Confluent Hypergeometric Functions - 13.11 Series

From testwiki
Revision as of 17:08, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
13.11.E1 M ( a , b , z ) = Γ ( a - 1 2 ) e 1 2 z ( 1 4 z ) 1 2 - a s = 0 ( 2 a - 1 ) s ( 2 a - b ) s ( b ) s s ! ( a - 1 2 + s ) I a - 1 2 + s ( 1 2 z ) Kummer-confluent-hypergeometric-M 𝑎 𝑏 𝑧 Euler-Gamma 𝑎 1 2 superscript 𝑒 1 2 𝑧 superscript 1 4 𝑧 1 2 𝑎 superscript subscript 𝑠 0 Pochhammer 2 𝑎 1 𝑠 Pochhammer 2 𝑎 𝑏 𝑠 Pochhammer 𝑏 𝑠 𝑠 𝑎 1 2 𝑠 modified-Bessel-first-kind 𝑎 1 2 𝑠 1 2 𝑧 {\displaystyle{\displaystyle M\left(a,b,z\right)=\Gamma\left(a-\tfrac{1}{2}% \right)e^{\frac{1}{2}z}\left(\tfrac{1}{4}z\right)^{\frac{1}{2}-a}\*\sum_{s=0}^% {\infty}\frac{{\left(2a-1\right)_{s}}{\left(2a-b\right)_{s}}}{{\left(b\right)_% {s}}s!}\*\left(a-\tfrac{1}{2}+s\right)\*I_{a-\frac{1}{2}+s}\left(\tfrac{1}{2}z% \right)}}
\KummerconfhyperM@{a}{b}{z} = \EulerGamma@{a-\tfrac{1}{2}}e^{\frac{1}{2}z}\left(\tfrac{1}{4}z\right)^{\frac{1}{2}-a}\*\sum_{s=0}^{\infty}\frac{\Pochhammersym{2a-1}{s}\Pochhammersym{2a-b}{s}}{\Pochhammersym{b}{s}s!}\*\left(a-\tfrac{1}{2}+s\right)\*\modBesselI{a-\frac{1}{2}+s}@{\tfrac{1}{2}z}
( a - 1 2 ) > 0 , ( ( a - 1 2 + s ) + k + 1 ) > 0 formulae-sequence 𝑎 1 2 0 𝑎 1 2 𝑠 𝑘 1 0 {\displaystyle{\displaystyle\Re(a-\tfrac{1}{2})>0,\Re((a-\frac{1}{2}+s)+k+1)>0}}
KummerM(a, b, z) = GAMMA(a -(1)/(2))*exp((1)/(2)*z)*((1)/(4)*z)^((1)/(2)- a)* sum((pochhammer(2*a - 1, s)*pochhammer(2*a - b, s))/(pochhammer(b, s)*factorial(s))*(a -(1)/(2)+ s)* BesselI(a -(1)/(2)+ s, (1)/(2)*z), s = 0..infinity)
Hypergeometric1F1[a, b, z] == Gamma[a -Divide[1,2]]*Exp[Divide[1,2]*z]*(Divide[1,4]*z)^(Divide[1,2]- a)* Sum[Divide[Pochhammer[2*a - 1, s]*Pochhammer[2*a - b, s],Pochhammer[b, s]*(s)!]*(a -Divide[1,2]+ s)* BesselI[a -Divide[1,2]+ s, Divide[1,2]*z], {s, 0, Infinity}, GenerateConditions->None]
Failure Failure Manual Skip!
Failed [84 / 84]
Result: Plus[Complex[-3.202632216430895, 12.150063432924489], Times[Complex[-5.9381784278055925, 1.66646925063829], NSum[Times[Plus[1.0, s], BesselI[Plus[1.0, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Factorial[s], -1], Power[Pochhammer[-1.5, s], -1], Pochhammer[2.0, s], Pochhammer[4.5, s]]
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, 1.5], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[3.448639860241066, -0.8097281072366314], Times[Complex[0.28180823919021325, 3.102430445912792], NSum[Times[Plus[1.0, s], BesselI[Plus[1.0, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Power[Factorial[s], -1], Power[Pochhammer[-1.5, s], -1], Pochhammer[2.0, s], Pochhammer[4.5, s]]
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, 1.5], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data