllipticF[\[Phi], (k)^2],Sin[\[Phi]]] < Divide[1,(\[CapitalDelta]*Cos[\[Phi]])^(1/ 3)] Failure Failure
Failed [20 / 300]
20/300]: [[1.675417084 < 1.170093898 <- {Delta = -3/2, phi = -2, k = 1}
1.675417084 < 1.170093898 <- {Delta = -3/2, phi = 2, k = 1}
Failed [298 / 300]
{Less[Complex[1.0384958486950706, 0.07695378095553612], Complex[1.2731409874856745, -0.17545913345292982]] <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Less[Complex[1.0325857379409573, 0.21946385233164167], Complex[1.2731409874856745, -0.17545913345292982]] <- {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 < \incellintFk@{\phi}{k}\bigg{/}\left((\sin@@{\phi})\ln@{\frac{4}{\Delta+\cos@@{\phi}}}\right)} 1 < EllipticF(sin(phi), k)/((sin(phi))*ln((4)/(Delta + cos(phi)))) 1 < EllipticF[\[Phi], (k)^2]/((Sin[\[Phi]])*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]]) Failure Failure
Failed [6 / 300]
6/300]: [[1. < .4615167558 <- {Delta = -1/2, phi = -1/2, k = 1}
1. < .5986532627 <- {Delta = -1/2, phi = -1/2, k = 2}
Failed [288 / 300]
{Less[1.0, Complex[0.9573719244599448, 0.16621131448588694]] <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Less[1.0, Complex[0.9388814261604885, 0.2980132161872323]] <- {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k}\bigg{/}\left((\sin@@{\phi})\ln@{\frac{4}{\Delta+\cos@@{\phi}}}\right) < \frac{4}{2+(1+k^{2})\sin^{2}@@{\phi}}} EllipticF(sin(phi), k)/((sin(phi))*ln((4)/(Delta + cos(phi)))) < (4)/(2 +(1 + (k)^(2))* (sin(phi))^(2)) EllipticF[\[Phi], (k)^2]/((Sin[\[Phi]])*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]]) < Divide[4,2 +(1 + (k)^(2))* (Sin[\[Phi]])^(2)] Failure Failure
Failed [20 / 300]
20/300]: [[3.582850518 < 1.002508151 <- {Delta = 3/2, phi = -3/2, k = 1}
3.582850518 < 1.002508151 <- {Delta = 3/2, phi = 3/2, k = 1}
Failed [296 / 300]
{Less[Complex[0.9573719244599448, 0.16621131448588694], Complex[1.7102149955099495, -0.29913282294542826]] <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Less[Complex[0.9388814261604885, 0.2980132161872323], Complex[1.3149325512421652, -0.4880625346303866]] <- {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} = \frac{2}{\pi}\compellintKk@{k^{\prime}}\ln@{\frac{4}{\Delta+\cos@@{\phi}}}-\theta\Delta^{2}} EllipticF(sin(phi), k) = (2)/(Pi)*EllipticK(sqrt(1 - (k)^(2)))*ln((4)/(Delta + cos(phi)))- theta*(Delta)^(2) EllipticF[\[Phi], (k)^2] == Divide[2,Pi]*EllipticK[(Sqrt[1 - (k)^(2)])^2]*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]]- \[Theta]*\[CapitalDelta]^(2) Failure Failure
Failed [30 / 30]
30/30]: [[2.264395299+.9232968251*I <- {Delta = 1/2*3^(1/2)+1/2*I, phi = 3/2, theta = 1/2, k = 1}
-.185868314e-1+.7122804653*I <- {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2, theta = 1/2, k = 1}
Failed [30 / 30]
{Complex[1.4412941413043292, 0.5689187621917111] <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, 0.5], Rule[ϕ, 1.5]}
Complex[-0.5132046492108906, 0.2967418012807382] <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, 0.5], Rule[ϕ, 0.5]}
19.9.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle L \leq \incellintFk@{\phi}{k}} L <= EllipticF(sin(phi), k) L <= EllipticF[\[Phi], (k)^2] Failure Failure
Failed [24 / 300]
24/300]: [[-1.500000000 <= -3.340677542 <- {L = -3/2, phi = -3/2, k = 1}
-1.500000000 <= -1.523452443 <- {L = -3/2, phi = -2, k = 1}
Failed [288 / 300]
{LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43180375739814203, 0.27142936483528934]] <- {Rule[k, 1], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.3965687056216178, 0.33175091278780894]] <- {Rule[k, 2], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} \leq \sqrt{UL}} EllipticF(sin(phi), k) <= sqrt(U*L) EllipticF[\[Phi], (k)^2] <= Sqrt[U*L] Failure Failure Successful [Tested: 300]
Failed [300 / 300]
{LessEqual[Complex[0.43180375739814203, 0.27142936483528934], Complex[0.43301270189221935, 0.24999999999999997]] <- {Rule[k, 1], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[0.3965687056216178, 0.33175091278780894], Complex[0.43301270189221935, 0.24999999999999997]] <- {Rule[k, 2], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.9.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{UL} \leq \tfrac{1}{2}(U+L)} sqrt(U*L) <= (1)/(2)*(U + L) Sqrt[U*L] <= Divide[1,2]*(U + L) Failure Failure
Failed [9 / 100]
9/100]: [[1.500000000 <= -1.500000000 <- {L = -3/2, U = -3/2}
.8660254040 <= -1. <- {L = -3/2, U = -1/2}
Failed [91 / 100]
{LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43301270189221935, 0.24999999999999997]] <- {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[0.12940952255126037, 0.48296291314453416], Complex[0.09150635094610973, 0.34150635094610965]] <- {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.9.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(U+L) \leq U} (1)/(2)*(U + L) <= U Divide[1,2]*(U + L) <= U Failure Failure
Failed [15 / 100]
15/100]: [[-1.750000000 <= -2. <- {L = -3/2, U = -2}
0. <= -1.500000000 <- {L = 3/2, U = -3/2}
Failed [79 / 100]
{LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43301270189221935, 0.24999999999999997]] <- {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[0.09150635094610973, 0.34150635094610965], Complex[-0.2499999999999999, 0.43301270189221935]] <- {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.9#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle L = (1/\sigma)\atanh@{\sigma\sin@@{\phi}}} L = (1/ sigma)* arctanh(sigma*sin(phi)) L == (1/ \[Sigma])* ArcTanh[\[Sigma]*Sin[\[Phi]]] Failure Failure
Failed [300 / 300]
300/300]: [[.1841715885+.458206673e-1*I <- {L = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I}
-.197696883e-1+.4084290873*I <- {L = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, sigma = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[0.008169183554908921, 0.015254361571334585] <- {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[σ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.6990489693230986, -0.19299436497537428] <- {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[σ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.9#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U = \tfrac{1}{2}\atanh@{\sin@@{\phi}}+\tfrac{1}{2}k^{-1}\atanh@{k\sin@@{\phi}}} U = (1)/(2)*arctanh(sin(phi))+(1)/(2)*(k)^(- 1)* arctanh(k*sin(phi)) U == Divide[1,2]*ArcTanh[Sin[\[Phi]]]+Divide[1,2]*(k)^(- 1)* ArcTanh[k*Sin[\[Phi]]] Failure Failure
Failed [300 / 300]
300/300]: [[.451553750e-1-.1773780507*I <- {U = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1}
.3250459090-.1674857034*I <- {U = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.0012089444940770466, -0.021429364835289427] <- {Rule[k, 1], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.04320077983427789, -0.07655275524887523] <- {Rule[k, 2], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.10#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@{x/y} = (x-y)\CarlsonellintRC@{\tfrac{1}{4}(x+y)^{2}}{xy}} Error Log[x/ y] == (x - y)* 1/Sqrt[x*y]*Hypergeometric2F1[1/2,1/2,3/2,1-(Divide[1,4]*(x + y)^(2))/(x*y)] Missing Macro Error Failure -
Failed [12 / 18]
{Complex[0.0, 6.283185307179586] <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.10#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \atan@{x/y} = x\CarlsonellintRC@{y^{2}}{y^{2}+x^{2}}} Error ArcTan[x/ y] == x*1/Sqrt[(y)^(2)+ (x)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2))/((y)^(2)+ (x)^(2))] Missing Macro Error Failure -
Failed [9 / 18]
{-1.5707963267948966 <- {Rule[x, 1.5], Rule[y, -1.5]}
-2.498091544796509 <- {Rule[x, 1.5], Rule[y, -0.5]}
19.10#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \atanh@{x/y} = x\CarlsonellintRC@{y^{2}}{y^{2}-x^{2}}} Error ArcTanh[x/ y] == x*1/Sqrt[(y)^(2)- (x)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2))/((y)^(2)- (x)^(2))] Missing Macro Error Failure -
Failed [15 / 18]
{Indeterminate <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.10#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \asin@{x/y} = x\CarlsonellintRC@{y^{2}-x^{2}}{y^{2}}} Error ArcSin[x/ y] == x*1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2)- (x)^(2))/((y)^(2))] Missing Macro Error Failure -
Failed [9 / 18]
{-3.141592653589793 <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-3.141592653589793, 3.525494348078172] <- {Rule[x, 1.5], Rule[y, -0.5]}
19.10#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \asinh@{x/y} = x\CarlsonellintRC@{y^{2}+x^{2}}{y^{2}}} Error ArcSinh[x/ y] == x*1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2)+ (x)^(2))/((y)^(2))] Missing Macro Error Failure -
Failed [9 / 18]
{Complex[-1.7627471740390859, 0.0] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-3.6368929184641337, 0.0] <- {Rule[x, 1.5], Rule[y, -0.5]}
19.10#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \acos@{x/y} = (y^{2}-x^{2})^{1/2}\CarlsonellintRC@{x^{2}}{y^{2}}} Error ArcCos[x/ y] == ((y)^(2)- (x)^(2))^(1/ 2)* 1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] Missing Macro Error Failure -
Failed [12 / 18]
{Indeterminate <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.10#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \acosh@{x/y} = (x^{2}-y^{2})^{1/2}\CarlsonellintRC@{x^{2}}{y^{2}}} Error ArcCosh[x/ y] == ((x)^(2)- (y)^(2))^(1/ 2)* 1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] Missing Macro Error Failure -
Failed [12 / 18]
{Indeterminate <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\sinh@@{\phi})\CarlsonellintRC@{1}{\cosh^{2}@@{\phi}} = \Gudermannian@{\phi}} Error (Sinh[\[Phi]])* 1/Sqrt[(Cosh[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cosh[\[Phi]])^(2))] == Gudermannian[\[Phi]] Missing Macro Error Failure - Successful [Tested: 6]
19.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\theta}{k}+\incellintFk@{\phi}{k} = \incellintFk@{\psi}{k}} EllipticF(sin(theta), k)+ EllipticF(sin(phi), k) = EllipticF(sin(psi), k) EllipticF[\[Theta], (k)^2]+ EllipticF[\[Phi], (k)^2] == EllipticF[\[Psi], (k)^2] Failure Failure
Failed [300 / 300]
300/300]: [[.8208700290+.6773780507*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
.4831883421+.7182528229*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.43180375739814203, 0.27142936483528934] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.3965687056216178, 0.33175091278780894] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\theta}{k}+\incellintEk@{\phi}{k} = \incellintEk@{\psi}{k}+k^{2}\sin@@{\theta}\sin@@{\phi}\sin@@{\psi}} EllipticE(sin(theta), k)+ EllipticE(sin(phi), k) = EllipticE(sin(psi), k)+ (k)^(2)* sin(theta)*sin(phi)*sin(psi) EllipticE[\[Theta], (k)^2]+ EllipticE[\[Phi], (k)^2] == EllipticE[\[Psi], (k)^2]+ (k)^(2)* Sin[\[Theta]]*Sin[\[Phi]]*Sin[\[Psi]] Failure Failure
Failed [300 / 300]
300/300]: [[.5188815884-.3712110352*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
-.324003006-2.889566484*I <- {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.41998937174924766, 0.11250711558240023] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.3908843789278109, -0.3018102404271388] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{\psi} = \frac{\cos@@{\theta}\cos@@{\phi}-(\sin@@{\theta}\sin@@{\phi})\Delta(\theta)\Delta(\phi)}{1-k^{2}\sin^{2}@@{\theta}\sin^{2}@@{\phi}}} cos(psi) = (cos(theta)*cos(phi)-(sin(theta)*sin(phi))* Delta*(theta)* Delta*(phi))/(1 - (k)^(2)* (sin(theta))^(2)* (sin(phi))^(2)) Cos[\[Psi]] == Divide[Cos[\[Theta]]*Cos[\[Phi]]-(Sin[\[Theta]]*Sin[\[Phi]])* \[CapitalDelta]*(\[Theta])* \[CapitalDelta]*(\[Phi]),1 - (k)^(2)* (Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)] Failure Failure
Failed [300 / 300]
300/300]: [[-.360132946e-1+.3498736067*I <- {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
.3023079579-.441042741e-1*I <- {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.06008432780660544, 0.09466439987688165] <- {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.1274461431695849, -0.029704144406044533] <- {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@{\tfrac{1}{2}\psi} = \frac{(\sin@@{\theta})\Delta(\phi)+(\sin@@{\phi})\Delta(\theta)}{\cos@@{\theta}+\cos@@{\phi}}} tan((1)/(2)*psi) = ((sin(theta))* Delta*(phi)+(sin(phi))* Delta*(theta))/(cos(theta)+ cos(phi)) Tan[Divide[1,2]*\[Psi]] == Divide[(Sin[\[Theta]])* \[CapitalDelta]*(\[Phi])+(Sin[\[Phi]])* \[CapitalDelta]*(\[Theta]),Cos[\[Theta]]+ Cos[\[Phi]]] Translation Error Translation Error - -
19.11.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\theta}{\alpha^{2}}{k}+\incellintPik@{\phi}{\alpha^{2}}{k} = \incellintPik@{\psi}{\alpha^{2}}{k}-\alpha^{2}\CarlsonellintRC@{\gamma-\delta}{\gamma}} Error EllipticPi[\[Alpha]^(2), \[Theta],(k)^2]+ EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == EllipticPi[\[Alpha]^(2), \[Psi],(k)^2]- \[Alpha]^(2)* 1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[2.431737700775111, 0.07689658395417326] <- {Rule[k, 1], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.648685299290325, -1.4197583822626343] <- {Rule[k, 2], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11.E6_5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{\gamma-\delta}{\gamma} = \frac{-1}{\sqrt{\delta}}\atan@{\frac{\sqrt{\delta}\sin@@{\theta}\sin@@{\phi}\sin@@{\psi}}{\alpha^{2}-1-\alpha^{2}\cos@@{\theta}\cos@@{\phi}\cos@@{\psi}}}} Error 1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])] == Divide[- 1,Sqrt[\[Delta]]]*ArcTan[Divide[Sqrt[\[Delta]]*Sin[\[Theta]]*Sin[\[Phi]]*Sin[\[Psi]],\[Alpha]^(2)- 1 - \[Alpha]^(2)* Cos[\[Theta]]*Cos[\[Phi]]*Cos[\[Psi]]]] Missing Macro Error Translation Error - -
19.11.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} = \compellintKk@{k}-\incellintFk@{\theta}{k}} EllipticF(sin(phi), k) = EllipticK(k)- EllipticF(sin(theta), k) EllipticF[\[Phi], (k)^2] == EllipticK[(k)^2]- EllipticF[\[Theta], (k)^2] Failure Failure Error
Failed [300 / 300]
{DirectedInfinity[] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.04973776616306258, 1.7417596493254397] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = \compellintEk@{k}-\incellintEk@{\theta}{k}+k^{2}\sin@@{\theta}\sin@@{\phi}} EllipticE(sin(phi), k) = EllipticE(k)- EllipticE(sin(theta), k)+ (k)^(2)* sin(theta)*sin(phi) EllipticE[\[Phi], (k)^2] == EllipticE[(k)^2]- EllipticE[\[Theta], (k)^2]+ (k)^(2)* Sin[\[Theta]]*Sin[\[Phi]] Failure Failure
Failed [295 / 300]
295/300]: [[.940848258e-1+.952154806e-1*I <- {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
-.829018303-3.772436995*I <- {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [297 / 300]
{Complex[-0.2691514567553243, 0.26012051423236426] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.06105092961961717, -1.8070495799711206] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@@{\theta} = 1/(k^{\prime}\tan@@{\phi})} tan(theta) = 1/(sqrt(1 - (k)^(2))*tan(phi)) Tan[\[Theta]] == 1/(Sqrt[1 - (k)^(2)]*Tan[\[Phi]]) Failure Failure
Failed [300 / 300]
300/300]: [[Float(infinity)+Float(infinity)*I <- {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
1.112198033+1.184536461*I <- {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{DirectedInfinity[] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.0561283793604441, 1.210195136063891] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{\alpha^{2}}{k} = \compellintPik@{\alpha^{2}}{k}-\incellintPik@{\theta}{\alpha^{2}}{k}-\alpha^{2}\CarlsonellintRC@{\gamma-\delta}{\gamma}} Error EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == EllipticPi[\[Alpha]^(2), (k)^2]- EllipticPi[\[Alpha]^(2), \[Theta],(k)^2]- \[Alpha]^(2)* 1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])] Missing Macro Error Failure -
Failed [300 / 300]
{DirectedInfinity[] <- {Rule[k, 1], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[2.2835000786563655, -0.476202278380103] <- {Rule[k, 2], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\psi}{k} = 2\incellintFk@{\theta}{k}} EllipticF(sin(psi), k) = 2*EllipticF(sin(theta), k) EllipticF[\[Psi], (k)^2] == 2*EllipticF[\[Theta], (k)^2] Failure Failure
Failed [300 / 300]
300/300]: [[-.8208700290-.6773780507*I <- {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
-.4831883421-.7182528229*I <- {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[-0.43180375739814203, -0.27142936483528934] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.3965687056216178, -0.33175091278780894] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\psi}{k} = 2\incellintEk@{\theta}{k}-k^{2}\sin^{2}@@{\theta}\sin@@{\psi}} EllipticE(sin(psi), k) = 2*EllipticE(sin(theta), k)- (k)^(2)* (sin(theta))^(2)* sin(psi) EllipticE[\[Psi], (k)^2] == 2*EllipticE[\[Theta], (k)^2]- (k)^(2)* (Sin[\[Theta]])^(2)* Sin[\[Psi]] Failure Failure
Failed [300 / 300]
300/300]: [[-.5188815884+.3712110352*I <- {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
.324003006+2.889566484*I <- {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [298 / 300]
{Complex[-0.41998937174924766, -0.11250711558240023] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.3908843789278109, 0.3018102404271388] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{\psi} = (\cos@{2\theta}+k^{2}\sin^{4}@@{\theta})/(1-k^{2}\sin^{4}@@{\theta})} cos(psi) = (cos(2*theta)+ (k)^(2)* (sin(theta))^(4))/(1 - (k)^(2)* (sin(theta))^(4)) Cos[\[Psi]] == (Cos[2*\[Theta]]+ (k)^(2)* (Sin[\[Theta]])^(4))/(1 - (k)^(2)* (Sin[\[Theta]])^(4)) Failure Failure
Failed [300 / 300]
300/300]: [[.6382547213-.68319321e-2*I <- {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
1.291602175-.5372399851*I <- {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.22600457397095797, 0.19313483829287414] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.33144266284556045, -0.05654646036238595] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@{\tfrac{1}{2}\psi} = (\tan@@{\theta})\Delta(\theta)} tan((1)/(2)*psi) = (tan(theta))* Delta*(theta) Tan[Divide[1,2]*\[Psi]] == (Tan[\[Theta]])* \[CapitalDelta]*(\[Theta]) Failure Failure
Failed [300 / 300]
300/300]: [[-.4299370879-.441018886e-1*I <- {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}
-1.378631246+.6589669897*I <- {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[-0.21639778041374116, -0.09902593860776912] <- {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.2801868441200064, 0.09163936360272593] <- {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.11#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{\theta} = (\sin@@{\psi})/\sqrt{(1+\cos@@{\psi})(1+\Delta(\psi))}} sin(theta) = (sin(psi))/(sqrt((1 + cos(psi))*(1 + Delta*(psi)))) Sin[\[Theta]] == (Sin[\[Psi]])/(Sqrt[(1 + Cos[\[Psi]])*(1 + \[CapitalDelta]*(\[Psi]))]) Failure Failure
Failed [300 / 300]
300/300]: [[.3459933254+.2199626413*I <- {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I}
-1.183718368+.7410028953*I <- {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[0.13267626462165183, 0.09545710280323466] <- {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.6075958421397494, -0.12937331954381406] <- {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.11#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{\theta} = \sqrt{\frac{(\cos@@{\psi})+\Delta(\psi)}{1+\Delta(\psi)}}} cos(theta) = sqrt(((cos(psi))+ Delta*(psi))/(1 + Delta*(psi))) Cos[\[Theta]] == Sqrt[Divide[(Cos[\[Psi]])+ \[CapitalDelta]*(\[Psi]),1 + \[CapitalDelta]*(\[Psi])]] Failure Failure
Failed [300 / 300]
300/300]: [[-.1386531520-.3275237699*I <- {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I}
.3585693461+.5385011568*I <- {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[-0.027928525698177165, -0.06433717895055871] <- {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.11337825659380207, -0.16573354274294425] <- {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.11#Ex13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@@{\theta} = \tan@{\tfrac{1}{2}\psi}\sqrt{\frac{1+\cos@@{\psi}}{(\cos@@{\psi})+\Delta(\psi)}}} tan(theta) = tan((1)/(2)*psi)*sqrt((1 + cos(psi))/((cos(psi))+ Delta*(psi))) Tan[\[Theta]] == Tan[Divide[1,2]*\[Psi]]*Sqrt[Divide[1 + Cos[\[Psi]],(Cos[\[Psi]])+ \[CapitalDelta]*(\[Psi])]] Failure Failure
Failed [300 / 300]
300/300]: [[.1382279959+.6687205345*I <- {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I}
-.8192630216+.6110829935*I <- {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[0.12433851209893465, 0.1415108829927562] <- {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.5756669065605976, -0.05657247148971478] <- {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.11.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\psi}{\alpha^{2}}{k} = 2\incellintPik@{\theta}{\alpha^{2}}{k}+\alpha^{2}\CarlsonellintRC@{\gamma-\delta}{\gamma}} Error EllipticPi[\[Alpha]^(2), \[Psi],(k)^2] == 2*EllipticPi[\[Alpha]^(2), \[Theta],(k)^2]+ \[Alpha]^(2)* 1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])] Missing Macro Error Aborted -
Failed [300 / 300]
{Complex[-0.6318505653554005, -0.11296244472006367] <- {Rule[k, 1], Rule[α, 1.5], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.5728350059366992, -0.1614996009729338] <- {Rule[k, 2], Rule[α, 1.5], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}{k^{\prime}}^{2m}\left(\ln@@{\left(\frac{1}{k^{\prime}}\right)}+d(m)\right)} EllipticK(k) = sum((pochhammer((1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(sqrt(1 - (k)^(2)))^(2*m)*(ln((1)/(sqrt(1 - (k)^(2))))+ d*(m)), m = 0..infinity) EllipticK[(k)^2] == Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(Sqrt[1 - (k)^(2)])^(2*m)*(Log[Divide[1,Sqrt[1 - (k)^(2)]]]+ d*(m)), {m, 0, Infinity}, GenerateConditions->None] Failure Failure Error Skip - No test values generated
19.12.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} = 1+\frac{1}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{3}{2}}{m}}{\Pochhammersym{2}{m}m!}{k^{\prime}}^{2m+2}\*\left(\ln@@{\left(\frac{1}{k^{\prime}}\right)}+d(m)-\frac{1}{(2m+1)(2m+2)}\right)} EllipticE(k) = 1 +(1)/(2)*sum((pochhammer((1)/(2), m)*pochhammer((3)/(2), m))/(pochhammer(2, m)*factorial(m))*(sqrt(1 - (k)^(2)))^(2*m + 2)*(ln((1)/(sqrt(1 - (k)^(2))))+ d*(m)-(1)/((2*m + 1)*(2*m + 2))), m = 0..infinity) EllipticE[(k)^2] == 1 +Divide[1,2]*Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[3,2], m],Pochhammer[2, m]*(m)!]*(Sqrt[1 - (k)^(2)])^(2*m + 2)*(Log[Divide[1,Sqrt[1 - (k)^(2)]]]+ d*(m)-Divide[1,(2*m + 1)*(2*m + 2)]), {m, 0, Infinity}, GenerateConditions->None] Error Failure -
Failed [10 / 10]
{Indeterminate <- {Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[k, 1]}
Indeterminate <- {Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Rule[k, 1]}
19.12#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle d(m) = \digamma@{1+m}-\digamma@{\tfrac{1}{2}+m}} d*(m) = Psi(1 + m)- Psi((1)/(2)+ m) d*(m) == PolyGamma[1 + m]- PolyGamma[Divide[1,2]+ m] Failure Failure
Failed [30 / 30]
30/30]: [[.4797310429+.5000000000*I <- {d = 1/2*3^(1/2)+1/2*I, m = 1}
1.512423114+1.*I <- {d = 1/2*3^(1/2)+1/2*I, m = 2}
Failed [30 / 30]
{Complex[0.04671834077232884, 0.24999999999999997] <- {Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[m, 1]}
Complex[0.6463977093312149, 0.49999999999999994] <- {Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[m, 2]}
19.12#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle d(m+1) = d(m)-\frac{2}{(2m+1)(2m+2)}} d*(m + 1) = d*(m)-(2)/((2*m + 1)*(2*m + 2)) d*(m + 1) == d*(m)-Divide[2,(2*m + 1)*(2*m + 2)] Skipped - no semantic math Skipped - no semantic math - -
19.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{1}^{x}\frac{\diff{t}}{\sqrt{t^{3}-1}} = 3^{-1/4}\incellintFk@{\phi}{k}} int((1)/(sqrt((t)^(3)- 1)), t = 1..x) = (3)^(- 1/ 4)* EllipticF(sin(phi), k) Integrate[Divide[1,Sqrt[(t)^(3)- 1]], {t, 1, x}, GenerateConditions->None] == (3)^(- 1/ 4)* EllipticF[\[Phi], (k)^2] Failure Aborted Error Skipped - Because timed out
19.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{1}\frac{\diff{t}}{\sqrt{1-t^{3}}} = 3^{-1/4}\incellintFk@{\phi}{k}} int((1)/(sqrt(1 - (t)^(3))), t = x..1) = (3)^(- 1/ 4)* EllipticF(sin(phi), k) Integrate[Divide[1,Sqrt[1 - (t)^(3)]], {t, x, 1}, GenerateConditions->None] == (3)^(- 1/ 4)* EllipticF[\[Phi], (k)^2] Failure Aborted Error Skip - No test values generated
19.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\frac{\diff{t}}{\sqrt{1+t^{4}}} = \frac{\sign@{x}}{2}\incellintFk@{\phi}{k}} int((1)/(sqrt(1 + (t)^(4))), t = 0..x) = (signum(x))/(2)*EllipticF(sin(phi), k) Integrate[Divide[1,Sqrt[1 + (t)^(4)]], {t, 0, x}, GenerateConditions->None] == Divide[Sign[x],2]*EllipticF[\[Phi], (k)^2] Failure Failure Error Skip - No test values generated
19.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{\diff{t}}{\sqrt{(a_{1}+b_{1}t^{2})(a_{2}+b_{2}t^{2})}} = \frac{1}{\sqrt{\gamma-\alpha}}\incellintFk@{\phi}{k}} int((1)/(sqrt((a[1]+ b[1]*(t)^(2))*(a[2]+ b[2]*(t)^(2)))), t = y..x) = (1)/(sqrt(gamma - alpha))*EllipticF(sin(phi), k) Integrate[Divide[1,Sqrt[(Subscript[a, 1]+ Subscript[b, 1]*(t)^(2))*(Subscript[a, 2]+ Subscript[b, 2]*(t)^(2))]], {t, y, x}, GenerateConditions->None] == Divide[1,Sqrt[\[Gamma]- \[Alpha]]]*EllipticF[\[Phi], (k)^2] Skipped - Unable to analyze test case: Null Skipped - Unable to analyze test case: Null - -
19.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin^{2}@@{\phi} = \frac{\gamma-\alpha}{U^{2}+\gamma}} (sin(phi))^(2) = (gamma - alpha)/((U)^(2)+ gamma) (Sin[\[Phi]])^(2) == Divide[\[Gamma]- \[Alpha],(U)^(2)+ \[Gamma]] Failure Failure
Failed [300 / 300]
300/300]: [[1.144207228+.1616580578*I <- {U = 1/2*3^(1/2)+1/2*I, alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I}
.2329549284-1.570148532*I <- {U = 1/2*3^(1/2)+1/2*I, alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[1.0397570908067482, -1.0061601508735134] <- {Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.7911458419033055, -1.4391726141222814] <- {Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x^{2}-y^{2})U = x\sqrt{(a_{1}+b_{1}y^{2})(a_{2}+b_{2}y^{2})}+y\sqrt{(a_{1}+b_{1}x^{2})(a_{2}+b_{2}x^{2})}} ((x)^(2)- (y)^(2))* U = x*sqrt((a[1]+ b[1]*(y)^(2))*(a[2]+ b[2]*(y)^(2)))+ y*sqrt((a[1]+ b[1]*(x)^(2))*(a[2]+ b[2]*(x)^(2))) ((x)^(2)- (y)^(2))* U == x*Sqrt[(Subscript[a, 1]+ Subscript[b, 1]*(y)^(2))*(Subscript[a, 2]+ Subscript[b, 2]*(y)^(2))]+ y*Sqrt[(Subscript[a, 1]+ Subscript[b, 1]*(x)^(2))*(Subscript[a, 2]+ Subscript[b, 2]*(x)^(2))] Skipped - no semantic math Skipped - no semantic math - -
19.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin^{2}@@{\phi} = \frac{(\gamma-\alpha)x^{2}}{a_{1}a_{2}+\gamma x^{2}}} (sin(phi))^(2) = ((gamma - alpha)* (x)^(2))/(a[1]*a[2]+ gamma*(x)^(2)) (Sin[\[Phi]])^(2) == Divide[(\[Gamma]- \[Alpha])* (x)^(2),Subscript[a, 1]*Subscript[a, 2]+ \[Gamma]*(x)^(2)] Failure Failure
Failed [300 / 300]
300/300]: [[1.560947444+.1288116535*I <- {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, x = 3/2, a[1] = 1/2*3^(1/2)+1/2*I, a[2] = 1/2*3^(1/2)+1/2*I}
2.678639127-1.794319469*I <- {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, x = 3/2, a[1] = 1/2*3^(1/2)+1/2*I, a[2] = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[1.3471528039744003, -1.172411794219179] <- {Rule[x, 1.5], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.5030688086095803, -1.7852795940180226] <- {Rule[x, 1.5], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.14.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin^{2}@@{\phi} = \frac{\gamma-\alpha}{b_{1}b_{2}y^{2}+\gamma}} (sin(phi))^(2) = (gamma - alpha)/(b[1]*b[2]*(y)^(2)+ gamma) (Sin[\[Phi]])^(2) == Divide[\[Gamma]- \[Alpha],Subscript[b, 1]*Subscript[b, 2]*(y)^(2)+ \[Gamma]] Failure Failure
Failed [300 / 300]
300/300]: [[.8585159693+.3113806358*I <- {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, y = -3/2, b[1] = 1/2*3^(1/2)+1/2*I, b[2] = 1/2*3^(1/2)+1/2*I}
.2216600130+.2500138214*I <- {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, y = -3/2, b[1] = 1/2*3^(1/2)+1/2*I, b[2] = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[0.683185473382228, -0.7175596041712626] <- {Rule[y, -1.5], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[b, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[b, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.5335538340604822, -1.7418837307419275] <- {Rule[y, -1.5], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[b, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[b, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.14.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin^{2}@@{\phi} = \frac{(\gamma-\alpha)(x^{2}-y^{2})}{\gamma(x^{2}-y^{2})-a_{1}(a_{2}+b_{2}x^{2})}} (sin(phi))^(2) = ((gamma - alpha)*((x)^(2)- (y)^(2)))/(gamma*((x)^(2)- (y)^(2))- a[1]*(a[2]+ b[2]*(x)^(2))) (Sin[\[Phi]])^(2) == Divide[(\[Gamma]- \[Alpha])*((x)^(2)- (y)^(2)),\[Gamma]*((x)^(2)- (y)^(2))- Subscript[a, 1]*(Subscript[a, 2]+ Subscript[b, 2]*(x)^(2))] Failure Failure Manual Skip! Skipped - Because timed out
19.14.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin^{2}@@{\phi} = \frac{(\gamma-\alpha)(y^{2}-x^{2})}{\gamma(y^{2}-x^{2})-a_{1}(a_{2}+b_{2}y^{2})}} (sin(phi))^(2) = ((gamma - alpha)*((y)^(2)- (x)^(2)))/(gamma*((y)^(2)- (x)^(2))- a[1]*(a[2]+ b[2]*(y)^(2))) (Sin[\[Phi]])^(2) == Divide[(\[Gamma]- \[Alpha])*((y)^(2)- (x)^(2)),\[Gamma]*((y)^(2)- (x)^(2))- Subscript[a, 1]*(Subscript[a, 2]+ Subscript[b, 2]*(y)^(2))] Failure Failure Manual Skip! Skipped - Because timed out
19.16.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{z} = \frac{1}{2}\int_{0}^{\infty}\frac{\diff{t}}{s(t)}} 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = (1)/(2)*int((1)/(s*(t)), t = 0..infinity) EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Divide[1,2]*Integrate[Divide[1,s*(t)], {t, 0, Infinity}, GenerateConditions->None] Failure Failure
Failed [108 / 108]
108/108]: [[Float(infinity)+1.326265449*I <- {s = -3/2, x = 3/2, y = -3/2}
Float(infinity)+Float(infinity)*I <- {s = -3/2, x = 3/2, y = 3/2}
Failed [108 / 108]
{Complex[52.57956240437182, 0.6784437678906974] <- {Rule[s, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Complex[52.453473067488765, -0.7809212115368181] <- {Rule[s, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
19.16.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{y}{z}{p} = \frac{3}{2}\int_{0}^{\infty}\frac{\diff{t}}{s(t)(t+p)}} Error 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == Divide[3,2]*Integrate[Divide[1,s*(t)*(t + p)], {t, 0, Infinity}, GenerateConditions->None] Missing Macro Error Failure - Skipped - Because timed out
19.16.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRG@{x}{y}{z} = \frac{1}{4\pi}\int_{0}^{2\pi}\!\!\!\!\int_{0}^{\pi}\left(x\sin^{2}@@{\theta}\cos^{2}@@{\phi}+y\sin^{2}@@{\theta}\sin^{2}@@{\phi}+z\cos^{2}@@{\theta}\right)^{\frac{1}{2}}\sin@@{\theta}\diff{\theta}\diff{\phi}} Error Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == Divide[1,4*Pi]*Integrate[Integrate[(x*(Sin[\[Theta]])^(2)* (Cos[\[Phi]])^(2)+ y*(Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)+(x + y*I)*(Cos[\[Theta]])^(2))^(Divide[1,2])* Sin[\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None], {\[Phi], 0, 2*Pi}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
19.16.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s(t) = \sqrt{t+x}\sqrt{t+y}\sqrt{t+z}} s*(t) = sqrt(t + x)*sqrt(t + y)*sqrt(t +(x + y*I)) s*(t) == Sqrt[t + x]*Sqrt[t + y]*Sqrt[t +(x + y*I)] Skipped - no semantic math Skipped - no semantic math - -
19.16.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{x}{y}{z} = \CarlsonsymellintRJ@{x}{y}{z}{z}} Error 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*(x + y*I-x)/(x + y*I-x + y*I)*(EllipticPi[(x + y*I-x + y*I)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] Missing Macro Error Failure -
Failed [18 / 18]
{Complex[0.37100270206594405, -0.09129381935817127] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[0.5182279531589904, 0.0513630200054771] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.16.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{y}{z}{z} = \frac{3}{2}\int_{0}^{\infty}\frac{\diff{t}}{s(t)(t+z)}} Error 3*(x + y*I-x)/(x + y*I-x + y*I)*(EllipticPi[(x + y*I-x + y*I)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == Divide[3,2]*Integrate[Divide[1,s*(t)*(t +(x + y*I))], {t, 0, Infinity}, GenerateConditions->None] Missing Macro Error Failure - Skipped - Because timed out
19.16.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{y} = \CarlsonsymellintRF@{x}{y}{y}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]/Sqrt[y-x] Missing Macro Error Failure -
Failed [3 / 18]
{Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
Indeterminate <- {Rule[x, 0.5], Rule[y, 0.5]}
19.16#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c = \csc^{2}@@{\phi}} c = (csc(phi))^(2) c == (Csc[\[Phi]])^(2) Failure Failure
Failed [60 / 60]
60/60]: [[-2.359812877+.7993130071*I <- {c = -3/2, phi = 1/2*3^(1/2)+1/2*I}
-1.296085040-.8173084059*I <- {c = -3/2, phi = -1/2+1/2*I*3^(1/2)}
Failed [60 / 60]
{Complex[-3.841312467237177, 3.4490957612740374] <- {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.17530792640393877, -3.4502399957777015] <- {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.18.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\CarlsonsymellintRF@{x}{y}{z}}{z} = -\tfrac{1}{6}\CarlsonsymellintRD@{x}{y}{z}} Error (D[EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x], {temp, 1}]/.temp-> (x + y*I)) == -Divide[1,6]*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) Missing Macro Error Failure -
Failed [18 / 18]
{Complex[0.03790163875178684, -0.07848225754688502] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[0.07302626282106058, 0.09607801553820669] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{x}\CarlsonsymellintRG@{x+a}{x+b}{x+c} = \tfrac{1}{2}\CarlsonsymellintRF@{x+a}{x+b}{x+c}} Error D[Sqrt[x + c-x + a]*(EllipticE[ArcCos[Sqrt[x + a/x + c]],(x + c-x + b)/(x + c-x + a)]+(Cot[ArcCos[Sqrt[x + a/x + c]]])^2*EllipticF[ArcCos[Sqrt[x + a/x + c]],(x + c-x + b)/(x + c-x + a)]+Cot[ArcCos[Sqrt[x + a/x + c]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + a/x + c]]]^2]), x] == Divide[1,2]*EllipticF[ArcCos[Sqrt[x + a/x + c]],(x + c-x + b)/(x + c-x + a)]/Sqrt[x + c-x + a] Missing Macro Error Aborted -
Failed [300 / 300]
{Plus[Complex[0.4534498410585545, 0.2544306388611797], Times[Complex[0.0, 1.7320508075688772], Plus[Complex[-0.5166444818917079, -0.6544984694978735], Times[Complex[0.0, 0.5892556509887895], Power[k, 2], Power[Plus[1.0, Times[-2.0, Power[k, 2]]], Rational[-1, 2]]], Times[Complex[0.0, -0.29462782549439476], Power[Plus[1.0, Times[-2.0, Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[x, 1.5]}
Plus[Complex[0.4534498410585545, 0.1389138883676965], Times[Complex[0.0, 1.7320508075688772], Plus[Complex[-1.7435577900831345, -0.43982297150257077], Times[Complex[0.0, 3.1304951684997055], Power[k, 2], Power[Plus[1.0, Times[-5.0, Power[k, 2]]], Rational[-1, 2]]], Times[Complex[0.0, -0.15652475842498526], Power[Plus[1.0, Times[-5.0, Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[x, 0.5]}
19.18.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(x\pderiv{}{x}+y\pderiv{}{y}+z\pderiv{}{z}\right)\CarlsonsymellintRF@{x}{y}{z} = -\tfrac{1}{2}\CarlsonsymellintRF@{x}{y}{z}} (x*diff(+ y*diff(+subs( temp=(x + y*I), diff( temp, temp$(1) ) ), y), x))* 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = -(1)/(2)*0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) (x*D[+ y*D[+(D[temp, {temp, 1}]/.temp-> (x + y*I)), y], x])* EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == -Divide[1,2]*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Aborted Failure
Failed [18 / 18]
18/18]: [[-.8633499928+.6631327246*I <- {x = 3/2, y = -3/2}
Float(infinity)+Float(infinity)*I <- {x = 3/2, y = 3/2}
Failed [18 / 18]
{Complex[-0.08107235486578032, 0.3392218839453487] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-0.14411702330731, -0.3904606057684091] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.18.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv[2]{w}{x} = \pderiv[2]{w}{y}+\frac{1}{y}\pderiv{w}{y}} diff(w, [x$(2)]) = diff(w, [y$(2)])+(1)/(y)*diff(w, y) D[w, {x, 2}] == D[w, {y, 2}]+Divide[1,y]*D[w, y] Successful Successful - Successful [Tested: 180]
19.18.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv[2]{W}{t} = \pderiv[2]{W}{x}+\pderiv[2]{W}{y}} diff(W, [t$(2)]) = diff(W, [x$(2)])+ diff(W, [y$(2)]) D[W, {t, 2}] == D[W, {x, 2}]+ D[W, {y, 2}] Successful Successful - Successful [Tested: 300]
19.18.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv[2]{u}{x}+\pderiv[2]{u}{y}+\frac{1}{y}\pderiv{u}{y} = 0} diff(u, [x$(2)])+ diff(u, [y$(2)])+(1)/(y)*diff(u, y) = 0 D[u, {x, 2}]+ D[u, {y, 2}]+Divide[1,y]*D[u, y] == 0 Successful Successful - Successful [Tested: 180]
19.18.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv[2]{U}{x}+\pderiv[2]{U}{y}+\pderiv[2]{U}{z} = 0} diff(U, [x$(2)])+ diff(U, [y$(2)])+ subs( temp=(x + y*I), diff( U, temp$(2) ) ) = 0 D[U, {x, 2}]+ D[U, {y, 2}]+ (D[U, {temp, 2}]/.temp-> (x + y*I)) == 0 Successful Successful - Successful [Tested: 180]
19.19#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A = \frac{1}{n}\sum_{j=1}^{n}z_{j}} A = (1)/(n)*sum(z[j], j = 1..n) A == Divide[1,n]*Sum[Subscript[z, j], {j, 1, n}, GenerateConditions->None] Skipped - no semantic math Skipped - no semantic math - -
19.19#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Z_{j} = 1-(z_{j}/A)} Z[j] = 1 -(z[j]/ A) Subscript[Z, j] == 1 -(Subscript[z, j]/ A) Skipped - no semantic math Skipped - no semantic math - -
19.19#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle E_{1}(\mathbf{Z}) = 0} E[1]*(Z) = 0 Subscript[E, 1]*(Z) == 0 Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{x}{x} = x^{-1/2}} 0.5*int(1/(sqrt(t+x)*sqrt(t+x)*sqrt(t+x)), t = 0..infinity) = (x)^(- 1/ 2) EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]/Sqrt[x-x] == (x)^(- 1/ 2) Failure Failure Successful [Tested: 3]
Failed [3 / 3]
{Indeterminate <- {Rule[x, 1.5]}
Indeterminate <- {Rule[x, 0.5]}
19.20#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{\lambda x}{\lambda y}{\lambda z} = \lambda^{-1/2}\CarlsonsymellintRF@{x}{y}{z}} 0.5*int(1/(sqrt(t+lambda*x)*sqrt(t+lambda*y)*sqrt(t+lambda*(x + y*I))), t = 0..infinity) = (lambda)^(- 1/ 2)* 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) EllipticF[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]/Sqrt[\[Lambda]*(x + y*I)-\[Lambda]*x] == \[Lambda]^(- 1/ 2)* EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Aborted Failure Skipped - Because timed out
Failed [180 / 180]
{Complex[-0.15259412278903736, 0.06775202977854555] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.05999241929777854, 0.15580825868890358] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.20#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{y} = \CarlsonellintRC@{x}{y}} Error EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]/Sqrt[y-x] == 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] Missing Macro Error Failure -
Failed [3 / 18]
{Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
Indeterminate <- {Rule[x, 0.5], Rule[y, 0.5]}
19.20#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{y}{y} = \tfrac{1}{2}\pi y^{-1/2}} 0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+y)), t = 0..infinity) = (1)/(2)*Pi*(y)^(- 1/ 2) EllipticF[ArcCos[Sqrt[0/y]],(y-y)/(y-0)]/Sqrt[y-0] == Divide[1,2]*Pi*(y)^(- 1/ 2) Failure Successful
Failed [3 / 6]
3/6]: [[2.565099660*I <- {y = -3/2}
4.442882938*I <- {y = -1/2}
Successful [Tested: 6]
19.20#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{0}{z} = \infty} 0.5*int(1/(sqrt(t+0)*sqrt(t+0)*sqrt(t+z)), t = 0..infinity) = infinity EllipticF[ArcCos[Sqrt[0/z]],(z-0)/(z-0)]/Sqrt[z-0] == Infinity Failure Failure Skipped - Because timed out
Failed [7 / 7]
{Indeterminate <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.20.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\frac{\diff{t}}{\sqrt{1-t^{4}}} = \CarlsonsymellintRF@{0}{1}{2}} int((1)/(sqrt(1 - (t)^(4))), t = 0..1) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) Integrate[Divide[1,Sqrt[1 - (t)^(4)]], {t, 0, 1}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] Failure Successful Successful [Tested: 0] Successful [Tested: 1]
19.20.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{1}{2} = \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}}} 0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) = ((GAMMA((1)/(4)))^(2))/(4*(2*Pi)^(1/ 2)) EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] == Divide[(Gamma[Divide[1,4]])^(2),4*(2*Pi)^(1/ 2)] Successful Failure Skip - symbolical successful subtest Successful [Tested: 1]
19.20.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}} = 1.31102\;87771\;46059\;90523\;\dots} ((GAMMA((1)/(4)))^(2))/(4*(2*Pi)^(1/ 2)) = 1.31102877714605990523 Divide[(Gamma[Divide[1,4]])^(2),4*(2*Pi)^(1/ 2)] == 1.31102877714605990523 Failure Successful Successful [Tested: 0] Successful [Tested: 1]
19.20#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRG@{x}{x}{x} = x^{1/2}} Error Sqrt[x-x]*(EllipticE[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]+(Cot[ArcCos[Sqrt[x/x]]])^2*EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]+Cot[ArcCos[Sqrt[x/x]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x]]]^2]) == (x)^(1/ 2) Missing Macro Error Failure -
Failed [3 / 3]
{Indeterminate <- {Rule[x, 1.5]}
Indeterminate <- {Rule[x, 0.5]}
19.20#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRG@{\lambda x}{\lambda y}{\lambda z} = \lambda^{1/2}\CarlsonsymellintRG@{x}{y}{z}} Error Sqrt[\[Lambda]*(x + y*I)-\[Lambda]*x]*(EllipticE[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]+(Cot[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]]])^2*EllipticF[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]+Cot[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]]]^2]) == \[Lambda]^(1/ 2)* Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) Missing Macro Error Aborted -
Failed [180 / 180]
{Plus[Times[Complex[-0.75, 0.4330127018922193], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.75, -0.43301270189221935], Plus[Complex[0.469094970899074, 0.7900882534928779], Times[Complex[0.1542171038749957, -1.1011185950707625], Power[Plus[1.0, Times[Complex[1.25, -2.25], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Times[Complex[-0.8365163037378078, -0.22414386804201336], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.8365163037378078, 0.22414386804201325], Plus[Complex[0.46909497089907387, 0.7900882534928779], Times[Complex[0.1542171038749957, -1.10
19.20#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRG@{0}{y}{y} = \tfrac{1}{4}\pi y^{1/2}} Error Sqrt[y-0]*(EllipticE[ArcCos[Sqrt[0/y]],(y-y)/(y-0)]+(Cot[ArcCos[Sqrt[0/y]]])^2*EllipticF[ArcCos[Sqrt[0/y]],(y-y)/(y-0)]+Cot[ArcCos[Sqrt[0/y]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/y]]]^2]) == Divide[1,4]*Pi*(y)^(1/ 2) Missing Macro Error Failure -
Failed [6 / 6]
{Complex[0.0, 0.961912372621398] <- {Rule[y, -1.5]}
0.961912372621398 <- {Rule[y, 1.5]}
19.20#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRG@{0}{0}{z} = \tfrac{1}{2}z^{1/2}} Error Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-0)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-0)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == Divide[1,2]*(z)^(1/ 2) Missing Macro Error Failure -
Failed [7 / 7]
{Indeterminate <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.20.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{x}{y}{y} = y\CarlsonellintRC@{x}{y}+\sqrt{x}} Error 2*Sqrt[y-x]*(EllipticE[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]+(Cot[ArcCos[Sqrt[x/y]]])^2*EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]+Cot[ArcCos[Sqrt[x/y]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/y]]]^2]) == y*1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]+Sqrt[x] Missing Macro Error Failure -
Failed [18 / 18]
{Plus[Complex[-1.988036787975128, -1.360349523175663], Times[Complex[0.0, 3.4641016151377544], Plus[Complex[0.7853981633974483, -0.44068679350977147], Times[Complex[0.0, 0.7071067811865475], Power[Plus[1.0, Times[-2.0, Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.20#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{x}{x}{x} = x^{-3/2}} Error 3*(x-x)/(x-x)*(EllipticPi[(x-x)/(x-x),ArcCos[Sqrt[x/x]],(x-x)/(x-x)]-EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)])/Sqrt[x-x] == (x)^(- 3/ 2) Missing Macro Error Failure -
Failed [3 / 3]
{Indeterminate <- {Rule[x, 1.5]}
Indeterminate <- {Rule[x, 0.5]}
19.20#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{\lambda x}{\lambda y}{\lambda z}{\lambda p} = \lambda^{-3/2}\CarlsonsymellintRJ@{x}{y}{z}{p}} Error 3*(\[Lambda]*(x + y*I)-\[Lambda]*x)/(\[Lambda]*(x + y*I)-\[Lambda]*p)*(EllipticPi[(\[Lambda]*(x + y*I)-\[Lambda]*p)/(\[Lambda]*(x + y*I)-\[Lambda]*x),ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]-EllipticF[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)])/Sqrt[\[Lambda]*(x + y*I)-\[Lambda]*x] == \[Lambda]^(- 3/ 2)* 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[0.8261798979421457, -0.5239696989052641] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.5256524914787406, -1.066611458671583] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.20#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{y}{z}{z} = \CarlsonsymellintRD@{x}{y}{z}} Error 3*(x + y*I-x)/(x + y*I-x + y*I)*(EllipticPi[(x + y*I-x + y*I)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) Missing Macro Error Failure -
Failed [18 / 18]
{Complex[-0.37100270206594405, 0.09129381935817127] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-0.5182279531589904, -0.0513630200054771] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.20#Ex13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{0}{0}{z}{p} = \infty} Error 3*(z-0)/(z-p)*(EllipticPi[(z-p)/(z-0),ArcCos[Sqrt[0/z]],(z-0)/(z-0)]-EllipticF[ArcCos[Sqrt[0/z]],(z-0)/(z-0)])/Sqrt[z-0] == Infinity Missing Macro Error Failure -
Failed [70 / 70]
{Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.20#Ex14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{x}{x}{p} = \CarlsonsymellintRD@{p}{p}{x}} Error 3*(x-x)/(x-p)*(EllipticPi[(x-p)/(x-x),ArcCos[Sqrt[x/x]],(x-x)/(x-x)]-EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)])/Sqrt[x-x] == 3*(EllipticF[ArcCos[Sqrt[p/x]],(x-p)/(x-p)]-EllipticE[ArcCos[Sqrt[p/x]],(x-p)/(x-p)])/((x-p)*(x-p)^(1/2)) Missing Macro Error Failure -
Failed [27 / 27]
{Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5]}
Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 0.5]}
19.20#Ex14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{p}{p}{x} = \frac{3}{x-p}\left(\CarlsonellintRC@{x}{p}-\frac{1}{\sqrt{x}}\right)} Error 3*(EllipticF[ArcCos[Sqrt[p/x]],(x-p)/(x-p)]-EllipticE[ArcCos[Sqrt[p/x]],(x-p)/(x-p)])/((x-p)*(x-p)^(1/2)) == Divide[3,x - p]*(1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)]-Divide[1,Sqrt[x]]) Missing Macro Error Failure -
Failed [9 / 27]
{Complex[1.0177225554447191, 2.220446049250313*^-16] <- {Rule[p, -1.5], Rule[x, 1.5]}
Complex[1.1652542988181402, 6.661338147750939*^-16] <- {Rule[p, -1.5], Rule[x, 0.5]}
19.20#Ex15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{0}{y}{y}{p} = \frac{3\pi}{2(y\sqrt{p}+p\sqrt{y})}} Error 3*(y-0)/(y-p)*(EllipticPi[(y-p)/(y-0),ArcCos[Sqrt[0/y]],(y-y)/(y-0)]-EllipticF[ArcCos[Sqrt[0/y]],(y-y)/(y-0)])/Sqrt[y-0] == Divide[3*Pi,2*(y*Sqrt[p]+ p*Sqrt[y])] Missing Macro Error Failure -
Failed [18 / 18]
{Complex[-0.6412749150809316, 3.2063745754046598] <- {Rule[p, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[p, 1.5], Rule[y, 1.5]}
19.20#Ex16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{0}{y}{y}{-q} = \frac{-3\pi}{2\sqrt{y}(y+q)}} Error 3*(y-0)/(y-- q)*(EllipticPi[(y-- q)/(y-0),ArcCos[Sqrt[0/y]],(y-y)/(y-0)]-EllipticF[ArcCos[Sqrt[0/y]],(y-y)/(y-0)])/Sqrt[y-0] == Divide[- 3*Pi,2*Sqrt[y]*(y + q)] Missing Macro Error Failure -
Failed [18 / 18]
{DirectedInfinity[] <- {Rule[q, 1.5], Rule[y, -1.5]}
Plus[1.282549830161864, Times[2.449489742783178, Plus[-1.5707963267948966, Times[1.5707963267948966, Power[Plus[1.0, Times[-1.0, Decrement[1.5]]], Rational[-1, 2]]]], Power[Decrement[1.5], -1]]] <- {Rule[q, 1.5], Rule[y, 1.5]}
19.20#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{y}{y}{p} = \frac{3}{p-y}(\CarlsonellintRC@{x}{y}-\CarlsonellintRC@{x}{p})} Error 3*(y-x)/(y-p)*(EllipticPi[(y-p)/(y-x),ArcCos[Sqrt[x/y]],(y-y)/(y-x)]-EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)])/Sqrt[y-x] == Divide[3,p - y]*(1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]- 1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)]) Missing Macro Error Aborted -
Failed [157 / 162]
{Complex[0.40904124998304914, 6.107600792054881] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.20#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{y}{y}{y} = \CarlsonsymellintRD@{x}{y}{y}} Error 3*(y-x)/(y-y)*(EllipticPi[(y-y)/(y-x),ArcCos[Sqrt[x/y]],(y-y)/(y-x)]-EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)])/Sqrt[y-x] == 3*(EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]-EllipticE[ArcCos[Sqrt[x/y]],(y-y)/(y-x)])/((y-y)*(y-x)^(1/2)) Missing Macro Error Failure -
Failed [18 / 18]
{Indeterminate <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.20.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{0}{y}{z}{+\sqrt{yz}} = +\frac{3}{2\sqrt{yz}}\CarlsonsymellintRF@{0}{y}{z}} Error 3*(x + y*I-0)/(x + y*I-+Sqrt[y*(x + y*I)])*(EllipticPi[(x + y*I-+Sqrt[y*(x + y*I)])/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == +Divide[3,2*Sqrt[y*(x + y*I)]]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] Missing Macro Error Failure -
Failed [18 / 18]
{Complex[-0.9141259292931587, -0.9706303463287326] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-4.407772019377616, 0.7576222483343515] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.20.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{0}{y}{z}{-\sqrt{yz}} = -\frac{3}{2\sqrt{yz}}\CarlsonsymellintRF@{0}{y}{z}} Error 3*(x + y*I-0)/(x + y*I--Sqrt[y*(x + y*I)])*(EllipticPi[(x + y*I--Sqrt[y*(x + y*I)])/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == -Divide[3,2*Sqrt[y*(x + y*I)]]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] Missing Macro Error Failure -
Failed [18 / 18]
{Complex[0.1671030668705316, -0.09828926199489627] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-0.7387931095854892, 1.0731895314108653] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.20#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{p\to 0+}\sqrt{p}\CarlsonsymellintRJ@{0}{y}{z}{p} = \frac{3\pi}{2\sqrt{yz}}} Error Limit[Sqrt[p]*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0], p -> 0, Direction -> "FromAbove", GenerateConditions->None] == Divide[3*Pi,2*Sqrt[y*(x + y*I)]] Missing Macro Error Aborted - Skipped - Because timed out
19.20#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{p\to 0-}\CarlsonsymellintRJ@{0}{y}{z}{p} = {-\CarlsonsymellintRD@{0}{y}{z}-\CarlsonsymellintRD@{0}{z}{y}}} Error Limit[3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0], p -> 0, Direction -> "FromBelow", GenerateConditions->None] == - 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))- 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2)) Missing Macro Error Aborted - Skipped - Because timed out
19.20#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {-\CarlsonsymellintRD@{0}{y}{z}-\CarlsonsymellintRD@{0}{z}{y}} = \frac{-6}{yz}\CarlsonsymellintRG@{0}{y}{z}} Error - 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))- 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2)) == Divide[- 6,y*(x + y*I)]*Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) Missing Macro Error Failure -
Failed [18 / 18]
{Plus[Complex[1.5111033799217843, -0.47027281525563985], Times[Complex[-2.537302274660022, -1.050985014004285], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5]}
Plus[Complex[-0.13967540286775149, -0.9399293972008751], Times[Complex[2.537302274660022, -1.050985014004285], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.20.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{p\to+\infty}p\CarlsonsymellintRJ@{x}{y}{z}{p} = 3\CarlsonsymellintRF@{x}{y}{z}} Error Limit[p*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x], p -> + Infinity, GenerateConditions->None] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Missing Macro Error Aborted - Skipped - Because timed out
19.20.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{p\to-\infty}p\CarlsonsymellintRJ@{x}{y}{z}{p} = 3\CarlsonsymellintRF@{x}{y}{z}} Error Limit[p*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x], p -> - Infinity, GenerateConditions->None] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Missing Macro Error Aborted - Skipped - Because timed out
19.20.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2(p-x)\CarlsonsymellintRJ@{x}{y}{z}{p} = 3\CarlsonsymellintRF@{x}{y}{z}-3\sqrt{x}\CarlsonellintRC@{yz}{p^{2}}} Error 2*(p - x)* 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*Sqrt[x]*1/Sqrt[(p)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y*(x + y*I))/((p)^(2))] Missing Macro Error Aborted -
Failed [180 / 180]
{Complex[3.989482635019833, -4.816521080718802] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
Complex[5.152296981249878, -0.7434346709776987] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.20.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (q+z)\CarlsonsymellintRJ@{x}{y}{z}{-q} = (p-z)\CarlsonsymellintRJ@{x}{y}{z}{p}-3\CarlsonsymellintRF@{x}{y}{z}+3\left(\frac{xyz}{xy+pq}\right)^{1/2}\CarlsonellintRC@{xy+pq}{pq}} Error (q +(x + y*I))* 3*(x + y*I-x)/(x + y*I-- q)*(EllipticPi[(x + y*I-- q)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == (p -(x + y*I))* 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]- 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]+ 3*(Divide[x*y*(x + y*I),x*y + p*q])^(1/ 2)* 1/Sqrt[p*q]*Hypergeometric2F1[1/2,1/2,3/2,1-(x*y + p*q)/(p*q)] Missing Macro Error Aborted -
Failed [300 / 300]
{Complex[-3.4116287326863786, 8.252883937385896] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
Complex[-8.900891250450524, -2.579723477019983] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.20#Ex21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q > 0} q > 0 q > 0 Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p = \frac{z(x+y+q)-xy}{z+q}} p = ((x + y*I)*(x + y + q)- x*y)/((x + y*I)+ q) p == Divide[(x + y*I)*(x + y + q)- x*y,(x + y*I)+ q] Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p = wy+(1-w)z} p = w*y +(1 - w)*(x + y*I) p == w*y +(1 - w)*(x + y*I) Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w = \frac{z-x}{z+q}} w = ((x + y*I)- x)/((x + y*I)+ q) w == Divide[(x + y*I)- x,(x + y*I)+ q] Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < w} 0 < w 0 < w Skipped - no semantic math Skipped - no semantic math - -
19.20.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (q+z)\CarlsonsymellintRJ@{0}{y}{z}{-q} = (p-z)\CarlsonsymellintRJ@{0}{y}{z}{p}-3\CarlsonsymellintRF@{0}{y}{z}} Error (q +(x + y*I))* 3*(x + y*I-0)/(x + y*I-- q)*(EllipticPi[(x + y*I-- q)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == (p -(x + y*I))* 3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0]- 3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[-3.556352843352318, 3.1308549992075583] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
Complex[-7.694083210877473, -5.44447388199589] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.20#Ex26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{x}{x}{x} = x^{-3/2}} Error 3*(EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]-EllipticE[ArcCos[Sqrt[x/x]],(x-x)/(x-x)])/((x-x)*(x-x)^(1/2)) == (x)^(- 3/ 2) Missing Macro Error Failure -
Failed [3 / 3]
{Indeterminate <- {Rule[x, 1.5]}
Indeterminate <- {Rule[x, 0.5]}
19.20#Ex27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{\lambda x}{\lambda y}{\lambda z} = \lambda^{-3/2}\CarlsonsymellintRD@{x}{y}{z}} Error 3*(EllipticF[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]-EllipticE[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)])/((\[Lambda]*(x + y*I)-\[Lambda]*y)*(\[Lambda]*(x + y*I)-\[Lambda]*x)^(1/2)) == \[Lambda]^(- 3/ 2)* 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) Missing Macro Error Failure -
Failed [180 / 180]
{Complex[1.0149076549010991, -0.8161311339182895] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.2947399441897933, -0.14055622592761496] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.20#Ex29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{0}{0}{z} = \infty} Error 3*(EllipticF[ArcCos[Sqrt[0/z]],(z-0)/(z-0)]-EllipticE[ArcCos[Sqrt[0/z]],(z-0)/(z-0)])/((z-0)*(z-0)^(1/2)) == Infinity Missing Macro Error Failure -
Failed [7 / 7]
{Indeterminate <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.20.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{x}{y}{y} = \frac{3}{2(y-x)}\left(\CarlsonellintRC@{x}{y}-\frac{\sqrt{x}}{y}\right)} Error 3*(EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]-EllipticE[ArcCos[Sqrt[x/y]],(y-y)/(y-x)])/((y-y)*(y-x)^(1/2)) == Divide[3,2*(y - x)]*(1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]-Divide[Sqrt[x],y]) Missing Macro Error Failure -
Failed [15 / 15]
{Indeterminate <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, -0.5]}
19.20.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{x}{x}{z} = \frac{3}{z-x}\left(\CarlsonellintRC@{z}{x}-\frac{1}{\sqrt{z}}\right)} Error 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-x)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-x)/(x + y*I-x)])/((x + y*I-x)*(x + y*I-x)^(1/2)) == Divide[3,(x + y*I)- x]*(1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + y*I)/(x)]-Divide[1,Sqrt[x + y*I]]) Missing Macro Error Failure -
Failed [18 / 18]
{Complex[0.13486015646372063, -0.8506635330353051] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[0.13486015646372096, 0.8506635330353054] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.20.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\frac{t^{2}\diff{t}}{\sqrt{1-t^{4}}} = \tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1}} Error Integrate[Divide[(t)^(2),Sqrt[1 - (t)^(4)]], {t, 0, 1}, GenerateConditions->None] == Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-2)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-2)/(1-0)])/((1-2)*(1-0)^(1/2)) Missing Macro Error Successful Skip - symbolical successful subtest Successful [Tested: 1]
19.20.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1} = \frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}}} Error Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-2)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-2)/(1-0)])/((1-2)*(1-0)^(1/2)) == Divide[(Gamma[Divide[3,4]])^(2),(2*Pi)^(1/ 2)] Missing Macro Error Successful Skip - symbolical successful subtest Successful [Tested: 1]
19.20.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}} = 0.59907\;01173\;67796\;10371\dots} ((GAMMA((3)/(4)))^(2))/((2*Pi)^(1/ 2)) = 0.59907011736779610371 Divide[(Gamma[Divide[3,4]])^(2),(2*Pi)^(1/ 2)] == 0.59907011736779610371 Failure Successful Successful [Tested: 0] Successful [Tested: 1]
19.21.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z)} Error EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]/Sqrt[z-0]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)])/((1-z + 1)*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]-EllipticE[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)])/((z-z + 1)*(z-0)^(1/2))*EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]/Sqrt[1-0] == 3*Pi/(2*z) Missing Macro Error Failure -
Failed [7 / 7]
{Complex[-18.895019118218656, -13.266297761785948] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-2.405668177707024, 11.584123712813607] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.21.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 3\CarlsonsymellintRF@{0}{y}{z} = z\CarlsonsymellintRD@{0}{y}{z}+y\CarlsonsymellintRD@{0}{z}{y}} Error 3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == (x + y*I)* 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ y*3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2)) Missing Macro Error Failure -
Failed [18 / 18]
{Complex[-0.11482200178525792, 3.077769310376559] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[0.9930498831204495, -3.2293137034341144] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.21.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 6\CarlsonsymellintRG@{0}{y}{z} = yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y})} Error 6*Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == y*(x + y*I)*(3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))) Missing Macro Error Failure -
Failed [18 / 18]
{Plus[Complex[-2.3418687704988255, 4.458096439149204], Times[Complex[8.07364639949469, -3.344213836475408], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5]}
Plus[Complex[1.800571487249528, -2.4291108001544095], Times[Complex[8.07364639949469, 3.344213836475408], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.21.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y}) = 3z\CarlsonsymellintRF@{0}{y}{z}+z(y-z)\CarlsonsymellintRD@{0}{y}{z}} Error y*(x + y*I)*(3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))) == 3*(x + y*I)* EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+(x + y*I)*(y -(x + y*I))* 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2)) Missing Macro Error Failure -
Failed [18 / 18]
{Complex[-4.444420962886951, -4.788886968242726] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-6.333545379831845, 3.3543957304704977] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.21.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}-\iunit\CarlsonsymellintRF@{0}{z}{1}} 0.5*int(1/(sqrt(t+0)*sqrt(t+z - 1)*sqrt(t+z)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - z)*sqrt(t+1)), t = 0..infinity)- I*0.5*int(1/(sqrt(t+0)*sqrt(t+z)*sqrt(t+1)), t = 0..infinity) EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]/Sqrt[z-0] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]- I*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0] Failure Failure
Failed [7 / 7]
7/7]: [[3.197606220-2.012137137*I <- {z = 1/2*3^(1/2)+1/2*I}
1.024722154-2.538160454*I <- {z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 7]
{Complex[0.447882135735306, 1.6422203572966838] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.9112982419758283, 0.8007121244739206] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.21.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}+\iunit\CarlsonsymellintRF@{0}{z}{1}} 0.5*int(1/(sqrt(t+0)*sqrt(t+z - 1)*sqrt(t+z)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - z)*sqrt(t+1)), t = 0..infinity)+ I*0.5*int(1/(sqrt(t+0)*sqrt(t+z)*sqrt(t+1)), t = 0..infinity) EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]/Sqrt[z-0] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]+ I*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0] Failure Failure
Failed [7 / 7]
7/7]: [[3.609429842+1.115973839*I <- {z = 1/2*3^(1/2)+1/2*I}
2.710472508+.381644808*I <- {z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 7]
{Complex[0.0036174998504115152, -2.054982714938571] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.9086726238549093, -2.7316000638683375] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.21.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}+\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}-\iunit z\CarlsonsymellintRF@{0}{z}{1}} Error 2*Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+ I*2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+(z - 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]- I*z*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0] Missing Macro Error Failure -
Failed [7 / 7]
{Complex[0.23313173408598564, -1.9381268036446178] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.6842698833888152, -2.1985132995849304] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.21.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}-\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}+\iunit z\CarlsonsymellintRF@{0}{z}{1}} Error 2*Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])- I*2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+(z - 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]+ I*z*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0] Missing Macro Error Failure -
Failed [7 / 7]
{Complex[0.44709928924442033, 1.6621495887309192] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.1273665829731985, 1.9939163092606038] <- {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.21.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\sqrt{rp}/z)\CarlsonsymellintRJ@{0}{y}{z}{p} = {(r-1)}\CarlsonsymellintRF@{0}{y}{z}\CarlsonsymellintRD@{p}{rz}{z}+\CarlsonsymellintRD@{0}{y}{z}\CarlsonsymellintRF@{p}{rz}{z}} Error (Sqrt[r*p]/(x + y*I))* 3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == (r - 1)*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]*3*(EllipticF[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)]-EllipticE[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)])/((x + y*I-r*(x + y*I))*(x + y*I-p)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))*EllipticF[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)]/Sqrt[x + y*I-p] Missing Macro Error Aborted -
Failed [300 / 300]
{Complex[-0.019107479205769995, -0.26821779662698253] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Complex[1.626010920193221, 0.604709928225457] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
19.21.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x-y)\CarlsonsymellintRD@{y}{z}{x}+(z-y)\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}-3\sqrt{y/(xz)}} Error (x - y)* 3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+((x + y*I)- y)* 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*Sqrt[y/(x*(x + y*I))] Missing Macro Error Failure -
Failed [18 / 18]
{Complex[2.01816993619941, -7.647648832317454] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[1.9029767059950156, 2.211761239496786] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.21.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{y}{z}{x}+\CarlsonsymellintRD@{z}{x}{y}+\CarlsonsymellintRD@{x}{y}{z} = 3(xyz)^{-1/2}} Error 3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)]-EllipticE[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)])/((y-x)*(y-x + y*I)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*(x*y*(x + y*I))^(- 1/ 2) Missing Macro Error Failure -
Failed [18 / 18]
{Complex[0.061772053426947915, 0.22732915812456822] <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.21.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x\CarlsonsymellintRD@{y}{z}{x}+y\CarlsonsymellintRD@{z}{x}{y}+z\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}} Error x*3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+ y*3*(EllipticF[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)]-EllipticE[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)])/((y-x)*(y-x + y*I)^(1/2))+(x + y*I)* 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Missing Macro Error Aborted -
Failed [18 / 18]
{Complex[0.3490343350525606, -4.182689157514275] <- {Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[x, 1.5], Rule[y, 1.5]}
19.21.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{x}{y}{z} = z\CarlsonsymellintRF@{x}{y}{z}-\tfrac{1}{3}(x-z)(y-z)\CarlsonsymellintRD@{x}{y}{z}+\sqrt{xy/z}} Error 2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == (x + y*I)* EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Divide[1,3]*(x -(x + y*I))*(y -(x + y*I))* 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))+Sqrt[x*y/(x + y*I)] Missing Macro Error Failure -
Failed [18 / 18]
{Plus[Complex[-2.045465659795318, -0.2973389532409781], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5]}
Plus[Complex[-2.0191372830755783, 1.5655011975568338], Times[Complex[1.7320508075688772, 1.732050807568877], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.21.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (p-x)\CarlsonsymellintRJ@{x}{y}{z}{p}+(q-x)\CarlsonsymellintRJ@{x}{y}{z}{q} = 3\CarlsonsymellintRF@{x}{y}{z}-3\CarlsonellintRC@{\xi}{\eta}} Error (p - x)* 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]+(q - x)* 3*(x + y*I-x)/(x + y*I-q)*(EllipticPi[(x + y*I-q)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])] Missing Macro Error Aborted -
Failed [300 / 300]
{Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[5.153237655786464, -3.718995107844719] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.21#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (p-x)(q-x) = (y-x)(z-x)} (p - x)*(q - x) = (y - x)*((x + y*I)- x) (p - x)*(q - x) == (y - x)*((x + y*I)- x) Skipped - no semantic math Skipped - no semantic math - -
19.21#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \xi = yz/x} xi = y*z/ x \[Xi] == y*z/ x Skipped - no semantic math Skipped - no semantic math - -
19.21#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta = pq/x} eta = p*q/ x \[Eta] == p*q/ x Skipped - no semantic math Skipped - no semantic math - -
19.21.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta-\xi = p+q-y-z} eta - xi = p + q - y -(x + y*I) \[Eta]- \[Xi] == p + q - y -(x + y*I) Skipped - no semantic math Skipped - no semantic math - -
19.21.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p\CarlsonsymellintRJ@{0}{y}{z}{p}+q\CarlsonsymellintRJ@{0}{y}{z}{q} = 3\CarlsonsymellintRF@{0}{y}{z}} Error p*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0]+ q*3*(x + y*I-0)/(x + y*I-q)*(EllipticPi[(x + y*I-q)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == 3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[-0.5878632565330948, -3.2355968294614907] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
Complex[-2.320767562800481, 3.5603464097743847] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}