Results of Elliptic Integrals II

From testwiki
Revision as of 20:00, 15 October 2020 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This is the second half of the chapter Elliptic Integrals. It shows results from Section 19.22 to 19.36. For Section 19.1 to 19.21 go to Elliptic Integrals I.

DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.22.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{x^{2}}{y^{2}} = \CarlsonsymellintRF@{0}{xy}{a^{2}}} 0.5*int(1/(sqrt(t+0)*sqrt(t+(x)^(2))*sqrt(t+(y)^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+x*y)*sqrt(t+(a)^(2))), t = 0..infinity) EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]/Sqrt[(y)^(2)-0] == EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0] Aborted Failure Skipped - Because timed out
Failed [102 / 108]
{Complex[0.1731783664325578, 0.8740191847640398] <- {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Complex[0.4406854652170371, 0.9732684211375591] <- {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -0.5]}
19.22.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{0}{x^{2}}{y^{2}} = 4\CarlsonsymellintRG@{0}{xy}{a^{2}}-xy\CarlsonsymellintRF@{0}{xy}{a^{2}}} Error 2*Sqrt[(y)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(y)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]+Cot[ArcCos[Sqrt[0/(y)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(y)^(2)]]]^2]) == 4*Sqrt[(a)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(a)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]+Cot[ArcCos[Sqrt[0/(a)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(a)^(2)]]]^2])- x*y*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0] Missing Macro Error Failure -
Failed [108 / 108]
{Complex[-0.848574889541176, -1.6278775384876862] <- {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
-2.356194490192345 <- {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
19.22.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2y^{2}\CarlsonsymellintRD@{0}{x^{2}}{y^{2}} = \tfrac{1}{4}(y^{2}-x^{2})\CarlsonsymellintRD@{0}{xy}{a^{2}}+3\CarlsonsymellintRF@{0}{xy}{a^{2}}} Error 2*(y)^(2)* 3*(EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/(((y)^(2)-(x)^(2))*((y)^(2)-0)^(1/2)) == Divide[1,4]*((y)^(2)- (x)^(2))* 3*(EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/(((a)^(2)-x*y)*((a)^(2)-0)^(1/2))+ 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0] Missing Macro Error Failure -
Failed [108 / 108]
{Indeterminate <- {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
19.22.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (p_{+}^{2}-p_{-}^{2})\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = 2(p_{+}^{2}-a^{2})\CarlsonsymellintRJ@{0}{xy}{a^{2}}{p_{+}^{2}}-3\CarlsonsymellintRF@{0}{xy}{a^{2}}+3\pi/(2p)} Error (p(Subscript[p, +])^(2)- p(Subscript[p, -])^(2))* 3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == 3*((a)^(2)-0)/((a)^(2)-p(Subscript[p, +])^(2))*(EllipticPi[((a)^(2)-p(Subscript[p, +])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]- 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]+ 3*Pi/(2*p) Missing Macro Error Failure - Error
19.22.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (p_{-}^{2}-p_{+}^{2})\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = 2(p_{-}^{2}-a^{2})\CarlsonsymellintRJ@{0}{xy}{a^{2}}{p_{-}^{2}}-3\CarlsonsymellintRF@{0}{xy}{a^{2}}+3\pi/(2p)} Error (p(Subscript[p, -])^(2)- p(Subscript[p, +])^(2))* 3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == 3*((a)^(2)-0)/((a)^(2)-p(Subscript[p, -])^(2))*(EllipticPi[((a)^(2)-p(Subscript[p, -])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]- 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]+ 3*Pi/(2*p) Missing Macro Error Failure - Error
19.22#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{+}p_{-} = pa} p[+]*p[-] = p*a Subscript[p, +]*Subscript[p, -] == p*a Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{+}^{2}+p_{-}^{2} = p^{2}+xy} (p[+])^(2)+ (p[-])^(2) = (p)^(2)+ x*y (Subscript[p, +])^(2)+ (Subscript[p, -])^(2) == (p)^(2)+ x*y Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{+}^{2}-p_{-}^{2} = \sqrt{(p^{2}-x^{2})(p^{2}-y^{2})}} (p[+])^(2)- (p[-])^(2) = sqrt(((p)^(2)- (x)^(2))*((p)^(2)- (y)^(2))) (Subscript[p, +])^(2)- (Subscript[p, -])^(2) == Sqrt[((p)^(2)- (x)^(2))*((p)^(2)- (y)^(2))] Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 4(p_{+}^{2}-a^{2}) = (\sqrt{p^{2}-x^{2}}+\sqrt{p^{2}-y^{2}})^{2}} (p(p[+])^(2)- (a)^(2)) = (sqrt((p)^(2)- (x)^(2))+sqrt((p)^(2)- (y)^(2)))^(2) (p(Subscript[p, +])^(2)- (a)^(2)) == (Sqrt[(p)^(2)- (x)^(2)]+Sqrt[(p)^(2)- (y)^(2)])^(2) Skipped - no semantic math Skipped - no semantic math - -
19.22.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2p^{2}\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = v_{+}v_{-}\CarlsonsymellintRJ@{0}{xy}{a^{2}}{v^{2}_{+}}+3\CarlsonsymellintRF@{0}{xy}{a^{2}}} Error 2*(p)^(2)* 3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == Subscript[v, +]*3*((a)^(2)-0)/((a)^(2)-v(Subscript[v, +])^(2))*(EllipticPi[((a)^(2)-v(Subscript[v, +])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]+ 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0] Missing Macro Error Failure - Error
19.22.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}} = \frac{1}{\AGM@{a_{0}}{g_{0}}}} 0.5*int(1/(sqrt(t+0)*sqrt(t+a(a[0])^(2))*sqrt(t+g(g[0])^(2))), t = 0..infinity) = (1)/(GaussAGM(a[0], g[0])) Error Aborted Missing Macro Error Skipped - Because timed out -
19.22.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\AGM@{a_{0}}{g_{0}}}\left(a_{0}^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right) = \frac{1}{\AGM@{a_{0}}{g_{0}}}\left(a_{1}^{2}-\sum_{n=2}^{\infty}2^{n-1}c_{n}^{2}\right)} (a(a[0])^(2)- sum((2)^(n - 1)* c(c[n])^(2), n = 0..infinity)) (a(a[1])^(2)- sum((2)^(n - 1)* c(c[n])^(2), n = 2..infinity)) Error Failure Missing Macro Error Error -
19.22#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q_{0} = 1} Q[0] = 1 Subscript[Q, 0] == 1 Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q_{n+1} = \tfrac{1}{2}Q_{n}\frac{a_{n}-g_{n}}{a_{n}+g_{n}}} Q[n + 1] = (1)/(2)*Q[n]*(a[n]- g[n])/(a[n]+ g[n]) Subscript[Q, n + 1] == Divide[1,2]*Subscript[Q, n]*Divide[Subscript[a, n]- Subscript[g, n],Subscript[a, n]+ Subscript[g, n]] Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{n+1} = \frac{p_{n}^{2}+a_{n}g_{n}}{2p_{n}}} p[n + 1] (p(p[n])^(2)+ a[n]*g[n])/(2*p[n]) Subscript[p, n + 1] Divide[p(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n],2*Subscript[p, n]] Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \varepsilon_{n} = \frac{p_{n}^{2}-a_{n}g_{n}}{p_{n}^{2}+a_{n}g_{n}}} (p(p[n])^(2)- a[n]*g[n])/(p(p[n])^(2)+ a[n]*g[n]) Divide[p(Subscript[p, n])^(2)- Subscript[a, n]*Subscript[g, n],p(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n]] Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q_{0} = 1} Q[0] = 1 Subscript[Q, 0] == 1 Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q_{n+1} = \tfrac{1}{2}Q_{n}\varepsilon_{n}} Q[n + 1] = (1)/(2)*Q[n]*varepsilon[n] Subscript[Q, n + 1] == Divide[1,2]*Subscript[Q, n]*Subscript[\[CurlyEpsilon], n] Skipped - no semantic math Skipped - no semantic math - -
19.22.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{0}^{2} = a_{0}^{2}(q_{0}^{2}+g_{0}^{2})/(q_{0}^{2}+a_{0}^{2})} (p[0])^(2) (q(q[0])^(2)+ a(a[0])^(2)) (Subscript[p, 0])^(2) (q(Subscript[q, 0])^(2)+ a(Subscript[a, 0])^(2)) Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a = (x+y)/2} a = (x + y)/ 2 a == (x + y)/ 2 Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2z_{+} = \sqrt{(z+x)(z+y)}+\sqrt{(z-x)(z-y)}} 2*x + y*I[+] = sqrt(((x + y*I)+ x)*((x + y*I)+ y))+sqrt(((x + y*I)- x)*((x + y*I)- y)) 2*Subscript[x + y*I, +] == Sqrt[((x + y*I)+ x)*((x + y*I)+ y)]+Sqrt[((x + y*I)- x)*((x + y*I)- y)] Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z_{+}z_{-} = za} z[+]*z[-] = z*a Subscript[z, +]*Subscript[z, -] == z*a Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z_{+}^{2}+z_{-}^{2} = z^{2}+xy} (x + y*I[+])^(2)+(x + y*I[-])^(2) = (x + y*I)^(2)+ x*y (Subscript[x + y*I, +])^(2)+(Subscript[x + y*I, -])^(2) == (x + y*I)^(2)+ x*y Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z_{+}^{2}-z_{-}^{2} = \sqrt{(z^{2}-x^{2})(z^{2}-y^{2})}} (x + y*I[+])^(2)-(x + y*I[-])^(2) = sqrt(((x + y*I)^(2)- (x)^(2))*((x + y*I)^(2)- (y)^(2))) (Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2) == Sqrt[((x + y*I)^(2)- (x)^(2))*((x + y*I)^(2)- (y)^(2))] Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 4(z_{+}^{2}-a^{2}) = (\sqrt{z^{2}-x^{2}}+\sqrt{z^{2}-y^{2}})^{2}} ((x + y*I)(x + y*I[+])^(2)- (a)^(2)) = (sqrt((x + y*I)^(2)- (x)^(2))+sqrt((x + y*I)^(2)- (y)^(2)))^(2) ((x + y*I)(Subscript[x + y*I, +])^(2)- (a)^(2)) == (Sqrt[(x + y*I)^(2)- (x)^(2)]+Sqrt[(x + y*I)^(2)- (y)^(2)])^(2) Skipped - no semantic math Skipped - no semantic math - -
19.22.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}} = \CarlsonsymellintRF@{a^{2}}{z_{-}^{2}}{z_{+}^{2}}} 0.5*int(1/(sqrt(t+(a)^(2))*sqrt(t+(x + y*I)(x + y*I[-])^(2))*sqrt(t+(x + y*I)(x + y*I[+])^(2))), t = 0..infinity) EllipticF[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, +])^(2)]],((x + y*I)(Subscript[x + y*I, +])^(2)-(x + y*I)(Subscript[x + y*I, -])^(2))/((x + y*I)(Subscript[x + y*I, +])^(2)-(a)^(2))]/Sqrt[(x + y*I)(Subscript[x + y*I, +])^(2)-(a)^(2)] Error Failure - Error
19.22.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z_{+}^{2}-z_{-}^{2})\CarlsonsymellintRD@{x^{2}}{y^{2}}{z^{2}} = {2(z_{+}^{2}-a^{2})}\CarlsonsymellintRD@{a^{2}}{z_{-}^{2}}{z_{+}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+(3/z)} Error ((x + y*I)(Subscript[x + y*I, +])^(2)-(x + y*I)(Subscript[x + y*I, -])^(2))* 3*(EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/(((x + y*I)^(2)-(y)^(2))*((x + y*I)^(2)-(x)^(2))^(1/2)) 3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, +])^(2)]],((x + y*I)(Subscript[x + y*I, +])^(2)-(x + y*I)(Subscript[x + y*I, -])^(2))/((x + y*I)(Subscript[x + y*I, +])^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, +])^(2)]],((x + y*I)(Subscript[x + y*I, +])^(2)-(x + y*I)(Subscript[x + y*I, -])^(2))/((x + y*I)(Subscript[x + y*I, +])^(2)-(a)^(2))])/(((x + y*I)(Subscript[x + y*I, +])^(2)-(x + y*I)(Subscript[x + y*I, -])^(2))*((x + y*I)(Subscript[x + y*I, +])^(2)-(a)^(2))^(1/2))- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+(3/(x + y*I)) Missing Macro Error Failure - Error
19.22.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z_{-}^{2}-z_{+}^{2})\CarlsonsymellintRD@{x^{2}}{y^{2}}{z^{2}} = {2(z_{-}^{2}-a^{2})}\CarlsonsymellintRD@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+(3/z)} Error ((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))* 3*(EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/(((x + y*I)^(2)-(y)^(2))*((x + y*I)^(2)-(x)^(2))^(1/2)) 3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]],((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]],((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))])/(((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))*((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))^(1/2))- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+(3/(x + y*I)) Missing Macro Error Failure - Error
19.22.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (p_{+}^{2}-p_{-}^{2})\CarlsonsymellintRJ@{x^{2}}{y^{2}}{z^{2}}{p^{2}} = 2(p_{+}^{2}-a^{2})\CarlsonsymellintRJ@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}{p_{+}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+3\CarlsonellintRC@{z^{2}}{p^{2}}} Error (p(Subscript[p, +])^(2)- p(Subscript[p, -])^(2))* 3*((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-p(Subscript[p, +])^(2))*(EllipticPi[((x + y*I)(Subscript[x + y*I, -])^(2)-p(Subscript[p, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2)),ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]],((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticF[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]],((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))])/Sqrt[(x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2)]- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+ 3*1/Sqrt[(p)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x + y*I)^(2))/((p)^(2))] Missing Macro Error Failure - Error
19.22.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (p_{-}^{2}-p_{+}^{2})\CarlsonsymellintRJ@{x^{2}}{y^{2}}{z^{2}}{p^{2}} = 2(p_{-}^{2}-a^{2})\CarlsonsymellintRJ@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}{p_{-}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+3\CarlsonellintRC@{z^{2}}{p^{2}}} Error (p(Subscript[p, -])^(2)- p(Subscript[p, +])^(2))* 3*((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-p(Subscript[p, -])^(2))*(EllipticPi[((x + y*I)(Subscript[x + y*I, -])^(2)-p(Subscript[p, -])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2)),ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]],((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticF[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]],((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))])/Sqrt[(x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2)]- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+ 3*1/Sqrt[(p)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x + y*I)^(2))/((p)^(2))] Missing Macro Error Failure - Error
19.22.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{x^{2}}{y^{2}}{z^{2}} = 4\CarlsonsymellintRG@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}-xy\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}-z} Error 2*Sqrt[(x + y*I)^(2)-(x)^(2)]*(EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]+(Cot[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]+Cot[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]]^2]) Sqrt[(x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2)]*(EllipticE[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]],((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))]+(Cot[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]]])^2*EllipticF[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]],((x + y*I)(Subscript[x + y*I, -])^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))/((x + y*I)(Subscript[x + y*I, -])^(2)-(a)^(2))]+Cot[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(a)^(2)/(x + y*I)(Subscript[x + y*I, -])^(2)]]]^2])- x*y*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]-(x + y*I) Missing Macro Error Failure - Error
19.22.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay}} Error 1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] == 1/Sqrt[a*y]*Hypergeometric2F1[1/2,1/2,3/2,1-((a)^(2))/(a*y)] Missing Macro Error Failure -
Failed [108 / 108]
{Indeterminate <- {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Indeterminate <- {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
19.22#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x+y = 2a} x + y = 2*a x + y == 2*a Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x-y = (\ifrac{2}{a})\sqrt{(a^{2}-z_{+}^{2})(a^{2}-z_{-}^{2})}} x - y sqrt(((a)^(2)-(x + y*I)(x + y*I[+])^(2))*((a)^(2)-(x + y*I)(x + y*I[-])^(2))) x - y Sqrt[((a)^(2)-(x + y*I)(Subscript[x + y*I, +])^(2))*((a)^(2)-(x + y*I)(Subscript[x + y*I, -])^(2))] Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z = \ifrac{z_{+}z_{-}}{a}} z = (z[+]*z[-])/(a) z == Divide[Subscript[z, +]*Subscript[z, -],a] Skipped - no semantic math Skipped - no semantic math - -
19.23.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{y}{z} = \int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-1/2}\diff{\theta}} 0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int((y*(cos(theta))^(2)+(x + y*I)*(sin(theta))^(2))^(- 1/ 2), theta = 0..Pi/ 2) EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 1/ 2), {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Aborted Failure Skipped - Because timed out
Failed [18 / 18]
{Complex[0.8397393007192011, 1.792316631638506] <- {Rule[x, 1.5], Rule[y, -1.5]}
Complex[-1.057179647328743, -0.8381019542468571] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.23.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRG@{0}{y}{z} = \frac{1}{2}\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{1/2}\diff{\theta}} Error Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == Divide[1,2]*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(1/ 2), {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Missing Macro Error Failure -
Failed [18 / 18]
{Plus[Complex[0.5014070071339144, -0.6068932953779227], Times[Complex[1.345607733249115, -0.5573689727459014], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5]}
Plus[Complex[-0.9996439786591846, -0.22609983985234913], Times[Complex[1.345607733249115, 0.5573689727459014], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.23.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{0}{y}{z} = 3\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-3/2}\sin^{2}@@{\theta}\diff{\theta}} Error 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2)) == 3*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 3/ 2)* (Sin[\[Theta]])^(2), {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
19.23.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{0}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta}} Error EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)* (Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)* (Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
19.23.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta} = \frac{2}{\pi}\int_{0}^{\infty}\CarlsonellintRC@{y\cosh^{2}@@{t}}{z}\diff{t}} Error Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)* (Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)* (Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/ 2}, GenerateConditions->None] == Divide[2,Pi]*Integrate[1/Sqrt[x + y*I]*Hypergeometric2F1[1/2,1/2,3/2,1-(y*(Cosh[t])^(2))/(x + y*I)], {t, 0, Infinity}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
19.23.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{x}{y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta}}\diff{\theta}} Error EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Divide[2,Pi]*Integrate[1/Sqrt[y*(Cos[\[Theta]])^(2)+(x + y*I)* (Sin[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y*(Cos[\[Theta]])^(2)+(x + y*I)* (Sin[\[Theta]])^(2))], {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
19.23.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 4\pi\CarlsonsymellintRF@{x}{y}{z} = \int_{0}^{2\pi}\!\!\!\!\int_{0}^{\pi}\frac{\sin@@{\theta}\diff{\theta}\diff{\phi}}{(x\sin^{2}@@{\theta}\cos^{2}@@{\phi}+y\sin^{2}@@{\theta}\sin^{2}@@{\phi}+z\cos^{2}@@{\theta})^{1/2}}} 4*Pi*0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int(int((sin(theta))/((x*(sin(theta))^(2)* (cos(phi))^(2)+ y*(sin(theta))^(2)* (sin(phi))^(2)+(x + y*I)*(cos(theta))^(2))^(1/ 2)), theta = 0..Pi), phi = 0..2*Pi) 4*Pi*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Integrate[Integrate[Divide[Sin[\[Theta]],(x*(Sin[\[Theta]])^(2)* (Cos[\[Phi]])^(2)+ y*(Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)+(x + y*I)*(Cos[\[Theta]])^(2))^(1/ 2)], {\[Theta], 0, Pi}, GenerateConditions->None], {\[Phi], 0, 2*Pi}, GenerateConditions->None] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.23.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRG@{x}{y}{z} = \frac{1}{4}\int_{0}^{\infty}\frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\*\left(\frac{x}{t+x}+\frac{y}{t+y}+\frac{z}{t+z}\right)t\diff{t}} Error Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == Divide[1,4]*Integrate[Divide[1,Sqrt[t + x]*Sqrt[t + y]*Sqrt[t +(x + y*I)]]*(Divide[x,t + x]+Divide[y,t + y]+Divide[x + y*I,t +(x + y*I)])* t, {t, 0, Infinity}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
19.24.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@@{4} \leq \sqrt{z}\CarlsonsymellintRF@{0}{y}{z}+\ln@@{\sqrt{y/z}}} ln(4) <= sqrt(x + y*I)*0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)+ ln(sqrt(y/(x + y*I))) Log[4] <= Sqrt[x + y*I]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+ Log[Sqrt[y/(x + y*I)]] Error Failure -
Failed [9 / 9]
{LessEqual[1.3862943611198906, Complex[0.5672499697282593, -1.7874177081206242]] <- {Rule[x, 1.5], Rule[y, 1.5]}
LessEqual[1.3862943611198906, Complex[0.6277320470267476, -0.9602476282953896]] <- {Rule[x, 1.5], Rule[y, 0.5]}
19.24.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{z}\CarlsonsymellintRF@{0}{y}{z}+\ln@@{\sqrt{y/z}} \leq \tfrac{1}{2}\pi} sqrt(x + y*I)*0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)+ ln(sqrt(y/(x + y*I))) <= (1)/(2)*Pi Sqrt[x + y*I]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+ Log[Sqrt[y/(x + y*I)]] <= Divide[1,2]*Pi Error Failure -
Failed [9 / 9]
{LessEqual[Complex[0.5672499697282593, -1.7874177081206242], 1.5707963267948966] <- {Rule[x, 1.5], Rule[y, 1.5]}
LessEqual[Complex[0.6277320470267476, -0.9602476282953896], 1.5707963267948966] <- {Rule[x, 1.5], Rule[y, 0.5]}
19.24.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2} \leq z^{-1/2}\CarlsonsymellintRG@{0}{y}{z}} Error Divide[1,2] <= (x + y*I)^(- 1/ 2)* Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) Missing Macro Error Failure -
Failed [9 / 9]
{LessEqual[0.5, Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]] <- {Rule[x, 1.5], Rule[y, 1.5]}
LessEqual[0.5, Plus[Complex[1.0897585107701309, 0.2919625251300463], Times[Complex[0.3515775842541431, 0.5688644810057831], Power[Plus[1.0, Times[Complex[-1.0, 0.5], Power[k, 2]]], Rational[1, 2]]]]] <- {Rule[x, 1.5], Rule[y, 0.5]}
19.24.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{-1/2}\CarlsonsymellintRG@{0}{y}{z} \leq \tfrac{1}{4}\pi} Error (x + y*I)^(- 1/ 2)* Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) <= Divide[1,4]*Pi Missing Macro Error Failure -
Failed [9 / 9]
{LessEqual[Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]], 0.7853981633974483] <- {Rule[x, 1.5], Rule[y, 1.5]}
LessEqual[Plus[Complex[1.0897585107701309, 0.2919625251300463], Times[Complex[0.3515775842541431, 0.5688644810057831], Power[Plus[1.0, Times[Complex[-1.0, 0.5], Power[k, 2]]], Rational[1, 2]]]], 0.7853981633974483] <- {Rule[x, 1.5], Rule[y, 0.5]}
19.24.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{y^{3/2}+z^{3/2}}{2}\right)^{2/3} \leq \frac{4}{\pi}\CarlsonsymellintRG@{0}{y^{2}}{z^{2}}} Error (Divide[(y)^(3/ 2)+(x + y*I)^(3/ 2),2])^(2/ 3) <= Divide[4,Pi]*Sqrt[(x + y*I)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(x + y*I)^(2)]]]^2]) Missing Macro Error Failure -
Failed [9 / 9]
{LessEqual[Complex[1.4250443092558214, 0.7875512141675095], Complex[2.850438542245679, 1.5730146161508307]] <- {Rule[x, 1.5], Rule[y, 1.5]}
LessEqual[Complex[1.0588191704631045, 0.29794136993360365], Complex[2.118851869395612, 0.5983245902184247]] <- {Rule[x, 1.5], Rule[y, 0.5]}
19.24.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{4}{\pi}\CarlsonsymellintRG@{0}{y^{2}}{z^{2}} \leq \left(\frac{y^{2}+z^{2}}{2}\right)^{1/2}} Error Divide[4,Pi]*Sqrt[(x + y*I)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(x + y*I)^(2)]]]^2]) <= (Divide[(y)^(2)+(x + y*I)^(2),2])^(1/ 2) Missing Macro Error Failure -
Failed [9 / 9]
{LessEqual[Complex[2.850438542245679, 1.5730146161508307], Complex[1.3491805799609005, 0.8338394553771318]] <- {Rule[x, 1.5], Rule[y, 1.5]}
LessEqual[Complex[2.118851869395612, 0.5983245902184247], Complex[1.112897508375995, 0.3369582528288897]] <- {Rule[x, 1.5], Rule[y, 0.5]}
19.24.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\sqrt{p}}(2yz+yp+zp)^{-1/2} \leq \frac{4}{3\pi}\CarlsonsymellintRJ@{0}{y}{z}{p}} Error Divide[2,Sqrt[p]]*(2*y*(x + y*I)+ y*p +(x + y*I)*p)^(- 1/ 2) <= Divide[4,3*Pi]*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] Missing Macro Error Failure -
Failed [180 / 180]
{LessEqual[Complex[0.13508456755677706, -1.1829936015765863], Complex[-0.3213270063391195, -0.3051912044731223]] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[0.7797231369520263, -0.6247258696161743], Complex[-0.6706782382611747, 0.54526856836685]] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.24.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{4}{3\pi}\CarlsonsymellintRJ@{0}{y}{z}{p} \leq (yzp^{2})^{-3/8}} Error Divide[4,3*Pi]*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] <= (y*(x + y*I)*(p)^(2))^(- 3/ 8) Missing Macro Error Failure -
Failed [180 / 180]
{LessEqual[Complex[-0.3213270063391195, -0.3051912044731223], Complex[0.5136265917030035, 0.9609277658721954]] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[-0.6706782382611747, 0.54526856836685], Complex[0.8422602311268256, -0.6912251080442312]] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.24.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{a_{n}} \leq \frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}}} (1)/(a[n]) 0.5*int(1/(sqrt(t+0)*sqrt(t+a(a[0])^(2))*sqrt(t+g(g[0])^(2))), t = 0..infinity) Divide[1,Subscript[a, n]] EllipticF[ArcCos[Sqrt[0/g(Subscript[g, 0])^(2)]],(g(Subscript[g, 0])^(2)-a(Subscript[a, 0])^(2))/(g(Subscript[g, 0])^(2)-0)]/Sqrt[g(Subscript[g, 0])^(2)-0] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{LessEqual[Complex[1.7320508075688774, -0.9999999999999999], Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g, -1]]]]] <- {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[1.7320508075688774, -0.9999999999999999], Times[2.0, Power[Times[Complex[-0.4999999999999998, -0.8660254037844387], g], Rational[-1, 2]], EllipticK[Times[Complex[-1.9999999999999991, 3.464101615137755], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[-0.124
19.24.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}} \leq \frac{1}{g_{n}}} 0.5*int(1/(sqrt(t+0)*sqrt(t+a(a[0])^(2))*sqrt(t+g(g[0])^(2))), t = 0..infinity) <= (1)/(g[n]) EllipticF[ArcCos[Sqrt[0/g(Subscript[g, 0])^(2)]],(g(Subscript[g, 0])^(2)-a(Subscript[a, 0])^(2))/(g(Subscript[g, 0])^(2)-0)]/Sqrt[g(Subscript[g, 0])^(2)-0] <= Divide[1,Subscript[g, n]] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{LessEqual[Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g, -1]]]], Complex[1.7320508075688774, -0.9999999999999999]] <- {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g,
19.24#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{n+1} = (a_{n}+g_{n})/2} a[n + 1] = (a[n]+ g[n])/ 2 Subscript[a, n + 1] == (Subscript[a, n]+ Subscript[g, n])/ 2 Skipped - no semantic math Skipped - no semantic math - -
19.24#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle g_{n+1} = \sqrt{a_{n}g_{n}}} g[n + 1] = sqrt(a[n]*g[n]) Subscript[g, n + 1] == Sqrt[Subscript[a, n]*Subscript[g, n]] Skipped - no semantic math Skipped - no semantic math - -
19.24.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle L(a,b) = 8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}}} Error L*(a , b) == 8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2]) Missing Macro Error Failure - Error
19.24#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{0}\CarlsonsymellintRG@{x}{y}{0} > \tfrac{1}{8}\pi^{2}} Error EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]/Sqrt[0-x]*Sqrt[0-x]*(EllipticE[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+(Cot[ArcCos[Sqrt[x/0]]])^2*EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+Cot[ArcCos[Sqrt[x/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/0]]]^2]) > Divide[1,8]*(Pi)^(2) Missing Macro Error Failure -
Failed [18 / 18]
{Greater[Indeterminate, 1.2337005501361697] <- {Rule[x, 1.5], Rule[y, -1.5]}
Greater[Indeterminate, 1.2337005501361697] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.24#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{0}+2\CarlsonsymellintRG@{x}{y}{0} > \pi} Error EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]/Sqrt[0-x]+ 2*Sqrt[0-x]*(EllipticE[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+(Cot[ArcCos[Sqrt[x/0]]])^2*EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+Cot[ArcCos[Sqrt[x/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/0]]]^2]) > Pi Missing Macro Error Failure -
Failed [18 / 18]
{Greater[Indeterminate, 3.141592653589793] <- {Rule[x, 1.5], Rule[y, -1.5]}
Greater[Indeterminate, 3.141592653589793] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.24.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\,g_{1}^{2} \leq \frac{\CarlsonsymellintRG@{a_{0}^{2}}{g_{0}^{2}}{0}}{\CarlsonsymellintRF@{a_{0}^{2}}{g_{0}^{2}}{0}}} Error Divide[Sqrt[0-a(Subscript[a, 0])^(2)]*(EllipticE[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]],(0-g(Subscript[g, 0])^(2))/(0-a(Subscript[a, 0])^(2))]+(Cot[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]]])^2*EllipticF[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]],(0-g(Subscript[g, 0])^(2))/(0-a(Subscript[a, 0])^(2))]+Cot[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]]]^2]),EllipticF[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]],(0-g(Subscript[g, 0])^(2))/(0-a(Subscript[a, 0])^(2))]/Sqrt[0-a(Subscript[a, 0])^(2)]] Missing Macro Error Failure -
Failed [300 / 300]
{LessEqual[Complex[0.06250000000000001, 0.10825317547305482], Indeterminate] <- {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Complex[-0.06249999999999997, -0.10825317547305484], Indeterminate] <- {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.24.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\CarlsonsymellintRG@{a_{0}^{2}}{g_{0}^{2}}{0}}{\CarlsonsymellintRF@{a_{0}^{2}}{g_{0}^{2}}{0}} \leq \frac{1}{2}\,a_{1}^{2}} Error Divide[Sqrt[0-a(Subscript[a, 0])^(2)]*(EllipticE[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]],(0-g(Subscript[g, 0])^(2))/(0-a(Subscript[a, 0])^(2))]+(Cot[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]]])^2*EllipticF[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]],(0-g(Subscript[g, 0])^(2))/(0-a(Subscript[a, 0])^(2))]+Cot[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]]]^2]),EllipticF[ArcCos[Sqrt[a(Subscript[a, 0])^(2)/0]],(0-g(Subscript[g, 0])^(2))/(0-a(Subscript[a, 0])^(2))]/Sqrt[0-a(Subscript[a, 0])^(2)]] <= Divide[1,2]*(Subscript[a, 1])^(2) Missing Macro Error Failure -
Failed [300 / 300]
{LessEqual[Indeterminate, Complex[0.06250000000000001, 0.10825317547305482]] <- {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
LessEqual[Indeterminate, Complex[0.06250000000000001, 0.10825317547305482]] <- {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.24.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{3}{\sqrt{x}+\sqrt{y}+\sqrt{z}} \leq \CarlsonsymellintRF@{x}{y}{z}} (3)/(sqrt(x)+sqrt(y)+sqrt(x + y*I)) <= 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) Divide[3,Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]] <= EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Aborted Failure Error
Failed [18 / 18]
{LessEqual[Complex[1.0934408788539995, -0.2839050517129825], Complex[-0.16214470973156064, 0.6784437678906974]] <- {Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[0.7738030002696183, -0.11364498174072818], Complex[-0.28823404661462, -0.7809212115368181]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.24.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{z} \leq \frac{1}{(xyz)^{1/6}}} 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) <= (1)/((x*y*(x + y*I))^(1/ 6)) EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] <= Divide[1,(x*y*(x + y*I))^(1/ 6)] Aborted Failure Error
Failed [18 / 18]
{LessEqual[Complex[-0.16214470973156064, 0.6784437678906974], Complex[0.7120063770987297, -0.29492269789042613]] <- {Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[-0.28823404661462, -0.7809212115368181], Complex[0.7640769591692358, -0.10059264002361257]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.24.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{5}{\sqrt{x}+\sqrt{y}+\sqrt{z}+2\sqrt{p}}\right)^{3} \leq \CarlsonsymellintRJ@{x}{y}{z}{p}} Error (Divide[5,Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]+ 2*Sqrt[p]])^(3) <= 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] Missing Macro Error Failure -
Failed [180 / 180]
{LessEqual[Complex[1.3310335634294785, -1.2911719373315522], Complex[-0.2876927312707393, -0.327259429717868]] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[0.7477899794343462, -0.4392695700678081], Complex[-0.36602768453446033, 0.5058947820270108]] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.24.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{y}{z}{p} \leq (xyzp^{2})^{-3/10}} Error 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] <= (x*y*(x + y*I)*(p)^(2))^(- 3/ 10) Missing Macro Error Failure -
Failed [180 / 180]
{LessEqual[Complex[-0.2876927312707393, -0.327259429717868], Complex[0.6159220908806466, 0.7211521128667333]] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[-0.36602768453446033, 0.5058947820270108], Complex[0.8086249764673956, -0.49552602288885395]] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.24.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z}) \leq \CarlsonsymellintRG@{x}{y}{z}} Error Divide[1,3]*(Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]) <= Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) Missing Macro Error Failure -
Failed [18 / 18]
{LessEqual[Complex[0.8567842015469013, 0.22245863288189585], Times[Complex[0.8660254037844386, -0.8660254037844385], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[1.2650324920107643, 0.1857896575819671], Times[Complex[0.8660254037844386, 0.8660254037844385], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.24#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{z}\CarlsonsymellintRG@{x}{y}{z} > 1} Error EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) > 1 Missing Macro Error Failure -
Failed [18 / 18]
{Greater[Times[Complex[0.44712810031579164, 0.7279709757493625], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], 1.0] <- {Rule[x, 1.5], Rule[y, -1.5]}
Greater[Times[Complex[0.42667960094115687, -0.925915614148855], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]], 1.0] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.24#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{z}+\CarlsonsymellintRG@{x}{y}{z} > 2} Error EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]+ Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) > 2 Missing Macro Error Failure -
Failed [18 / 18]
{Greater[Plus[Complex[-0.16214470973156064, 0.6784437678906974], Times[Complex[0.8660254037844386, -0.8660254037844385], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]], 2.0] <- {Rule[x, 1.5], Rule[y, -1.5]}
Greater[Plus[Complex[-0.28823404661462, -0.7809212115368181], Times[Complex[0.8660254037844386, 0.8660254037844385], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]], 2.0] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.24.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{\tfrac{1}{2}(y+z)} \leq \CarlsonsymellintRF@{x}{y}{z}} Error 1/Sqrt[Divide[1,2]*(y +(x + y*I))]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(Divide[1,2]*(y +(x + y*I)))] <= EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Missing Macro Error Failure -
Failed [18 / 18]
{LessEqual[Complex[0.9580693887321644, 0.49152363500125495], Complex[-0.16214470973156064, 0.6784437678906974]] <- {Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[0.7805167095081702, -0.12346643314922054], Complex[-0.28823404661462, -0.7809212115368181]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.24.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{z} \leq \CarlsonellintRC@{x}{\sqrt{yz}}} Error EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] <= 1/Sqrt[Sqrt[y*(x + y*I)]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(Sqrt[y*(x + y*I)])] Missing Macro Error Failure -
Failed [18 / 18]
{LessEqual[Complex[-0.16214470973156064, 0.6784437678906974], Complex[0.7308447207533646, -0.31118718328917466]] <- {Rule[x, 1.5], Rule[y, -1.5]}
LessEqual[Complex[-0.28823404661462, -0.7809212115368181], Complex[0.765857524311696, -0.1031964554328576]] <- {Rule[x, 1.5], Rule[y, 1.5]}
19.25#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \CarlsonsymellintRF@{0}{{k^{\prime}}^{2}}{1}} EllipticK(k) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - (k)^(2))*sqrt(t+1)), t = 0..infinity) EllipticK[(k)^2] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]/Sqrt[1-0] Failure Failure Error
Failed [3 / 3]
{DirectedInfinity[] <- {Rule[k, 1]}
Complex[-0.16657773258291342, -1.0782578237498217] <- {Rule[k, 2]}
19.25#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} = 2\CarlsonsymellintRG@{0}{{k^{\prime}}^{2}}{1}} Error EllipticE[(k)^2] == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]) Missing Macro Error Failure -
Failed [3 / 3]
{-2.820197789027711 <- {Rule[k, 1]}
Complex[-4.864068276731299, 1.343854231387098] <- {Rule[k, 2]}
19.25#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k} = \tfrac{1}{3}{k^{\prime}}^{2}\left(\CarlsonsymellintRD@{0}{{k^{\prime}}^{2}}{1}+\CarlsonsymellintRD@{0}{1}{{k^{\prime}}^{2}}\right)} Error EllipticE[(k)^2] == Divide[1,3]*1 - (k)^(2)*(3*(EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/((1-1 - (k)^(2))*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)])/((1 - (k)^(2)-1)*(1 - (k)^(2)-0)^(1/2))) Missing Macro Error Failure -
Failed [3 / 3]
{DirectedInfinity[] <- {Rule[k, 1]}
Complex[7.885081986624734, -2.293856789051463] <- {Rule[k, 2]}
19.25#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k}-\compellintEk@{k} = k^{2}\compellintDk@{k}} EllipticK(k)- EllipticE(k) = (k)^(2)* (EllipticK(k) - EllipticE(k))/(k)^2 EllipticK[(k)^2]- EllipticE[(k)^2] == (k)^(2)* Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] Successful Failure -
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[0.3274322182097533, -1.81658404135269] <- {Rule[k, 2]}
19.25#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k^{2}\compellintDk@{k} = \tfrac{1}{3}k^{2}\CarlsonsymellintRD@{0}{{k^{\prime}}^{2}}{1}} Error (k)^(2)* Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] == Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/((1-1 - (k)^(2))*(1-0)^(1/2)) Missing Macro Error Failure -
Failed [3 / 3]
{DirectedInfinity[] <- {Rule[k, 1]}
Complex[-1.5165865988698335, -0.6055280137842299] <- {Rule[k, 2]}
19.25#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k} = \tfrac{1}{3}k^{2}{k^{\prime}}^{2}\CarlsonsymellintRD@{0}{1}{{k^{\prime}}^{2}}} Error EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2] == Divide[1,3]*(k)^(2)*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)])/((1 - (k)^(2)-1)*(1 - (k)^(2)-0)^(1/2)) Missing Macro Error Failure -
Failed [3 / 3]
{Indeterminate <- {Rule[k, 1]}
Complex[-2.3636107378197124, 2.0191745059478237] <- {Rule[k, 2]}
19.25.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{k}-\compellintKk@{k} = \tfrac{1}{3}\alpha^{2}\CarlsonsymellintRJ@{0}{{k^{\prime}}^{2}}{1}{1-\alpha^{2}}} Error EllipticPi[\[Alpha]^(2), (k)^2]- EllipticK[(k)^2] == Divide[1,3]*\[Alpha]^(2)* 3*(1-0)/(1-1 - \[Alpha]^(2))*(EllipticPi[(1-1 - \[Alpha]^(2))/(1-0),ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/Sqrt[1-0] Missing Macro Error Failure -
Failed [9 / 9]
{Indeterminate <- {Rule[k, 1], Rule[α, 1.5]}
Complex[-1.5241433161083033, 0.5547659663605348] <- {Rule[k, 2], Rule[α, 1.5]}
19.25.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintPik@{\alpha^{2}}{k} = -\tfrac{1}{3}(k^{2}/\alpha^{2})\CarlsonsymellintRJ@{0}{1-k^{2}}{1}{1-(k^{2}/\alpha^{2})}} Error EllipticPi[\[Alpha]^(2), (k)^2] == -Divide[1,3]*((k)^(2)/ \[Alpha]^(2))* 3*(1-0)/(1-1 -((k)^(2)/ \[Alpha]^(2)))*(EllipticPi[(1-1 -((k)^(2)/ \[Alpha]^(2)))/(1-0),ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/Sqrt[1-0] Missing Macro Error Failure - Skip - No test values generated
19.25.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} = \CarlsonsymellintRF@{c-1}{c-k^{2}}{c}} EllipticF(sin(phi), k) = 0.5*int(1/(sqrt(t+c - 1)*sqrt(t+c - (k)^(2))*sqrt(t+c)), t = 0..infinity) EllipticF[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1] Failure Failure
Failed [180 / 180]
180/180]: [[Float(undefined)+Float(undefined)*I <- {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}
3.854689052+3.461698034*I <- {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [180 / 180]
{Complex[2.0026000841930385, 1.2187088711714384] <- {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.4748265293714395, 0.7583435972865697] <- {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\incellintFk@{\phi}{k}}{k} = \tfrac{1}{3}k\CarlsonsymellintRD@{c-1}{c}{c-k^{2}}} Error D[EllipticF[\[Phi], (k)^2], k] == Divide[1,3]*k*3*(EllipticF[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)])/((c - (k)^(2)-c)*(c - (k)^(2)-c - 1)^(1/2)) Missing Macro Error Failure -
Failed [180 / 180]
{Indeterminate <- {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.4045300788217367, 0.4404710702025501] <- {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = 2\CarlsonsymellintRG@{c-1}{c-k^{2}}{c}-(c-1)\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\sqrt{(c-1)(c-k^{2})/c}} Error EllipticE[\[Phi], (k)^2] == 2*Sqrt[c-c - 1]*(EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]+(Cot[ArcCos[Sqrt[c - 1/c]]])^2*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]+Cot[ArcCos[Sqrt[c - 1/c]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[c - 1/c]]]^2])-(c - 1)* EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Sqrt[(c - 1)*(c - (k)^(2))/ c] Missing Macro Error Failure -
Failed [180 / 180]
{Complex[5.787775994567906, 4.022803158659452] <- {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[6.805668366738806, 3.968311704298834] <- {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = \CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\tfrac{1}{3}k^{2}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}} Error EllipticE[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2)) Missing Macro Error Failure -
Failed [180 / 180]
{Complex[3.5743811704478246, 0.7698502565730785] <- {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[3.9424508382496875, -1.017653751864599] <- {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = {k^{\prime}}^{2}\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}+\tfrac{1}{3}k^{2}{k^{\prime}}^{2}\CarlsonsymellintRD@{c-1}{c}{c-k^{2}}+k^{2}\sqrt{(c-1)/(c(c-k^{2}))}} Error EllipticE[\[Phi], (k)^2] == 1 - (k)^(2)*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]+Divide[1,3]*(k)^(2)*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)])/((c - (k)^(2)-c)*(c - (k)^(2)-c - 1)^(1/2))+ (k)^(2)*Sqrt[(c - 1)/(c*(c - (k)^(2)))] Missing Macro Error Failure -
Failed [20 / 20]
{Complex[-1.0687219916023158, 0.8637282710955538] <- {Rule[c, 1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.7724732696890155, 1.0672164584507502] <- {Rule[c, 1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.25.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = -\tfrac{1}{3}{k^{\prime}}^{2}\CarlsonsymellintRD@{c-k^{2}}{c}{c-1}+\sqrt{(c-k^{2})/(c(c-1))}} Error EllipticE[\[Phi], (k)^2] == -Divide[1,3]*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[c - (k)^(2)/c - 1]],(c - 1-c)/(c - 1-c - (k)^(2))]-EllipticE[ArcCos[Sqrt[c - (k)^(2)/c - 1]],(c - 1-c)/(c - 1-c - (k)^(2))])/((c - 1-c)*(c - 1-c - (k)^(2))^(1/2))+Sqrt[(c - (k)^(2))/(c*(c - 1))] Missing Macro Error Failure -
Failed [180 / 180]
{Complex[3.6312701919621486, -1.3602272606820804] <- {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.7754142926962797, -0.6029933704091625] <- {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\incellintEk@{\phi}{k}}{k} = -\tfrac{1}{3}k\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}} Error D[EllipticE[\[Phi], (k)^2], k] == -Divide[1,3]*k*3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2)) Missing Macro Error Failure -
Failed [180 / 180]
{Complex[1.571781086254786, -0.44885861459835996] <- {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.233812154439124, -0.8879986745755843] <- {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintDk@{\phi}{k} = \tfrac{1}{3}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}} Error Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4] == Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2)) Missing Macro Error Failure -
Failed [180 / 180]
{Complex[-1.571781086254786, 0.44885861459835996] <- {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.6083725296430629, 0.41279951787826946] <- {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{\alpha^{2}}{k}-\incellintFk@{\phi}{k} = \tfrac{1}{3}\alpha^{2}\CarlsonsymellintRJ@{c-1}{c-k^{2}}{c}{c-\alpha^{2}}} Error EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]- EllipticF[\[Phi], (k)^2] == Divide[1,3]*\[Alpha]^(2)* 3*(c-c - 1)/(c-c - \[Alpha]^(2))*(EllipticPi[(c-c - \[Alpha]^(2))/(c-c - 1),ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/Sqrt[c-c - 1] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[-0.9803588804354156, -0.9579910370435353] <- {Rule[c, -1.5], Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.6164275583611891, -0.384238714210872] <- {Rule[c, -1.5], Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{\phi}{\alpha^{2}}{k} = -\tfrac{1}{3}\omega^{2}\CarlsonsymellintRJ@{c-1}{c-k^{2}}{c}{c-\omega^{2}}+\sqrt{\frac{(c-1)(c-k^{2})}{(\alpha^{2}-1)(1-\omega^{2})}}\*\CarlsonellintRC@{c(\alpha^{2}-1)(1-\omega^{2})}{(\alpha^{2}-c)(c-\omega^{2})}} Error EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == -Divide[1,3]*\[Omega]^(2)* 3*(c-c - 1)/(c-c - \[Omega]^(2))*(EllipticPi[(c-c - \[Omega]^(2))/(c-c - 1),ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/Sqrt[c-c - 1]+Sqrt[Divide[(c - 1)*(c - (k)^(2)),(\[Alpha]^(2)- 1)*(1 - \[Omega]^(2))]]* 1/Sqrt[(\[Alpha]^(2)- c)*(c - \[Omega]^(2))]*Hypergeometric2F1[1/2,1/2,3/2,1-(c*(\[Alpha]^(2)- 1)*(1 - \[Omega]^(2)))/((\[Alpha]^(2)- c)*(c - \[Omega]^(2)))] Missing Macro Error Aborted -
Failed [300 / 300]
{Complex[-0.11631142199526823, 0.9703799109463437] <- {Rule[c, -1.5], Rule[k, 3], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, -2]}
Complex[-0.11631142199526823, 0.9703799109463437] <- {Rule[c, -1.5], Rule[k, 3], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, 2]}
19.25.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{\phi}{k} = \CarlsonsymellintRF@{x}{y}{z}} EllipticF(sin(phi), k) = 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) EllipticF[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Aborted Failure
Failed [300 / 300]
300/300]: [[2.547570015-.6488873983*I <- {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 1}
2.209888328-.6080126261*I <- {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 2}
Failed [300 / 300]
{Complex[0.5939484671297026, -0.40701440305540804] <- {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.5587134153531784, -0.34669285510288844] <- {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x,y,z) = (c-1,c-k^{2},c)} (x , y ,(x + y*I)) = (c - 1 , c - (k)^(2), c) (x , y ,(x + y*I)) == (c - 1 , c - (k)^(2), c) Skipped - no semantic math Skipped - no semantic math - -
19.25#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi = \acos@@{\sqrt{\ifrac{x}{z}}}} phi = arccos(sqrt((x)/(x + y*I))) \[Phi] == ArcCos[Sqrt[Divide[x,x + y*I]]] Failure Failure
Failed [180 / 180]
180/180]: [[.806272406e-1+.9406867936*I <- {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2}
.806272406e-1+.593132064e-1*I <- {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = 3/2}
Failed [180 / 180]
{Complex[-0.35238546150522904, 0.6906867935097715] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.0353981633974483, 0.8736994954019909] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.25#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \acos@@{\sqrt{\ifrac{x}{z}}} = \asin@@{\sqrt{\ifrac{(z-x)}{z}}}} arccos(sqrt((x)/(x + y*I))) = arcsin(sqrt(((x + y*I)- x)/(x + y*I))) ArcCos[Sqrt[Divide[x,x + y*I]]] == ArcSin[Sqrt[Divide[(x + y*I)- x,x + y*I]]] Failure Failure Successful [Tested: 18] Successful [Tested: 18]
19.25#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k = \sqrt{\frac{z-y}{z-x}}} k = sqrt(((x + y*I)- y)/((x + y*I)- x)) k == Sqrt[Divide[(x + y*I)- y,(x + y*I)- x]] Skipped - no semantic math Skipped - no semantic math - -
19.25#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha^{2} = \frac{z-p}{z-x}} (alpha)^(2) = ((x + y*I)- p)/((x + y*I)- x) \[Alpha]^(2) == Divide[(x + y*I)- p,(x + y*I)- x] Skipped - no semantic math Skipped - no semantic math - -
19.25.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z-x)^{1/2}\CarlsonsymellintRF@{x}{y}{z} = \incellintFk@{\phi}{k}} ((x + y*I)- x)^(1/ 2)* 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = EllipticF(sin(phi), k) ((x + y*I)- x)^(1/ 2)* EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == EllipticF[\[Phi], (k)^2] Aborted Failure
Failed [300 / 300]
300/300]: [[-1.167656510+1.966567574*I <- {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 1}
-.8299748231+1.925692802*I <- {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 2}
Failed [300 / 300]
{Complex[0.015324342917649614, 0.4565416109140732] <- {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.050559394694173865, 0.3962200629615536] <- {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z-x)^{3/2}\CarlsonsymellintRD@{x}{y}{z} = (3/k^{2})(\incellintFk@{\phi}{k}-\incellintEk@{\phi}{k})} Error ((x + y*I)- x)^(3/ 2)* 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == (3/ (k)^(2))*(EllipticF[\[Phi], (k)^2]- EllipticE[\[Phi], (k)^2]) Missing Macro Error Failure -
Failed [300 / 300]
{Complex[-0.9041684186949032, 0.18989946051507803] <- {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.8729885067685752, 0.19149534336253457] <- {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z-x)^{3/2}\CarlsonsymellintRJ@{x}{y}{z}{p} = (3/\alpha^{2}){(\incellintPik@{\phi}{\alpha^{2}}{k}-\incellintFk@{\phi}{k})}} Error ((x + y*I)- x)^(3/ 2)* 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == (3/ \[Alpha]^(2))*(EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]- EllipticF[\[Phi], (k)^2]) Missing Macro Error Failure -
Failed [300 / 300]
{Complex[-8.905365206673954*^-4, 0.6653826564189609] <- {Rule[k, 1], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.030816807002235325, 0.6810951786851601] <- {Rule[k, 2], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2(z-x)^{-1/2}\CarlsonsymellintRG@{x}{y}{z} = \incellintEk@{\phi}{k}+(\cot@@{\phi})^{2}\incellintFk@{\phi}{k}+(\cot@@{\phi})\sqrt{1-k^{2}\sin^{2}@@{\phi}}} Error 2*((x + y*I)- x)^(- 1/ 2)* Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == EllipticE[\[Phi], (k)^2]+(Cot[\[Phi]])^(2)* EllipticF[\[Phi], (k)^2]+(Cot[\[Phi]])*Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[-1.8997799949200251, -0.4031557744461449] <- {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-3.0701379688219372, -2.1411109504853227] <- {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.25#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Delta(\mathrm{n,d}) = k^{2}} Delta*(n , d) = (k)^(2) \[CapitalDelta]*(n , d) == (k)^(2) Skipped - no semantic math Skipped - no semantic math - -
19.25#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Delta(\mathrm{d,c}) = {k^{\prime}}^{2}} Delta*(d , c) = 1 - (k)^(2) \[CapitalDelta]*(d , c) == 1 - (k)^(2) Skipped - no semantic math Skipped - no semantic math - -
19.25#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Delta(\mathrm{n,c}) = 1} Delta*(n , c) = 1 \[CapitalDelta]*(n , c) == 1 Skipped - no semantic math Skipped - no semantic math - -
19.25.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiamk@{u}{k} = \CarlsonellintRC@{\Jacobiellcsk^{2}@{u}{k}}{\Jacobiellnsk^{2}@{u}{k}}} Error JacobiAmplitude[u, Power[k, 2]] == 1/Sqrt[(JacobiNS[u, (k)^2])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((JacobiCS[u, (k)^2])^(2))/((JacobiNS[u, (k)^2])^(2))] Missing Macro Error Aborted -
Failed [18 / 30]
{Complex[-0.5428587296705786, 0.8636075147962846] <- {Rule[k, 1], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
Complex[-0.6732377468613371, 0.8494366739388763] <- {Rule[k, 2], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.25.E31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle u = \CarlsonsymellintRF@{\genJacobiellk{p}{s}^{2}@{u}{k}}{\genJacobiellk{q}{s}^{2}@{u}{k}}{\genJacobiellk{r}{s}^{2}@{u}{k}}} u = 0.5*int(1/(sqrt(t+genJacobiellk(p)*(s)^(2)* u*k)*sqrt(t+genJacobiellk(q)*(s)^(2)* u*k)*sqrt(t+genJacobiellk(r)*(s)^(2)* u*k)), t = 0..infinity) u == EllipticF[ArcCos[Sqrt[genJacobiellk(p)*(s)^(2)* u*k/genJacobiellk(r)*(s)^(2)* u*k]],(genJacobiellk(r)*(s)^(2)* u*k-genJacobiellk(q)*(s)^(2)* u*k)/(genJacobiellk(r)*(s)^(2)* u*k-genJacobiellk(p)*(s)^(2)* u*k)]/Sqrt[genJacobiellk(r)*(s)^(2)* u*k-genJacobiellk(p)*(s)^(2)* u*k] Aborted Failure Error
Failed [300 / 300]
{Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[Complex[-0.78471422644353, -0.9906313764027224], Power[Times[Complex[-1.7426678688862403, -1.3308892896287465], genJacobiellk], Rational[-1, 2]]]] <- {Rule[k, 1], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[s, -1.5], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[Complex[-0.3766936106342851, -1.225388931598258], Power[Times[Complex[-3.4853357377724805, -2.661778579257493], genJacobiellk], Rational[-1, 2]]]] <- {Rule[k, 2], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[s, -1.5], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Ration
19.26.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRF@{x}{y}{z}} 0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity)+ 0.5*int(1/(sqrt(t+x + mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity) = 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{Complex[0.6992255245511445, -1.8246422705609677] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.2162365888422955, -0.7585970772170993] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.26.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x+\mu = \lambda^{-2}\left(\sqrt{(x+\lambda)yz}+\sqrt{x(y+\lambda)(z+\lambda)}\right)^{2}} x + mu = (lambda)^(- 2)*(sqrt((x + lambda)* y*(x + y*I))+sqrt(x*(y + lambda)*((x + y*I)+ lambda)))^(2) x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[(x + \[Lambda])* y*(x + y*I)]+Sqrt[x*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2) Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\xi,\eta,\zeta) = (x+\lambda,y+\lambda,z+\lambda)} (xi , eta , zeta) = (x + lambda , y + lambda ,(x + y*I)+ lambda) (\[Xi], \[Eta], \[Zeta]) == (x + \[Lambda], y + \[Lambda],(x + y*I)+ \[Lambda]) Skipped - no semantic math Skipped - no semantic math - -
19.26.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mu = \lambda^{-2}\left(\sqrt{xyz}+\sqrt{(x+\lambda)(y+\lambda)(z+\lambda)}\right)^{2}-\lambda-x-y-z} mu = (lambda)^(- 2)*(sqrt(x*y*(x + y*I))+sqrt((x + lambda)*(y + lambda)*((x + y*I)+ lambda)))^(2)- lambda - x - y -(x + y*I) \[Mu] == \[Lambda]^(- 2)*(Sqrt[x*y*(x + y*I)]+Sqrt[(x + \[Lambda])*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2)- \[Lambda]- x - y -(x + y*I) Skipped - no semantic math Skipped - no semantic math - -
19.26.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\lambda\mu-xy-xz-yz)^{2} = 4xyz(\lambda+\mu+x+y+z)} (lambda*mu - x*y - x*(x + y*I)- y*(x + y*I))^(2) = 4*x*y*(x + y*I)*(lambda + mu + x + y +(x + y*I)) (\[Lambda]*\[Mu]- x*y - x*(x + y*I)- y*(x + y*I))^(2) == 4*x*y*(x + y*I)*(\[Lambda]+ \[Mu]+ x + y +(x + y*I)) Skipped - no semantic math Skipped - no semantic math - -
19.26.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRD@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRD@{x}{y}{z}-\frac{3}{\sqrt{z(z+\lambda)(z+\mu)}}} Error 3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/(((x + y*I)+ \[Mu]-y + \[Mu])*((x + y*I)+ \[Mu]-x + \[Mu])^(1/2)) == 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))-Divide[3,Sqrt[(x + y*I)*((x + y*I)+ \[Lambda])*((x + y*I)+ \[Mu])]] Missing Macro Error Aborted -
Failed [300 / 300]
{Complex[-0.4984590390126629, 1.2092907867192135] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.01924185171185039, 1.9974068077017313] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.26.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}+2\CarlsonsymellintRG@{x+\mu}{y+\mu}{z+\mu} = 2\CarlsonsymellintRG@{x}{y}{z}+\lambda\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\mu\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu}+\sqrt{\lambda+\mu+x+y+z}} Error 2*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])+ 2*Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]*(EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+(Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]^2]) == 2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2])+ \[Lambda]*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ \[Mu]*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]+Sqrt[\[Lambda]+ \[Mu]+ x + y +(x + y*I)] Missing Macro Error Aborted -
Failed [300 / 300]
{Plus[Complex[-2.0898920996046204, 0.6803615706262403], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[4.184639587172815, -1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[-1.182728387586514, 0.2705509888970101], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038]
19.26.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+\CarlsonsymellintRJ@{x+\mu}{y+\mu}{z+\mu}{p+\mu} = \CarlsonsymellintRJ@{x}{y}{z}{p}-3\CarlsonellintRC@{\gamma-\delta}{\gamma}} Error 3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*((x + y*I)+ \[Mu]-x + \[Mu])/((x + y*I)+ \[Mu]-p + \[Mu])*(EllipticPi[((x + y*I)+ \[Mu]-p + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu]),ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[6.482970499990588, -0.8807575715831795] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[7.020988185402777, -1.8389880807014276] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</code
19.26#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \gamma = p(p+\lambda)(p+\mu)} gamma = p*(p + lambda)*(p + mu) \[Gamma] == p*(p + \[Lambda])*(p + \[Mu]) Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \delta = (p-x)(p-y)(p-z)} delta = (p - x)*(p - y)*(p -(x + y*I)) \[Delta] == (p - x)*(p - y)*(p -(x + y*I)) Skipped - no semantic math Skipped - no semantic math - -
19.26.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x+\lambda}{y+\lambda}+\CarlsonellintRC@{x+\mu}{y+\mu} = \CarlsonellintRC@{x}{y}} Error 1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])]+ 1/Sqrt[y + \[Mu]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Mu])/(y + \[Mu])] == 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[1.7722794006718585, -0.740880873447254] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.579678795390187, -0.7154745309495683] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.26#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x+\mu = \lambda^{-2}(\sqrt{x+\lambda}y+\sqrt{x}(y+\lambda))^{2}} x + mu = (lambda)^(- 2)*(sqrt(x + lambda)*y +sqrt(x)*(y + lambda))^(2) x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[x + \[Lambda]]*y +Sqrt[x]*(y + \[Lambda]))^(2) Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y+\mu = (y(y+\lambda)/\lambda^{2})(\sqrt{x}+\sqrt{x+\lambda})^{2}} y + mu = (y*(y + lambda)/ (lambda)^(2))*(sqrt(x)+sqrt(x + lambda))^(2) y + \[Mu] == (y*(y + \[Lambda])/ \[Lambda]^(2))*(Sqrt[x]+Sqrt[x + \[Lambda]])^(2) Skipped - no semantic math Skipped - no semantic math - -
19.26.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{\alpha^{2}}{\alpha^{2}-\theta}+\CarlsonellintRC@{\beta^{2}}{\beta^{2}-\theta} = \CarlsonellintRC@{\sigma^{2}}{\sigma^{2}-\theta}} Error 1/Sqrt[\[Alpha]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Alpha]^(2)- \[Theta])]+ 1/Sqrt[\[Beta]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta]^(2))/(\[Beta]^(2)- \[Theta])] == 1/Sqrt[\[Sigma]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Sigma]^(2))/(\[Sigma]^(2)- \[Theta])] Missing Macro Error Aborted - Successful [Tested: 2]
19.26.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (p-y)\CarlsonellintRC@{x}{p}+(q-y)\CarlsonellintRC@{x}{q} = (\eta-\xi)\CarlsonellintRC@{\xi}{\eta}} Error (p - y)* 1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)]+(q - y)* 1/Sqrt[q]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(q)] == (\[Eta]- \[Xi])* 1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])] Missing Macro Error Failure -
Failed [300 / 300]
{Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-3.0971074607887266, 1.6817857583573725] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.26#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (p-x)(q-x) = (y-x)^{2}} (p - x)*(q - x) = (y - x)^(2) (p - x)*(q - x) == (y - x)^(2) Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \xi = y^{2}/x} xi = (y)^(2)/ x \[Xi] == (y)^(2)/ x Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta = pq/x} eta = p*q/ x \[Eta] == p*q/ x Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta-\xi = p+q-2y} eta - xi = p + q - 2*y \[Eta]- \[Xi] == p + q - 2*y Skipped - no semantic math Skipped - no semantic math - -
19.26.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{\lambda}{y+\lambda}{z+\lambda} = {\CarlsonsymellintRF@{0}{y}{z}-\CarlsonsymellintRF@{\mu}{y+\mu}{z+\mu},}} 0.5*int(1/(sqrt(t+lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)- 0.5*int(1/(sqrt(t+mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity), EllipticF[ArcCos[Sqrt[\[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-\[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-\[Lambda]] == EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]- EllipticF[ArcCos[Sqrt[\[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-\[Mu])]/Sqrt[(x + y*I)+ \[Mu]-\[Mu]], Error Failure - Error
19.26.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\alpha}\CarlsonellintRC@{\beta}{\alpha+\beta}+\sqrt{\beta}\CarlsonellintRC@{\alpha}{\alpha+\beta} = \pi/2} Error Sqrt[\[Alpha]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta])/(\[Alpha]+ \[Beta])]+Sqrt[\[Beta]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha])/(\[Alpha]+ \[Beta])] == Pi/ 2 Missing Macro Error Failure - Successful [Tested: 9]
19.26.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x}{y}{z} = 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}} 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = 2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == 2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]] Aborted Failure Skipped - Because timed out
Failed [180 / 180]
{Complex[-0.6992255245511445, 1.8246422705609677] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.7332476531334464, -0.3074481161267689] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.26.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda} = \CarlsonsymellintRF@{\frac{x+\lambda}{4}}{\frac{y+\lambda}{4}}{\frac{z+\lambda}{4}}} 2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+(x + lambda)/(4))*sqrt(t+(y + lambda)/(4))*sqrt(t+((x + y*I)+ lambda)/(4))), t = 0..infinity) 2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]] == EllipticF[ArcCos[Sqrt[Divide[x + \[Lambda],4]/Divide[(x + y*I)+ \[Lambda],4]]],(Divide[(x + y*I)+ \[Lambda],4]-Divide[y + \[Lambda],4])/(Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4])]/Sqrt[Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4]] Failure Failure Skipped - Because timed out
Failed [180 / 180]
{Complex[-1.1343270456997319, -2.101834604175173] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.07907692856233961, -0.3004487668798371] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.26.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lambda = \sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}\sqrt{x}} lambda = sqrt(x)*sqrt(y)+sqrt(y)*sqrt(x + y*I)+sqrt(x + y*I)*sqrt(x) \[Lambda] == Sqrt[x]*Sqrt[y]+Sqrt[y]*Sqrt[x + y*I]+Sqrt[x + y*I]*Sqrt[x] Skipped - no semantic math Skipped - no semantic math - -
19.26.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRD@{x}{y}{z} = 2\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\frac{3}{\sqrt{z}(z+\lambda)}} Error 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 2*3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+Divide[3,Sqrt[x + y*I]*((x + y*I)+ \[Lambda])] Missing Macro Error Failure -
Failed [180 / 180]
{Complex[0.4984590390126629, -1.2092907867192135] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.5295690158190058, -2.8195127867822802] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.26.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{x}{y}{z} = 4\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}-\lambda\CarlsonsymellintRF@{x}{y}{z}-\sqrt{x}-\sqrt{y}-\sqrt{z}} Error 2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == 4*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])- \[Lambda]*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Sqrt[x]-Sqrt[y]-Sqrt[x + y*I] Missing Macro Error Aborted -
Failed [180 / 180]
{Plus[Complex[2.330530943809637, 0.9206144902290859], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-4.184639587172815, 1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[2.3171140130573056, 0.42755423781462054], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Tim
19.26.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRJ@{x}{y}{z}{p} = 2\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+3\CarlsonellintRC@{\alpha^{2}}{\beta^{2}}} Error 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 2*3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*1/Sqrt[\[Beta]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Beta]^(2))] Missing Macro Error Failure -
Failed [300 / 300]
{Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.26#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha = p(\sqrt{x}+\sqrt{y}+\sqrt{z})+\sqrt{x}\sqrt{y}\sqrt{z}} alpha = p*(sqrt(x)+sqrt(y)+sqrt(x + y*I))+sqrt(x)*sqrt(y)*sqrt(x + y*I) \[Alpha] == p*(Sqrt[x]+Sqrt[y]+Sqrt[x + y*I])+Sqrt[x]*Sqrt[y]*Sqrt[x + y*I] Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \beta = \sqrt{p}(p+\lambda)} beta = sqrt(p)*(p + lambda) \[Beta] == Sqrt[p]*(p + \[Lambda]) Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \beta+\alpha = (\sqrt{p}+\sqrt{x})(\sqrt{p}+\sqrt{y})(\sqrt{p}+\sqrt{z})} beta + alpha = (sqrt(p)+sqrt(x))*(sqrt(p)+sqrt(y))*(sqrt(p)+sqrt(x + y*I)) \[Beta]+ \[Alpha] == (Sqrt[p]+Sqrt[x])*(Sqrt[p]+Sqrt[y])*(Sqrt[p]+Sqrt[x + y*I]) Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \beta^{2}-\alpha^{2} = (p-x)(p-y)(p-z)} (beta)^(2)- (alpha)^(2) = (p - x)*(p - y)*(p -(x + y*I)) \[Beta]^(2)- \[Alpha]^(2) == (p - x)*(p - y)*(p -(x + y*I)) Skipped - no semantic math Skipped - no semantic math - -
19.26.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z = (\xi\zeta+\eta\zeta-\xi\eta)^{2}/(4\xi\eta\zeta)} z = (xi*zeta + eta*zeta - xi*eta)^(2)/(4*xi*eta*zeta) z == (\[Xi]*\[Zeta]+ \[Eta]*\[Zeta]- \[Xi]*\[Eta])^(2)/(4*\[Xi]*\[Eta]*\[Zeta]) Skipped - no semantic math Skipped - no semantic math - -
19.26.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x}{y} = 2\CarlsonellintRC@{x+\lambda}{y+\lambda}} Error 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == 2*1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])] Missing Macro Error Failure -
Failed [1 / 1]
{Indeterminate <- {Rule[x, 0.5], Rule[y, 0.5], Rule[λ, 1.5]}
19.26.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay}} Error 1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] == 1/Sqrt[a*y]*Hypergeometric2F1[1/2,1/2,3/2,1-((a)^(2))/(a*y)] Missing Macro Error Aborted -
Failed [3 / 3]
{Indeterminate <- {Rule[a, 1.5], Rule[x, 1.5], Rule[y, 1.5]}
Indeterminate <- {Rule[a, 0.5], Rule[x, 0.5], Rule[y, 0.5]}
19.26.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{x^{2}}{x^{2}-\theta} = 2\CarlsonellintRC@{s^{2}}{s^{2}-\theta}} Error 1/Sqrt[(x)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((x)^(2)- \[Theta])] == 2*1/Sqrt[(s)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((s)^(2))/((s)^(2)- \[Theta])] Missing Macro Error Failure - Successful [Tested: 2]
19.27#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a = \tfrac{1}{2}(x+y)} a = (1)/(2)*(x + y) a == Divide[1,2]*(x + y) Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b = \tfrac{1}{2}(y+z)} b = (1)/(2)*(y +(x + y*I)) b == Divide[1,2]*(y +(x + y*I)) Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c = \tfrac{1}{3}(x+y+z)} c = (1)/(3)*(x + y +(x + y*I)) c == Divide[1,3]*(x + y +(x + y*I)) Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f = (xyz)^{1/3}} f = (x*y*(x + y*I))^(1/ 3) f == (x*y*(x + y*I))^(1/ 3) Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle g = (xy)^{1/2}} g = (x*y)^(1/ 2) g == (x*y)^(1/ 2) Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle h = (yz)^{1/2}} h = (y*(x + y*I))^(1/ 2) h == (y*(x + y*I))^(1/ 2) Skipped - no semantic math Skipped - no semantic math - -
19.28.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}} int((t)^(sigma - 1)* 0.5*int(1/(sqrt(t+0)*sqrt(t+t)*sqrt(t+1)), t = 0..infinity), t = 0..1) = (1)/(2)*(Beta(sigma, (1)/(2)))^(2) Integrate[(t)^(\[Sigma]- 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]/Sqrt[1-0], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(Beta[\[Sigma], Divide[1,2]])^(2) Failure Aborted
Failed [10 / 10]
10/10]: [[Float(undefined)+1.162857938*I <- {sigma = 1/2*3^(1/2)+1/2*I}
Float(undefined)+.9984297790*I <- {sigma = -1/2+1/2*I*3^(1/2)}
Skipped - Because timed out
19.28.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}} Error Integrate[(t)^(\[Sigma]- 1)* Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]), {t, 0, 1}, GenerateConditions->None] == Divide[\[Sigma],4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2) Missing Macro Error Aborted - Skipped - Because timed out
19.28.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}} Error Integrate[(t)^(\[Sigma]- 1)*(1 - t)* 3*(EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)])/((1-t)*(1-0)^(1/2)), {t, 0, 1}, GenerateConditions->None] == Divide[3,4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2) Missing Macro Error Aborted - Skipped - Because timed out
19.28.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}} Error Integrate[3*(EllipticF[ArcCos[Sqrt[x/t]],(t-y)/(t-x)]-EllipticE[ArcCos[Sqrt[x/t]],(t-y)/(t-x)])/((t-y)*(t-x)^(1/2)), {t, (x + y*I), Infinity}, GenerateConditions->None] == 6*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] Missing Macro Error Aborted - Skipped - Because timed out
19.28.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\CarlsonsymellintRD@{x}{y}{v^{2}z+(1-v^{2})p}\diff{v} = \CarlsonsymellintRJ@{x}{y}{z}{p}} Error Integrate[3*(EllipticF[ArcCos[Sqrt[x/(v)^(2)*(x + y*I)+(1 - (v)^(2))* p]],((v)^(2)*(x + y*I)+(1 - (v)^(2))* p-y)/((v)^(2)*(x + y*I)+(1 - (v)^(2))* p-x)]-EllipticE[ArcCos[Sqrt[x/(v)^(2)*(x + y*I)+(1 - (v)^(2))* p]],((v)^(2)*(x + y*I)+(1 - (v)^(2))* p-y)/((v)^(2)*(x + y*I)+(1 - (v)^(2))* p-x)])/(((v)^(2)*(x + y*I)+(1 - (v)^(2))* p-y)*((v)^(2)*(x + y*I)+(1 - (v)^(2))* p-x)^(1/2)), {v, 0, 1}, GenerateConditions->None] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] Missing Macro Error Aborted - Skipped - Because timed out
19.28.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\CarlsonsymellintRJ@{x}{y}{z}{r^{2}}\diff{r} = \tfrac{3}{2}\pi\CarlsonsymellintRF@{xy}{xz}{yz}} Error Integrate[3*(x + y*I-x)/(x + y*I-(r)^(2))*(EllipticPi[(x + y*I-(r)^(2))/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x], {r, 0, Infinity}, GenerateConditions->None] == Divide[3,2]*Pi*EllipticF[ArcCos[Sqrt[x*y/y*(x + y*I)]],(y*(x + y*I)-x*(x + y*I))/(y*(x + y*I)-x*y)]/Sqrt[y*(x + y*I)-x*y] Missing Macro Error Aborted - Skipped - Because timed out
19.28.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\CarlsonsymellintRJ@{tx}{y}{z}{tp}\diff{t} = \frac{6}{\sqrt{p}}\CarlsonellintRC@{p}{x}\CarlsonsymellintRF@{0}{y}{z}} Error Integrate[3*(x + y*I-t*x)/(x + y*I-t*p)*(EllipticPi[(x + y*I-t*p)/(x + y*I-t*x),ArcCos[Sqrt[t*x/x + y*I]],(x + y*I-y)/(x + y*I-t*x)]-EllipticF[ArcCos[Sqrt[t*x/x + y*I]],(x + y*I-y)/(x + y*I-t*x)])/Sqrt[x + y*I-t*x], {t, 0, Infinity}, GenerateConditions->None] == Divide[6,Sqrt[p]]*1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(p)/(x)]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] Missing Macro Error Aborted - Skipped - Because timed out
19.28.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\pi/2}\CarlsonsymellintRF@{\sin^{2}@@{\theta}\cos^{2}@{x+y}}{\sin^{2}@@{\theta}\cos^{2}@{x-y}}{1}\diff{\theta} = \CarlsonsymellintRF@{0}{\cos^{2}@@{x}}{1}\CarlsonsymellintRF@{0}{\cos^{2}@@{y}}{1}} int(0.5*int(1/(sqrt(t+(sin(theta))^(2)* (cos(x + y))^(2))*sqrt(t+(sin(theta))^(2)* (cos(x - y))^(2))*sqrt(t+1)), t = 0..infinity), theta = 0..Pi/ 2) = 0.5*int(1/(sqrt(t+0)*sqrt(t+(cos(x))^(2))*sqrt(t+1)), t = 0..infinity)*0.5*int(1/(sqrt(t+0)*sqrt(t+(cos(y))^(2))*sqrt(t+1)), t = 0..infinity) Integrate[EllipticF[ArcCos[Sqrt[(Sin[\[Theta]])^(2)* (Cos[x + y])^(2)/1]],(1-(Sin[\[Theta]])^(2)* (Cos[x - y])^(2))/(1-(Sin[\[Theta]])^(2)* (Cos[x + y])^(2))]/Sqrt[1-(Sin[\[Theta]])^(2)* (Cos[x + y])^(2)], {\[Theta], 0, Pi/ 2}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[0/1]],(1-(Cos[x])^(2))/(1-0)]/Sqrt[1-0]*EllipticF[ArcCos[Sqrt[0/1]],(1-(Cos[y])^(2))/(1-0)]/Sqrt[1-0] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.28.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\CarlsonsymellintRF@{(ac+bd)^{2}}{(ad+bc)^{2}}{4abcd\cosh^{2}@@{z}}\diff{z} = \tfrac{1}{2}\CarlsonsymellintRF@{0}{a^{2}}{b^{2}}\CarlsonsymellintRF@{0}{c^{2}}{d^{2}}} int(0.5*int(1/(sqrt(t+(a*c + b*d)^(2))*sqrt(t+(a*d + b*c)^(2))*sqrt(t+4*a*b*c*d*(cosh(z))^(2))), t = 0..infinity), z = 0..infinity) = (1)/(2)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a)^(2))*sqrt(t+(b)^(2))), t = 0..infinity)*0.5*int(1/(sqrt(t+0)*sqrt(t+(c)^(2))*sqrt(t+(d)^(2))), t = 0..infinity) Integrate[EllipticF[ArcCos[Sqrt[(a*c + b*d)^(2)/4*a*b*c*d*(Cosh[z])^(2)]],(4*a*b*c*d*(Cosh[z])^(2)-(a*d + b*c)^(2))/(4*a*b*c*d*(Cosh[z])^(2)-(a*c + b*d)^(2))]/Sqrt[4*a*b*c*d*(Cosh[z])^(2)-(a*c + b*d)^(2)], {z, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]/Sqrt[(b)^(2)-0]*EllipticF[ArcCos[Sqrt[0/(d)^(2)]],((d)^(2)-(c)^(2))/((d)^(2)-0)]/Sqrt[(d)^(2)-0] Error Aborted - Skipped - Because timed out
19.29#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle X_{\alpha} = \sqrt{a_{\alpha}+b_{\alpha}x}} X[alpha] = sqrt(a[alpha]+ b[alpha]*x) Subscript[X, \[Alpha]] == Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*x] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Y_{\alpha} = \sqrt{a_{\alpha}+b_{\alpha}y}} Y[alpha] = sqrt(a[alpha]+ b[alpha]*y) Subscript[Y, \[Alpha]] == Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*y] Skipped - no semantic math Skipped - no semantic math - -
19.29.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle d_{\alpha\beta} = a_{\alpha}b_{\beta}-a_{\beta}b_{\alpha}} d[alpha*beta] = a[alpha]*b[beta]- a[beta]*b[alpha] Subscript[d, \[Alpha]*\[Beta]] == Subscript[a, \[Alpha]]*Subscript[b, \[Beta]]- Subscript[a, \[Beta]]*Subscript[b, \[Alpha]] Skipped - no semantic math Skipped - no semantic math - -
19.29.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s(t) = \prod_{\alpha=1}^{4}\sqrt{a_{\alpha}+b_{\alpha}t}} s*(t) = product(sqrt(a[alpha]+ b[alpha]*t), alpha = 1..4) s*(t) == Product[Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t], {\[Alpha], 1, 4}, GenerateConditions->None] Skipped - no semantic math Skipped - no semantic math - -
19.29.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{\diff{t}}{s(t)} = 2\CarlsonsymellintRF@{U_{12}^{2}}{U_{13}^{2}}{U_{23}^{2}}} 0.5*int(1/(sqrt(t+U(U[12])^(2))*sqrt(t+U(U[13])^(2))*sqrt(t+U(U[23])^(2))), t = 0..infinity) EllipticF[ArcCos[Sqrt[U(Subscript[U, 12])^(2)/U(Subscript[U, 23])^(2)]],(U(Subscript[U, 23])^(2)-U(Subscript[U, 13])^(2))/(U(Subscript[U, 23])^(2)-U(Subscript[U, 12])^(2))]/Sqrt[U(Subscript[U, 23])^(2)-U(Subscript[U, 12])^(2)] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{\alpha\beta} = (X_{\alpha}X_{\beta}Y_{\gamma}Y_{\delta}+Y_{\alpha}Y_{\beta}X_{\gamma}X_{\delta})/(x-y)} U[alpha*beta] = (X[alpha]*X[beta]*Y[gamma]*Y[delta]+ Y[alpha]*Y[beta]*X[gamma]*X[delta])/(x - y) Subscript[U, \[Alpha]*\[Beta]] == (Subscript[X, \[Alpha]]*Subscript[X, \[Beta]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]]+ Subscript[Y, \[Alpha]]*Subscript[Y, \[Beta]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]])/(x - y) Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{\alpha\beta} = U_{\beta\alpha}} U[alpha*beta] = U[beta*alpha] Subscript[U, \[Alpha]*\[Beta]] == Subscript[U, \[Beta]*\[Alpha]] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{\alpha\beta}^{2}-U_{\alpha\gamma}^{2} = d_{\alpha\delta}d_{\beta\gamma}} (U[alpha*beta])^(2)- (U[alpha*gamma])^(2) = d[alpha*delta]*d[beta*gamma] (Subscript[U, \[Alpha]*\[Beta]])^(2)- (Subscript[U, \[Alpha]*\[Gamma]])^(2) == Subscript[d, \[Alpha]*\[Delta]]*Subscript[d, \[Beta]*\[Gamma]] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{\alpha\beta} = \sqrt{b_{\alpha}}\sqrt{b_{\beta}}Y_{\gamma}Y_{\delta}+Y_{\alpha}Y_{\beta}\sqrt{b_{\gamma}}\sqrt{b_{\delta}},} U[alpha*beta] = sqrt(b[alpha])*sqrt(b[beta])*Y[gamma]*Y[delta]+ Y[alpha]*Y[beta]*sqrt(b[gamma])*sqrt(b[delta]), Subscript[U, \[Alpha]*\[Beta]] == Sqrt[Subscript[b, \[Alpha]]]*Sqrt[Subscript[b, \[Beta]]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]]+ Subscript[Y, \[Alpha]]*Subscript[Y, \[Beta]]*Sqrt[Subscript[b, \[Gamma]]]*Sqrt[Subscript[b, \[Delta]]], Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{\alpha\beta} = X_{\alpha}X_{\beta}\sqrt{-b_{\gamma}}\sqrt{-b_{\delta}}+\sqrt{-b_{\alpha}}\sqrt{-b_{\beta}}X_{\gamma}X_{\delta}} U[alpha*beta] = X[alpha]*X[beta]*sqrt(- b[gamma])*sqrt(- b[delta])+sqrt(- b[alpha])*sqrt(- b[beta])*X[gamma]*X[delta] Subscript[U, \[Alpha]*\[Beta]] == Subscript[X, \[Alpha]]*Subscript[X, \[Beta]]*Sqrt[- Subscript[b, \[Gamma]]]*Sqrt[- Subscript[b, \[Delta]]]+Sqrt[- Subscript[b, \[Alpha]]]*Sqrt[- Subscript[b, \[Beta]]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]] Skipped - no semantic math Skipped - no semantic math - -
19.29.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{a_{\alpha}+b_{\alpha}t}{a_{\delta}+b_{\delta}t}\frac{\diff{t}}{s(t)} = \tfrac{2}{3}d_{\alpha\beta}d_{\alpha\gamma}\CarlsonsymellintRD@{U_{\alpha\beta}^{2}}{U_{\alpha\gamma}^{2}}{U_{\alpha\delta}^{2}}+\frac{2X_{\alpha}Y_{\alpha}}{X_{\delta}Y_{\delta}U_{\alpha\delta}}} Error Integrate[Divide[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t,Subscript[a, \[Delta]]+ Subscript[b, \[Delta]]*t]*Divide[1,s*(t)], {t, y, x}, GenerateConditions->None] == 3*(EllipticF[ArcCos[Sqrt[U(Subscript[U, \[Alpha]*\[Beta]])^(2)/U(Subscript[U, \[Alpha]*\[Delta]])^(2)]],(U(Subscript[U, \[Alpha]*\[Delta]])^(2)-U(Subscript[U, \[Alpha]*\[Gamma]])^(2))/(U(Subscript[U, \[Alpha]*\[Delta]])^(2)-U(Subscript[U, \[Alpha]*\[Beta]])^(2))]-EllipticE[ArcCos[Sqrt[U(Subscript[U, \[Alpha]*\[Beta]])^(2)/U(Subscript[U, \[Alpha]*\[Delta]])^(2)]],(U(Subscript[U, \[Alpha]*\[Delta]])^(2)-U(Subscript[U, \[Alpha]*\[Gamma]])^(2))/(U(Subscript[U, \[Alpha]*\[Delta]])^(2)-U(Subscript[U, \[Alpha]*\[Beta]])^(2))])/((U(Subscript[U, \[Alpha]*\[Delta]])^(2)-U(Subscript[U, \[Alpha]*\[Gamma]])^(2))*(U(Subscript[U, \[Alpha]*\[Delta]])^(2)-U(Subscript[U, \[Alpha]*\[Beta]])^(2))^(1/2))+Divide[2*Subscript[X, \[Alpha]]*Subscript[Y, \[Alpha]],Subscript[X, \[Delta]]*Subscript[Y, \[Delta]]*Subscript[U, \[Alpha]*\[Delta]]] Missing Macro Error Aborted - Skipped - Because timed out
19.29.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{a_{\alpha}+b_{\alpha}t}{a_{5}+b_{5}t}\frac{\diff{t}}{s(t)} = \frac{2}{3}\frac{d_{\alpha\beta}d_{\alpha\gamma}d_{\alpha\delta}}{d_{\alpha 5}}\CarlsonsymellintRJ@{U_{12}^{2}}{U_{13}^{2}}{U_{23}^{2}}{U_{\alpha 5}^{2}}+2\CarlsonellintRC@{S_{\alpha 5}^{2}}{Q_{\alpha 5}^{2}}} Error 3*(U(Subscript[U, 23])^(2)-U(Subscript[U, 12])^(2))/(U(Subscript[U, 23])^(2)-U(Subscript[U, \[Alpha]*5])^(2))*(EllipticPi[(U(Subscript[U, 23])^(2)-U(Subscript[U, \[Alpha]*5])^(2))/(U(Subscript[U, 23])^(2)-U(Subscript[U, 12])^(2)),ArcCos[Sqrt[U(Subscript[U, 12])^(2)/U(Subscript[U, 23])^(2)]],(U(Subscript[U, 23])^(2)-U(Subscript[U, 13])^(2))/(U(Subscript[U, 23])^(2)-U(Subscript[U, 12])^(2))]-EllipticF[ArcCos[Sqrt[U(Subscript[U, 12])^(2)/U(Subscript[U, 23])^(2)]],(U(Subscript[U, 23])^(2)-U(Subscript[U, 13])^(2))/(U(Subscript[U, 23])^(2)-U(Subscript[U, 12])^(2))])/Sqrt[U(Subscript[U, 23])^(2)-U(Subscript[U, 12])^(2)]1/Sqrt[Q(Subscript[Q, \[Alpha]*5])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(S(Subscript[S, \[Alpha]*5])^(2))/(Q(Subscript[Q, \[Alpha]*5])^(2))] Missing Macro Error Aborted - Skipped - Because timed out
19.29#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{\alpha 5}^{2} = U_{\alpha\beta}^{2}-\frac{d_{\alpha\gamma}d_{\alpha\delta}d_{\beta 5}}{d_{\alpha 5}}} (U[alpha*5])^(2) = (U[alpha*beta])^(2)-(d[alpha*gamma]*d[alpha*delta]*d[beta*5])/(d[alpha*5]) (Subscript[U, \[Alpha]*5])^(2) == (Subscript[U, \[Alpha]*\[Beta]])^(2)-Divide[Subscript[d, \[Alpha]*\[Gamma]]*Subscript[d, \[Alpha]*\[Delta]]*Subscript[d, \[Beta]*5],Subscript[d, \[Alpha]*5]] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S_{\alpha 5} = \frac{1}{x-y}\left(\frac{X_{\beta}X_{\gamma}X_{\delta}}{X_{\alpha}}Y_{5}^{2}+\frac{Y_{\beta}Y_{\gamma}Y_{\delta}}{Y_{\alpha}}X_{5}^{2}\right)} S[alpha*5] ((X[beta]*X[gamma]*X[delta])/(X[alpha])*Y(Y[5])^(2)+(Y[beta]*Y[gamma]*Y[delta])/(Y[alpha])*X(X[5])^(2)) Subscript[S, \[Alpha]*5] (Divide[Subscript[X, \[Beta]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]],Subscript[X, \[Alpha]]]*Y(Subscript[Y, 5])^(2)+Divide[Subscript[Y, \[Beta]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]],Subscript[Y, \[Alpha]]]*X(Subscript[X, 5])^(2)) Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q_{\alpha 5} = \frac{X_{5}Y_{5}}{X_{\alpha}Y_{\alpha}}U_{\alpha 5}} Q[alpha*5] = (X[5]*Y[5])/(X[alpha]*Y[alpha])*U[alpha*5] Subscript[Q, \[Alpha]*5] == Divide[Subscript[X, 5]*Subscript[Y, 5],Subscript[X, \[Alpha]]*Subscript[Y, \[Alpha]]]*Subscript[U, \[Alpha]*5] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S_{\alpha 5}^{2}-Q_{\alpha 5}^{2} = \frac{d_{\beta 5}d_{\gamma 5}d_{\delta 5}}{d_{\alpha 5}}} (S[alpha*5])^(2)- (Q[alpha*5])^(2) = (d[beta*5]*d[gamma*5]*d[delta*5])/(d[alpha*5]) (Subscript[S, \[Alpha]*5])^(2)- (Subscript[Q, \[Alpha]*5])^(2) == Divide[Subscript[d, \[Beta]*5]*Subscript[d, \[Gamma]*5]*Subscript[d, \[Delta]*5],Subscript[d, \[Alpha]*5]] Skipped - no semantic math Skipped - no semantic math - -
19.29.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{u}^{b}\sqrt{\frac{a-t}{(b-t)(t-c)^{3}}}\diff{t} = -\tfrac{2}{3}{(a-b)}{(b-u)}^{3/2}\CarlsonsymellintRD@@{(a-b)(u-c)}{(b-c)(a-u)}{(a-b)(b-c)}+\frac{2}{b-c}\sqrt{\frac{(a-u)(b-u)}{u-c}}} Error Integrate[Sqrt[Divide[a - t,(b - t)*(t - c)^(3)]], {t, u, b}, GenerateConditions->None] == -Divide[2,3]*(a - b)*(b - u)^(3/ 2)* 3*(EllipticF[ArcCos[Sqrt[(a - b)*(u - c)/(a - b)*(b - c)]],((a - b)*(b - c)-(b - c)*(a - u))/((a - b)*(b - c)-(a - b)*(u - c))]-EllipticE[ArcCos[Sqrt[(a - b)*(u - c)/(a - b)*(b - c)]],((a - b)*(b - c)-(b - c)*(a - u))/((a - b)*(b - c)-(a - b)*(u - c))])/(((a - b)*(b - c)-(b - c)*(a - u))*((a - b)*(b - c)-(a - b)*(u - c))^(1/2))+Divide[2,b - c]*Sqrt[Divide[(a - u)*(b - u),u - c]] Missing Macro Error Aborted - Skipped - Because timed out
19.29.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle I(\mathbf{m}) = \int_{y}^{x}\prod_{\alpha=1}^{h}(a_{\alpha}+b_{\alpha}t)^{-1/2}\prod_{j=1}^{n}(a_{j}+b_{j}t)^{m_{j}}\diff{t}} I*(m) = int(product((a[alpha]+ b[alpha]*t)^(- 1/ 2)* product((a[j]+ b[j]*t)^(m[j]), j = 1..n), alpha = 1..h), t = y..x) I*(m) == Integrate[Product[(Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t)^(- 1/ 2)* Product[(Subscript[a, j]+ Subscript[b, j]*t)^(Subscript[m, j]), {j, 1, n}, GenerateConditions->None], {\[Alpha], 1, h}, GenerateConditions->None], {t, y, x}, GenerateConditions->None] Aborted Aborted Error Skipped - Because timed out
19.29.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{j}I(\mathbf{e}_{l}-\mathbf{e}_{j}) = d_{lj}I(-\mathbf{e}_{j})+b_{l}I(\boldsymbol{{0}})} b[j]*I*(e[l]- e[j]) = d[l*j]*I*(- e[j])+ b[l]*I*(0) Subscript[b, j]*I*(Subscript[e, l]- Subscript[e, j]) == Subscript[d, l*j]*I*(- Subscript[e, j])+ Subscript[b, l]*I*(0) Skipped - no semantic math Skipped - no semantic math - -
19.29.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{\beta}b_{\gamma}I(\mathbf{e}_{\alpha}) = d_{\alpha\beta}d_{\alpha\gamma}I(-\mathbf{e}_{\alpha})+2b_{\alpha}\left(\frac{s(x)}{a_{\alpha}+b_{\alpha}x}-\frac{s(y)}{a_{\alpha}+b_{\alpha}y}\right)} b[beta]*b[gamma]*I*(e[alpha]) = d[alpha*beta]*d[alpha*gamma]*I*(- e[alpha])+ 2*b[alpha]*((s*(x))/(a[alpha]+ b[alpha]*x)-(s*(y))/(a[alpha]+ b[alpha]*y)) Subscript[b, \[Beta]]*Subscript[b, \[Gamma]]*I*(Subscript[e, \[Alpha]]) == Subscript[d, \[Alpha]*\[Beta]]*Subscript[d, \[Alpha]*\[Gamma]]*I*(- Subscript[e, \[Alpha]])+ 2*Subscript[b, \[Alpha]]*(Divide[s*(x),Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*x]-Divide[s*(y),Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*y]) Skipped - no semantic math Skipped - no semantic math - -
19.29.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s(t) = \prod_{\alpha=1}^{3}\sqrt{a_{\alpha}+b_{\alpha}t}} s*(t) = product(sqrt(a[alpha]+ b[alpha]*t), alpha = 1..3) s*(t) == Product[Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t], {\[Alpha], 1, 3}, GenerateConditions->None] Skipped - no semantic math Skipped - no semantic math - -
19.29.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{j}^{q}I(q\mathbf{e}_{l}) = \sum_{r=0}^{q}\binom{q}{r}b_{l}^{r}d_{lj}^{q-r}I(r\mathbf{e}_{j})} (b[j])^(q)*I*sum(binomial(q,r)*b(b[l])^(r)*d(d[l*j])^(q - r)*I*(r*e[j]), r = 0..q) (Subscript[b, j])^(q)*I*Sum[Binomial[q,r]*b(Subscript[b, l])^(r)*d(Subscript[d, l*j])^(q - r)*I*(r*Subscript[e, j]), {r, 0, q}, GenerateConditions->None] Failure Failure Error Skipped - Because timed out
19.29.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = \CarlsonsymellintRF@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}}} int((1)/(sqrt(Q[1]*(t)* Q[2]*(t))), t = y..x) = 0.5*int(1/(sqrt(t+(U)^(2)+ a[1]*b[2])*sqrt(t+(U)^(2)+ a[2]*b[1])*sqrt(t+(U)^(2))), t = 0..infinity) Integrate[Divide[1,Sqrt[Subscript[Q, 1]*(t)* Subscript[Q, 2]*(t)]], {t, y, x}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]/Sqrt[(U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]] Aborted Aborted Manual Skip! Skipped - Because timed out
19.29.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{t^{2}\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = \tfrac{1}{3}a_{1}a_{2}\CarlsonsymellintRD@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}}+(xy/U)} Error Integrate[Divide[(t)^(2),Sqrt[Subscript[Q, 1]*(t)* Subscript[Q, 2]*(t)]], {t, y, x}, GenerateConditions->None] == Divide[1,3]*Subscript[a, 1]*Subscript[a, 2]*3*(EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]-EllipticE[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])])/(((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])*((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])^(1/2))+(x*y/ U) Missing Macro Error Aborted - Skipped - Because timed out
19.29.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{\diff{t}}{t^{2}\sqrt{Q_{1}(t)Q_{2}(t)}} = \tfrac{1}{3}b_{1}b_{2}\CarlsonsymellintRD@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}}+(xyU)^{-1}} Error Integrate[Divide[1,(t)^(2)*Sqrt[Subscript[Q, 1]*(t)* Subscript[Q, 2]*(t)]], {t, y, x}, GenerateConditions->None] == Divide[1,3]*Subscript[b, 1]*Subscript[b, 2]*3*(EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]-EllipticE[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])])/(((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])*((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])^(1/2))+(x*y*U)^(- 1) Missing Macro Error Aborted - Skipped - Because timed out
19.29.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x^{2}-y^{2})U = x\sqrt{Q_{1}(y)Q_{2}(y)}+y\sqrt{Q_{1}(x)Q_{2}(x)}} ((x)^(2)- (y)^(2))* U = x*sqrt(Q[1]*(y)* Q[2]*(y))+ y*sqrt(Q[1]*(x)* Q[2]*(x)) ((x)^(2)- (y)^(2))* U == x*Sqrt[Subscript[Q, 1]*(y)* Subscript[Q, 2]*(y)]+ y*Sqrt[Subscript[Q, 1]*(x)* Subscript[Q, 2]*(x)] Skipped - no semantic math Skipped - no semantic math - -
19.29.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{\infty}\frac{\diff{t}}{\sqrt{(t^{2}+a^{2})(t^{2}-b^{2})}} = \CarlsonsymellintRF@{y^{2}+a^{2}}{y^{2}-b^{2}}{y^{2}}} int((1)/(sqrt(((t)^(2)+ (a)^(2))*((t)^(2)- (b)^(2)))), t = y..infinity) = 0.5*int(1/(sqrt(t+(y)^(2)+ (a)^(2))*sqrt(t+(y)^(2)- (b)^(2))*sqrt(t+(y)^(2))), t = 0..infinity) Integrate[Divide[1,Sqrt[((t)^(2)+ (a)^(2))*((t)^(2)- (b)^(2))]], {t, y, Infinity}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[(y)^(2)+ (a)^(2)/(y)^(2)]],((y)^(2)-(y)^(2)- (b)^(2))/((y)^(2)-(y)^(2)+ (a)^(2))]/Sqrt[(y)^(2)-(y)^(2)+ (a)^(2)] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = 4\CarlsonsymellintRF@{U}{U+D_{12}+V}{U+D_{12}-V}} int((1)/(sqrt(Q[1]*(t)* Q[2]*(t))), t = y..x) = 4*0.5*int(1/(sqrt(t+U)*sqrt(t+U + D[12]+ V)*sqrt(t+U + D[12]- V)), t = 0..infinity) Integrate[Divide[1,Sqrt[Subscript[Q, 1]*(t)* Subscript[Q, 2]*(t)]], {t, y, x}, GenerateConditions->None] == 4*EllipticF[ArcCos[Sqrt[U/U + Subscript[D, 12]- V]],(U + Subscript[D, 12]- V-U + Subscript[D, 12]+ V)/(U + Subscript[D, 12]- V-U)]/Sqrt[U + Subscript[D, 12]- V-U] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x-y)^{2}U = S_{1}S_{2}} (x - y)^(2)* U = S[1]*S[2] (x - y)^(2)* U == Subscript[S, 1]*Subscript[S, 2] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S_{j} = \left(\sqrt{Q_{j}(x)}+\sqrt{Q_{j}(y)}\right)^{2}-h_{j}(x-y)^{2}} S[j] = (sqrt(Q[j]*(x))+sqrt(Q[j]*(y)))^(2)- h[j]*(x - y)^(2) Subscript[S, j] == (Sqrt[Subscript[Q, j]*(x)]+Sqrt[Subscript[Q, j]*(y)])^(2)- Subscript[h, j]*(x - y)^(2) Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D_{jl} = 2f_{j}h_{l}+2h_{j}f_{l}-g_{j}g_{l}} D[j*l] = 2*f[j]*h[l]+ 2*h[j]*f[l]- g[j]*g[l] Subscript[D, j*l] == 2*Subscript[f, j]*Subscript[h, l]+ 2*Subscript[h, j]*Subscript[f, l]- Subscript[g, j]*Subscript[g, l] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V = \sqrt{D_{12}^{2}-D_{11}D_{22}}} V sqrt(D(D[12])^(2)- D[11]*D[22]) V Sqrt[D(Subscript[D, 12])^(2)- Subscript[D, 11]*Subscript[D, 22]] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S_{1} = (X_{1}Y_{2}+Y_{1}X_{2})^{2}} S[1] = (X[1]*Y[2]+ Y[1]*X[2])^(2) Subscript[S, 1] == (Subscript[X, 1]*Subscript[Y, 2]+ Subscript[Y, 1]*Subscript[X, 2])^(2) Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle X_{j} = \sqrt{a_{j}+b_{j}x}} X[j] = sqrt(a[j]+ b[j]*x) Subscript[X, j] == Sqrt[Subscript[a, j]+ Subscript[b, j]*x] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Y_{j} = \sqrt{a_{j}+b_{j}y}} Y[j] = sqrt(a[j]+ b[j]*y) Subscript[Y, j] == Sqrt[Subscript[a, j]+ Subscript[b, j]*y] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D_{12} = 2a_{1}a_{2}h_{2}+2b_{1}b_{2}f_{2}-(a_{1}b_{2}+a_{2}b_{1})g_{2}} D[12] = 2*a[1]*a[2]*h[2]+ 2*b[1]*b[2]*f[2]-(a[1]*b[2]+ a[2]*b[1])* g[2] Subscript[D, 12] == 2*Subscript[a, 1]*Subscript[a, 2]*Subscript[h, 2]+ 2*Subscript[b, 1]*Subscript[b, 2]*Subscript[f, 2]-(Subscript[a, 1]*Subscript[b, 2]+ Subscript[a, 2]*Subscript[b, 1])* Subscript[g, 2] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D_{11} = -(a_{1}b_{2}-a_{2}b_{1})^{2}} D[11] = -(a[1]*b[2]- a[2]*b[1])^(2) Subscript[D, 11] == -(Subscript[a, 1]*Subscript[b, 2]- Subscript[a, 2]*Subscript[b, 1])^(2) Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S_{1} = (X_{1}+Y_{1})^{2}} S[1] = (X[1]+ Y[1])^(2) Subscript[S, 1] == (Subscript[X, 1]+ Subscript[Y, 1])^(2) Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D_{12} = 2a_{1}h_{2}-b_{1}g_{2}} D[12] = 2*a[1]*h[2]- b[1]*g[2] Subscript[D, 12] == 2*Subscript[a, 1]*Subscript[h, 2]- Subscript[b, 1]*Subscript[g, 2] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D_{11} = -b_{1}^{2}} D[11] = - (b[1])^(2) Subscript[D, 11] == - (Subscript[b, 1])^(2) Skipped - no semantic math Skipped - no semantic math - -
19.29.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{\diff{t}}{\sqrt{t^{3}-a^{3}}} = 4\CarlsonsymellintRF@{U}{U-3a+2\sqrt{3}a}{U-3a-2\sqrt{3}a}} int((1)/(sqrt((t)^(3)- (a)^(3))), t = y..x) = 4*0.5*int(1/(sqrt(t+U)*sqrt(t+U - 3*a + 2*sqrt(3)*a)*sqrt(t+U - 3*a - 2*sqrt(3)*a)), t = 0..infinity) Integrate[Divide[1,Sqrt[(t)^(3)- (a)^(3)]], {t, y, x}, GenerateConditions->None] == 4*EllipticF[ArcCos[Sqrt[U/U - 3*a - 2*Sqrt[3]*a]],(U - 3*a - 2*Sqrt[3]*a-U - 3*a + 2*Sqrt[3]*a)/(U - 3*a - 2*Sqrt[3]*a-U)]/Sqrt[U - 3*a - 2*Sqrt[3]*a-U] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29#Ex29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x-y)^{2}U = (\sqrt{x-a}+\sqrt{y-a})^{2}\left((\xi+\eta)^{2}-(x-y)^{2}\right)} (x - y)^(2)* U = (sqrt(x - a)+sqrt(y - a))^(2)*((xi + eta)^(2)-(x - y)^(2)) (x - y)^(2)* U == (Sqrt[x - a]+Sqrt[y - a])^(2)*((\[Xi]+ \[Eta])^(2)-(x - y)^(2)) Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \xi = \sqrt{x^{2}+ax+a^{2}}} xi = sqrt((x)^(2)+ a*x + (a)^(2)) \[Xi] == Sqrt[(x)^(2)+ a*x + (a)^(2)] Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta = \sqrt{y^{2}+ay+a^{2}}} eta = sqrt((y)^(2)+ a*y + (a)^(2)) \[Eta] == Sqrt[(y)^(2)+ a*y + (a)^(2)] Skipped - no semantic math Skipped - no semantic math - -
19.29.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{\diff{t}}{\sqrt{Q(t^{2})}} = 2\CarlsonsymellintRF@{U}{U-g+2\sqrt{fh}}{U-g-2\sqrt{fh}}} int((1)/(sqrt(Q*((t)^(2)))), t = y..x) = 2*0.5*int(1/(sqrt(t+U)*sqrt(t+U - g + 2*sqrt(f*h))*sqrt(t+U - g - 2*sqrt(f*h))), t = 0..infinity) Integrate[Divide[1,Sqrt[Q*((t)^(2))]], {t, y, x}, GenerateConditions->None] == 2*EllipticF[ArcCos[Sqrt[U/U - g - 2*Sqrt[f*h]]],(U - g - 2*Sqrt[f*h]-U - g + 2*Sqrt[f*h])/(U - g - 2*Sqrt[f*h]-U)]/Sqrt[U - g - 2*Sqrt[f*h]-U] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29.E31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x-y)^{2}U = \left(\sqrt{Q(x^{2})}+\sqrt{Q(y^{2})}\right)^{2}-h(x^{2}-y^{2})^{2}} (x - y)^(2)* U = (sqrt(Q*((x)^(2)))+sqrt(Q*((y)^(2))))^(2)- h*((x)^(2)- (y)^(2))^(2) (x - y)^(2)* U == (Sqrt[Q*((x)^(2))]+Sqrt[Q*((y)^(2))])^(2)- h*((x)^(2)- (y)^(2))^(2) Skipped - no semantic math Skipped - no semantic math - -
19.29.E32 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{y}^{x}\frac{\diff{t}}{\sqrt{t^{4}+a^{4}}} = 2\CarlsonsymellintRF@{U}{U+2a^{2}}{U-2a^{2}}} int((1)/(sqrt((t)^(4)+ (a)^(4))), t = y..x) = 2*0.5*int(1/(sqrt(t+U)*sqrt(t+U + 2*(a)^(2))*sqrt(t+U - 2*(a)^(2))), t = 0..infinity) Integrate[Divide[1,Sqrt[(t)^(4)+ (a)^(4)]], {t, y, x}, GenerateConditions->None] == 2*EllipticF[ArcCos[Sqrt[U/U - 2*(a)^(2)]],(U - 2*(a)^(2)-U + 2*(a)^(2))/(U - 2*(a)^(2)-U)]/Sqrt[U - 2*(a)^(2)-U] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{Complex[0.06910876495694751, 1.480960979386122] <- {Rule[a, -1.5], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
Complex[1.3051585498245286, 1.480960979386122] <- {Rule[a, -1.5], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
19.29.E33 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x-y)^{2}U = \left(\sqrt{x^{4}+a^{4}}+\sqrt{y^{4}+a^{4}}\right)^{2}-(x^{2}-y^{2})^{2}} (x - y)^(2)* U = (sqrt((x)^(4)+ (a)^(4))+sqrt((y)^(4)+ (a)^(4)))^(2)-((x)^(2)- (y)^(2))^(2) (x - y)^(2)* U == (Sqrt[(x)^(4)+ (a)^(4)]+Sqrt[(y)^(4)+ (a)^(4)])^(2)-((x)^(2)- (y)^(2))^(2) Skipped - no semantic math Skipped - no semantic math - -
19.30#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x = a\sin@@{\phi}} x = a*sin(phi) x == a*Sin[\[Phi]] Failure Failure
Failed [180 / 180]
180/180]: [[2.788470502+.5063946946*I <- {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, x = 3/2}
1.788470502+.5063946946*I <- {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, x = 1/2}
Failed [180 / 180]
{Complex[2.1491827752870476, 0.34394646701016035] <- {Rule[a, -1.5], Rule[x, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.093555858156998, 0.6491787480429551] <- {Rule[a, -1.5], Rule[x, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.30#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y = b\cos@@{\phi}} y = b*cos(phi) y == b*Cos[\[Phi]] Failure Failure
Failed [108 / 108]
108/108]: [[-1.393894198 <- {b = -3/2, phi = 3/2, y = -3/2}
1.606105802 <- {b = -3/2, phi = 3/2, y = 3/2}
Failed [108 / 108]
{-1.3938941974984456 <- {Rule[b, -1.5], Rule[y, -1.5], Rule[ϕ, 1.5]}
-0.18362615716444086 <- {Rule[b, -1.5], Rule[y, -1.5], Rule[ϕ, 0.5]}
19.30.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s = a\int_{0}^{\phi}\sqrt{1-k^{2}\sin^{2}@@{\theta}}\diff{\theta}} s = a*int(sqrt(1 - (k)^(2)* (sin(theta))^(2)), theta = 0..phi) s == a*Integrate[Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)], {\[Theta], 0, \[Phi]}, GenerateConditions->None] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.30.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s/a = \incellintEk@{\phi}{k}} s/ a = EllipticE(sin(phi), k) s/ a == EllipticE[\[Phi], (k)^2] Failure Failure
Failed [300 / 300]
300/300]: [[.1410196655-.3375964631*I <- {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2, k = 1}
-.36391978e-1+.5433649104e-1*I <- {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2, k = 2}
Failed [300 / 300]
{Complex[0.5672114831419685, -0.22929764467344024] <- {Rule[a, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.5579190406370536, -0.16535187593702125] <- {Rule[a, -1.5], Rule[k, 2], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.30.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{\phi}{k} = {\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\tfrac{1}{3}k^{2}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}}} Error EllipticE[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2)) Missing Macro Error Failure Skip - symbolical successful subtest
Failed [180 / 180]
{Complex[3.5743811704478246, 0.7698502565730785] <- {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[3.9424508382496875, -1.017653751864599] <- {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.30#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k^{2} = 1-(b^{2}/a^{2})} (k)^(2) = 1 -((b)^(2)/ (a)^(2)) (k)^(2) == 1 -((b)^(2)/ (a)^(2)) Skipped - no semantic math Skipped - no semantic math - -
19.30#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c = \csc^{2}@@{\phi}} c = (csc(phi))^(2) c == (Csc[\[Phi]])^(2) Failure Failure
Failed [60 / 60]
60/60]: [[-2.359812877+.7993130071*I <- {c = -3/2, phi = 1/2*3^(1/2)+1/2*I}
-1.296085040-.8173084059*I <- {c = -3/2, phi = -1/2+1/2*I*3^(1/2)}
Failed [60 / 60]
{Complex[-3.841312467237177, 3.4490957612740374] <- {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.17530792640393877, -3.4502399957777015] <- {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.30.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle L(a,b) = 4a\compellintEk@{k}} L*(a , b) = 4*a*EllipticE(k) L*(a , b) == 4*a*EllipticE[(k)^2] Failure Failure
Failed [300 / 300]
300/300]: [[(.8660254040+.5000000000*I)*(-1.500000000, -1.500000000)+6.000000000 <- {L = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, k = 1}
(.8660254040+.5000000000*I)*(-1.500000000, -1.500000000)+2.437793319+8.063125386*I <- {L = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, k = 2}
Error
19.30.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 4a\compellintEk@{k} = 8a\CarlsonsymellintRG@{0}{b^{2}/a^{2}}{1}} Error 4*a*EllipticE[(k)^2] == 8*a*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-(b)^(2)/ (a)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-(b)^(2)/ (a)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]) Missing Macro Error Failure Skip - symbolical successful subtest
Failed [108 / 108]
{12.849555921538759 <- {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1]}
Complex[16.411762602778996, -8.063125388322588] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 2]}
19.30.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 8a\CarlsonsymellintRG@{0}{b^{2}/a^{2}}{1} = 8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}}} Error 8*a*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-(b)^(2)/ (a)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-(b)^(2)/ (a)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]) == 8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2]) Missing Macro Error Failure Skip - symbolical successful subtest
Failed [18 / 36]
{-37.69911184307752 <- {Rule[a, -1.5], Rule[b, -1.5]}
-37.69911184307752 <- {Rule[a, -1.5], Rule[b, 1.5]}
19.30.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}} = 8ab\CarlsonsymellintRG@{0}{a^{-2}}{b^{-2}}} Error 8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2]) == 8*a*b*Sqrt[(b)^(- 2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(- 2)]],((b)^(- 2)-(a)^(- 2))/((b)^(- 2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(- 2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(- 2)]],((b)^(- 2)-(a)^(- 2))/((b)^(- 2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(- 2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(- 2)]]]^2]) Missing Macro Error Failure Skip - symbolical successful subtest
Failed [18 / 36]
{37.69911184307752 <- {Rule[a, -1.5], Rule[b, 1.5]}
26.729786441110512 <- {Rule[a, -1.5], Rule[b, 0.5]}
19.30.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{s}{(1/k)} = \sqrt{a^{2}-b^{2}}\incellintFk@{\phi}{k}} subs( temp=(1/ k), diff( s, temp$(1) ) ) = sqrt((a)^(2)- (b)^(2))*EllipticF(sin(phi), k) (D[s, {temp, 1}]/.temp-> (1/ k)) == Sqrt[(a)^(2)- (b)^(2)]*EllipticF[\[Phi], (k)^2] Failure Failure Successful [Tested: 300]
Failed [20 / 300]
{Indeterminate <- {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, -2]}
Indeterminate <- {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, 2]}
19.30.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{a^{2}-b^{2}}\incellintFk@{\phi}{k} = \sqrt{a^{2}-b^{2}}\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}} sqrt((a)^(2)- (b)^(2))*EllipticF(sin(phi), k) = sqrt((a)^(2)- (b)^(2))*0.5*int(1/(sqrt(t+c - 1)*sqrt(t+c - (k)^(2))*sqrt(t+c)), t = 0..infinity) Sqrt[(a)^(2)- (b)^(2)]*EllipticF[\[Phi], (k)^2] == Sqrt[(a)^(2)- (b)^(2)]*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1] Error Failure Skip - symbolical successful subtest Skip - No test values generated
19.30#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x = a\sqrt{t+1}} x = a*sqrt(t + 1) x == a*Sqrt[t + 1] Skipped - no semantic math Skipped - no semantic math - -
19.30#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y = b\sqrt{t}} y = b*sqrt(t) y == b*Sqrt[t] Skipped - no semantic math Skipped - no semantic math - -
19.30.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s = \frac{1}{2}\int_{0}^{y^{2}/b^{2}}\sqrt{\frac{(a^{2}+b^{2})t+b^{2}}{t(t+1)}}\diff{t}} s = (1)/(2)*int(sqrt((((a)^(2)+ (b)^(2))* t + (b)^(2))/(t*(t + 1))), t = 0..(y)^(2)/ (b)^(2)) s == Divide[1,2]*Integrate[Sqrt[Divide[((a)^(2)+ (b)^(2))* t + (b)^(2),t*(t + 1)]], {t, 0, (y)^(2)/ (b)^(2)}, GenerateConditions->None] Failure Aborted
Failed [300 / 300]
300/300]: [[-3.149531120 <- {a = -3/2, b = -3/2, s = -3/2, y = -3/2}
-3.149531120 <- {a = -3/2, b = -3/2, s = -3/2, y = 3/2}
Skipped - Because timed out
19.30.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s = \tfrac{1}{2}I(\mathbf{e}_{1})} s = (1)/(2)*I*(e[1]) s == Divide[1,2]*I*(Subscript[e, 1]) Failure Failure
Failed [298 / 300]
298/300]: [[-1.750000000-.4330127020*I <- {I = 1/2*3^(1/2)+1/2*I, s = -3/2, e[1] = 1/2*3^(1/2)+1/2*I}
-1.066987298-.2500000002*I <- {I = 1/2*3^(1/2)+1/2*I, s = -3/2, e[1] = -1/2+1/2*I*3^(1/2)}
Failed [180 / 180]
{Complex[-1.375, -0.21650635094610968] <- {Rule[Complex[0, 1], 1], Rule[s, -1.5], Rule[Subscript[e, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.375, -0.21650635094610968] <- {Rule[Complex[0, 1], 2], Rule[s, -1.5], Rule[Subscript[e, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.30.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}I(\mathbf{e}_{1}) = -\tfrac{1}{3}a^{2}b^{2}\CarlsonsymellintRD@{r}{r+b^{2}+a^{2}}{r+b^{2}}+y\sqrt{\frac{r+b^{2}+a^{2}}{r+b^{2}}}} Error Divide[1,2]*I*(Subscript[e, 1]) == -Divide[1,3]*(a)^(2)* (b)^(2)* 3*(EllipticF[ArcCos[Sqrt[r/r + (b)^(2)]],(r + (b)^(2)-r + (b)^(2)+ (a)^(2))/(r + (b)^(2)-r)]-EllipticE[ArcCos[Sqrt[r/r + (b)^(2)]],(r + (b)^(2)-r + (b)^(2)+ (a)^(2))/(r + (b)^(2)-r)])/((r + (b)^(2)-r + (b)^(2)+ (a)^(2))*(r + (b)^(2)-r)^(1/2))+ y*Sqrt[Divide[r + (b)^(2)+ (a)^(2),r + (b)^(2)]] Missing Macro Error Failure Skip - symbolical successful subtest Skip - No test values generated
19.30.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r^{2} = 2a^{2}\cos@{2\theta}} (r)^(2) = 2*(a)^(2)* cos(2*theta) (r)^(2) == 2*(a)^(2)* Cos[2*\[Theta]] Failure Failure
Failed [108 / 108]
108/108]: [[6.704966234 <- {a = -3/2, r = -3/2, theta = 3/2}
-.181360376 <- {a = -3/2, r = -3/2, theta = 1/2}
Failed [108 / 108]
{6.704966234702004 <- {Rule[a, -1.5], Rule[r, -1.5], Rule[θ, 1.5]}
-0.18136037640662916 <- {Rule[a, -1.5], Rule[r, -1.5], Rule[θ, 0.5]}
19.30.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s = 2a^{2}\int_{0}^{r}\frac{\diff{t}}{\sqrt{4a^{4}-t^{4}}}} s = 2*(a)^(2)* int((1)/(sqrt(4*(a)^(4)- (t)^(4))), t = 0..r) s == 2*(a)^(2)* Integrate[Divide[1,Sqrt[4*(a)^(4)- (t)^(4)]], {t, 0, r}, GenerateConditions->None] Error Failure -
Failed [208 / 216]
{0.042085201578189846 <- {Rule[a, -1.5], Rule[r, -1.5], Rule[s, -1.5]}
3.04208520157819 <- {Rule[a, -1.5], Rule[r, -1.5], Rule[s, 1.5]}
19.30.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2a^{2}\int_{0}^{r}\frac{\diff{t}}{\sqrt{4a^{4}-t^{4}}} = \sqrt{2a^{2}}\CarlsonsymellintRF@{q-1}{q}{q+1}} 2*(a)^(2)* int((1)/(sqrt(4*(a)^(4)- (t)^(4))), t = 0..r) = sqrt(2*(a)^(2))*0.5*int(1/(sqrt(t+q - 1)*sqrt(t+q)*sqrt(t+q + 1)), t = 0..infinity) 2*(a)^(2)* Integrate[Divide[1,Sqrt[4*(a)^(4)- (t)^(4)]], {t, 0, r}, GenerateConditions->None] == Sqrt[2*(a)^(2)]*EllipticF[ArcCos[Sqrt[q - 1/q + 1]],(q + 1-q)/(q + 1-q - 1)]/Sqrt[q + 1-q - 1] Error Failure -
Failed [12 / 12]
{Indeterminate <- {Rule[a, -1.5], Rule[q, 2], Rule[r, -1.5]}
Indeterminate <- {Rule[a, -1.5], Rule[q, 2], Rule[r, 1.5]}
19.30.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s = a\incellintFk@{\phi}{1/\sqrt{2}}} s = a*EllipticF(sin(phi), 1/(sqrt(2))) s == a*EllipticF[\[Phi], (1/(Sqrt[2]))^2] Failure Failure
Failed [300 / 300]
300/300]: [[-.201379324+.8785912788*I <- {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2}
2.798620676+.8785912788*I <- {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = 3/2}
Failed [300 / 300]
{Complex[-0.8505476575870029, 0.390685462269601] <- {Rule[a, -1.5], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.859414812385125, 0.6494166239344216] <- {Rule[a, -1.5], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.30.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle P = 4\sqrt{2a^{2}}\CarlsonsymellintRF@{0}{1}{2}} P = 4*sqrt(2*(a)^(2))*0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) P == 4*Sqrt[2*(a)^(2)]*EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] Failure Failure
Failed [60 / 60]
60/60]: [[-10.25842266+.5000000000*I <- {P = 1/2*3^(1/2)+1/2*I, a = -3/2}
-10.25842266+.5000000000*I <- {P = 1/2*3^(1/2)+1/2*I, a = 3/2}
Failed [60 / 60]
{Complex[-10.691435361916012, 0.24999999999999997] <- {Rule[a, -1.5], Rule[P, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-11.37444806380823, 0.43301270189221935] <- {Rule[a, -1.5], Rule[P, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z(p) = \CarlsonsymellintRF@{p-x_{1}}{p-x_{2}}{p-x_{3}}} (x + y*I)*(p) = 0.5*int(1/(sqrt(t+p - x[1])*sqrt(t+p - x[2])*sqrt(t+p - x[3])), t = 0..infinity) (x + y*I)*(p) == EllipticF[ArcCos[Sqrt[p - Subscript[x, 1]/p - Subscript[x, 3]]],(p - Subscript[x, 3]-p - Subscript[x, 2])/(p - Subscript[x, 3]-p - Subscript[x, 1])]/Sqrt[p - Subscript[x, 3]-p - Subscript[x, 1]] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{Complex[-0.7208699572238464, -0.7193085577979393] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[1.3758216901446034, -2.446030868401005] <- {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.32.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x_{1} > x_{2}} x[1] > x[2] Subscript[x, 1] > Subscript[x, 2] Skipped - no semantic math Skipped - no semantic math - -
19.32#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z(\infty) = 0} z*(infinity) = 0 z*(Infinity) == 0 Skipped - no semantic math Skipped - no semantic math - -
19.32#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z(x_{2}) = z(x_{1})+z(x_{3})} (x + y*I)*(x[2]) = (x + y*I)*(x[1])+(x + y*I)*(x[3]) (x + y*I)*(Subscript[x, 2]) == (x + y*I)*(Subscript[x, 1])+(x + y*I)*(Subscript[x, 3]) Skipped - no semantic math Skipped - no semantic math - -
19.32#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z(x_{3}) = \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0}} (x + y*I)*(x[3]) = 0.5*int(1/(sqrt(t+x[3]- x[1])*sqrt(t+x[3]- x[2])*sqrt(t+0)), t = 0..infinity) (x + y*I)*(Subscript[x, 3]) == EllipticF[ArcCos[Sqrt[Subscript[x, 3]- Subscript[x, 1]/0]],(0-Subscript[x, 3]- Subscript[x, 2])/(0-Subscript[x, 3]- Subscript[x, 1])]/Sqrt[0-Subscript[x, 3]- Subscript[x, 1]] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{Plus[Complex[1.024519052838329, -0.27451905283832906], Times[Complex[-0.25881904510252074, -0.9659258262890683], EllipticF[DirectedInfinity[], 1.0]]] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[0.27451905283832917, 1.0245190528383288], Times[Complex[-0.7239434227163943, -0.9434614369855119], EllipticF[DirectedInfinity[], 1.0]]] <- {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.32#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0} = -i\CarlsonsymellintRF@{0}{x_{1}-x_{3}}{x_{2}-x_{3}}} 0.5*int(1/(sqrt(t+x[3]- x[1])*sqrt(t+x[3]- x[2])*sqrt(t+0)), t = 0..infinity) = - I*0.5*int(1/(sqrt(t+0)*sqrt(t+x[1]- x[3])*sqrt(t+x[2]- x[3])), t = 0..infinity) EllipticF[ArcCos[Sqrt[Subscript[x, 3]- Subscript[x, 1]/0]],(0-Subscript[x, 3]- Subscript[x, 2])/(0-Subscript[x, 3]- Subscript[x, 1])]/Sqrt[0-Subscript[x, 3]- Subscript[x, 1]] == - I*EllipticF[ArcCos[Sqrt[0/Subscript[x, 2]- Subscript[x, 3]]],(Subscript[x, 2]- Subscript[x, 3]-Subscript[x, 1]- Subscript[x, 3])/(Subscript[x, 2]- Subscript[x, 3]-0)]/Sqrt[Subscript[x, 2]- Subscript[x, 3]-0] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{Indeterminate <- {Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[-0.4754994064110389, 1.6461555153586378], Times[Complex[0.7239434227163943, 0.9434614369855119], EllipticF[DirectedInfinity[], 1.0]]] <- {Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.33.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S = 3V\CarlsonsymellintRG@{a^{-2}}{b^{-2}}{c^{-2}}} Error S == 3*V*Sqrt[(c)^(- 2)-(a)^(- 2)]*(EllipticE[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]],((c)^(- 2)-(b)^(- 2))/((c)^(- 2)-(a)^(- 2))]+(Cot[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]])^2*EllipticF[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]],((c)^(- 2)-(b)^(- 2))/((c)^(- 2)-(a)^(- 2))]+Cot[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]]^2]) Missing Macro Error Failure -
Failed [300 / 300]
{Indeterminate <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.33.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{S}{2\pi} = c^{2}+\frac{ab}{\sin@@{\phi}}\left(\incellintEk@{\phi}{k}\sin^{2}@@{\phi}+\incellintFk@{\phi}{k}\cos^{2}@@{\phi}\right)} (S)/(2*Pi) = (c)^(2)+(a*b)/(sin(phi))*(EllipticE(sin(phi), k)*(sin(phi))^(2)+ EllipticF(sin(phi), k)*(cos(phi))^(2)) Divide[S,2*Pi] == (c)^(2)+Divide[a*b,Sin[\[Phi]]]*(EllipticE[\[Phi], (k)^2]*(Sin[\[Phi]])^(2)+ EllipticF[\[Phi], (k)^2]*(Cos[\[Phi]])^(2)) Failure Failure
Failed [300 / 300]
300/300]: [[-4.910443424-.9759333290e-1*I <- {S = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}
-5.505002077-.4622644670e-1*I <- {S = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[-4.54039506540302, -0.09283854764917886] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[k, 1], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-4.634568996487559, -0.31545051747139075] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[k, 2], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
19.33#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{\phi} = \frac{c}{a}} cos(phi) = (c)/(a) Cos[\[Phi]] == Divide[c,a] Failure Failure
Failed [300 / 300]
300/300]: [[-.2694569811-.3969495503*I <- {a = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I}
.227765517+.4690753764*I <- {a = -3/2, c = -3/2, phi = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[-0.06378043051909243, -0.10599798465255418] <- {Rule[a, -1.5], Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.061176166972244816, 0.11050836582743673] <- {Rule[a, -1.5], Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.33#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k^{2} = \frac{a^{2}(b^{2}-c^{2})}{b^{2}(a^{2}-c^{2})}} (k)^(2) = ((a)^(2)*((b)^(2)- (c)^(2)))/((b)^(2)*((a)^(2)- (c)^(2))) (k)^(2) == Divide[(a)^(2)*((b)^(2)- (c)^(2)),(b)^(2)*((a)^(2)- (c)^(2))] Skipped - no semantic math Skipped - no semantic math - -
19.33.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}+\frac{z^{2}}{c^{2}+\lambda} = 1} ((x)^(2))/((a)^(2)+ lambda)+((y)^(2))/((b)^(2)+ lambda)+((x + y*I)^(2))/((c)^(2)+ lambda) = 1 Divide[(x)^(2),(a)^(2)+ \[Lambda]]+Divide[(y)^(2),(b)^(2)+ \[Lambda]]+Divide[(x + y*I)^(2),(c)^(2)+ \[Lambda]] == 1 Skipped - no semantic math Skipped - no semantic math - -
19.33.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V(\lambda) = Q\CarlsonsymellintRF@{a^{2}+\lambda}{b^{2}+\lambda}{c^{2}+\lambda}} V*(lambda) = Q*0.5*int(1/(sqrt(t+(a)^(2)+ lambda)*sqrt(t+(b)^(2)+ lambda)*sqrt(t+(c)^(2)+ lambda)), t = 0..infinity) V*(\[Lambda]) == Q*EllipticF[ArcCos[Sqrt[(a)^(2)+ \[Lambda]/(c)^(2)+ \[Lambda]]],((c)^(2)+ \[Lambda]-(b)^(2)+ \[Lambda])/((c)^(2)+ \[Lambda]-(a)^(2)+ \[Lambda])]/Sqrt[(c)^(2)+ \[Lambda]-(a)^(2)+ \[Lambda]] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{Complex[-0.01914487900157147, 0.6670953471925876] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[Q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.08207662518407155, 0.5134467292285442] <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[Q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.33.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1/C = \CarlsonsymellintRF@{a^{2}}{b^{2}}{c^{2}}} 1/ C = 0.5*int(1/(sqrt(t+(a)^(2))*sqrt(t+(b)^(2))*sqrt(t+(c)^(2))), t = 0..infinity) 1/ C == EllipticF[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))]/Sqrt[(c)^(2)-(a)^(2)] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{Indeterminate <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Indeterminate <- {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.33.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle L_{c} = 2\pi abc\int_{0}^{\infty}\frac{\diff{\lambda}}{\sqrt{(a^{2}+\lambda)(b^{2}+\lambda)(c^{2}+\lambda)^{3}}}} L[c] = 2*Pi*a*b*c*int((1)/(sqrt(((a)^(2)+ lambda)*((b)^(2)+ lambda)*((c)^(2)+ lambda)^(3))), lambda = 0..infinity) Subscript[L, c] == 2*Pi*a*b*c*Integrate[Divide[1,Sqrt[((a)^(2)+ \[Lambda])*((b)^(2)+ \[Lambda])*((c)^(2)+ \[Lambda])^(3)]], {\[Lambda], 0, Infinity}, GenerateConditions->None] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.33.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\pi abc\int_{0}^{\infty}\frac{\diff{\lambda}}{\sqrt{(a^{2}+\lambda)(b^{2}+\lambda)(c^{2}+\lambda)^{3}}} = V\CarlsonsymellintRD@{a^{2}}{b^{2}}{c^{2}}} Error 2*Pi*a*b*c*Integrate[Divide[1,Sqrt[((a)^(2)+ \[Lambda])*((b)^(2)+ \[Lambda])*((c)^(2)+ \[Lambda])^(3)]], {\[Lambda], 0, Infinity}, GenerateConditions->None] == V*3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))])/(((c)^(2)-(b)^(2))*((c)^(2)-(a)^(2))^(1/2)) Missing Macro Error Aborted Skip - symbolical successful subtest Skipped - Because timed out
19.33.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle L_{a}+L_{b}+L_{c} = 4\pi} L[a]+ L[b]+ L[c] = 4*Pi Subscript[L, a]+ Subscript[L, b]+ Subscript[L, c] == 4*Pi Skipped - no semantic math Skipped - no semantic math - -
19.34.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle ab\int_{0}^{2\pi}(h^{2}+a^{2}+b^{2}-2ab\cos@@{\theta})^{-1/2}\cos@@{\theta}\diff{\theta} = 2ab\int_{-1}^{1}\frac{t\diff{t}}{\sqrt{(1+t)(1-t)(a_{3}-2abt)}}} a*b*int(((h)^(2)+ (a)^(2)+ (b)^(2)- 2*a*b*cos(theta))^(- 1/ 2)* cos(theta), theta = 0..2*Pi) = 2*a*b*int((t)/(sqrt((1 + t)*(1 - t)*(a[3]- 2*a*b*t))), t = - 1..1) a*b*Integrate[((h)^(2)+ (a)^(2)+ (b)^(2)- 2*a*b*Cos[\[Theta]])^(- 1/ 2)* Cos[\[Theta]], {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 2*a*b*Integrate[Divide[t,Sqrt[(1 + t)*(1 - t)*(Subscript[a, 3]- 2*a*b*t)]], {t, - 1, 1}, GenerateConditions->None] Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.34.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2ab\int_{-1}^{1}\frac{t\diff{t}}{\sqrt{(1+t)(1-t)(a_{3}-2abt)}} = 2abI(\mathbf{e}_{5})} 2*a*b*int((t)/(sqrt((1 + t)*(1 - t)*(a[3]- 2*a*b*t))), t = - 1..1) = 2*a*b*I*(e[5]) 2*a*b*Integrate[Divide[t,Sqrt[(1 + t)*(1 - t)*(Subscript[a, 3]- 2*a*b*t)]], {t, - 1, 1}, GenerateConditions->None] == 2*a*b*I*(Subscript[e, 5]) Failure Aborted
Failed [300 / 300]
300/300]: [[-3.959693187-6.593729744*I <- {I = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, a[3] = 1/2*3^(1/2)+1/2*I, e[5] = 1/2*3^(1/2)+1/2*I}
2.187421133-4.946615428*I <- {I = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, a[3] = 1/2*3^(1/2)+1/2*I, e[5] = -1/2+1/2*I*3^(1/2)}
Skipped - Because timed out
19.34#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{3} = h^{2}+a^{2}+b^{2}} a[3] = (h)^(2)+ (a)^(2)+ (b)^(2) Subscript[a, 3] == (h)^(2)+ (a)^(2)+ (b)^(2) Skipped - no semantic math Skipped - no semantic math - -
19.34#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{5} = 0} a[5] = 0 Subscript[a, 5] == 0 Skipped - no semantic math Skipped - no semantic math - -
19.34#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{5} = 1} b[5] = 1 Subscript[b, 5] == 1 Skipped - no semantic math Skipped - no semantic math - -
19.34.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2abI(\mathbf{e}_{5}) = a_{3}I(\boldsymbol{{0}})-I(\mathbf{e}_{3})} 2*a*b*I*(e[5]) = a[3]*I*(0)- I*(e[3]) 2*a*b*I*(Subscript[e, 5]) == Subscript[a, 3]*I*(0)- I*(Subscript[e, 3]) Skipped - no semantic math Skipped - no semantic math - -
19.34.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r_{+}^{2} = a_{3}+ 2ab} (r[+])^(2) = a[3]+ 2*a*b (Subscript[r, +])^(2) == Subscript[a, 3]+ 2*a*b Skipped - no semantic math Skipped - no semantic math - -
19.36.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{1}{2}{4} = \CarlsonsymellintRF@{z_{1}}{z_{2}}{z_{3}}} 0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.5*int(1/(sqrt(t+z[1])*sqrt(t+z[2])*sqrt(t+z[3])), t = 0..infinity) EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == EllipticF[ArcCos[Sqrt[Subscript[z, 1]/Subscript[z, 3]]],(Subscript[z, 3]-Subscript[z, 2])/(Subscript[z, 3]-Subscript[z, 1])]/Sqrt[Subscript[z, 3]-Subscript[z, 1]] Aborted Failure Skipped - Because timed out
Failed [300 / 300]
{Indeterminate <- {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.6113291272616378, 0.7460602493090597] <- {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.36.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \begin{aligned} \displaystyle z_{1}&\displaystyle = 2.10985\;99098\;8,\\ \displaystyle z_{3}&\displaystyle} Skipped - no semantic math Skipped - no semantic math - -
19.36.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{1}{2}{4} = 0.68508\;58166\dots} 0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.6850858166 EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 0.6850858166 Failure Failure Successful [Tested: 0] Successful [Tested: 1]
19.36#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2a_{n+1} = a_{n}+\sqrt{a_{n}^{2}-c_{n}^{2}}} 2*a[n + 1] = sqrt(a(a[n])^(2)- c(c[n])^(2)) 2*Subscript[a, n + 1] == Sqrt[a(Subscript[a, n])^(2)- c(Subscript[c, n])^(2)] Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2c_{n+1} = a_{n}-\sqrt{a_{n}^{2}-c_{n}^{2}}} 2*c[n + 1] = sqrt(a(a[n])^(2)- c(c[n])^(2)) 2*Subscript[c, n + 1] == Sqrt[a(Subscript[a, n])^(2)- c(Subscript[c, n])^(2)] Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2t_{n+1} = t_{n}+\sqrt{t_{n}^{2}+\theta c_{n}^{2}}} 2*t[n + 1] = sqrt(t(t[n])^(2)+ theta*c(c[n])^(2)) 2*Subscript[t, n + 1] == Sqrt[t(Subscript[t, n])^(2)+ \[Theta]*c(Subscript[c, n])^(2)] Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < c_{0}} 0 < c[0] 0 < Subscript[c, 0] Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle t_{0} \geq 0} t[0] >= 0 Subscript[t, 0] >= 0 Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle t_{0}^{2}+\theta a_{0}^{2} \geq 0} (t[0])^(2)+ theta*(a[0])^(2) >= 0 (Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2) >= 0 Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \theta = + 1} theta = + 1 \[Theta] == + 1 Skipped - no semantic math Skipped - no semantic math - -
19.36.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}}} 0.5*int(1/(sqrt(t+t(t[0])^(2))*sqrt(t+t(t[0])^(2)+ theta*c(c[0])^(2))*sqrt(t+t(t[0])^(2)+ theta*a(a[0])^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+(T)^(2))*sqrt(t+(T)^(2))*sqrt(t+(T)^(2)+ theta*(M)^(2))), t = 0..infinity) EllipticF[ArcCos[Sqrt[t(Subscript[t, 0])^(2)/t(Subscript[t, 0])^(2)+ \[Theta]*a(Subscript[a, 0])^(2)]],(t(Subscript[t, 0])^(2)+ \[Theta]*a(Subscript[a, 0])^(2)-t(Subscript[t, 0])^(2)+ \[Theta]*c(Subscript[c, 0])^(2))/(t(Subscript[t, 0])^(2)+ \[Theta]*a(Subscript[a, 0])^(2)-t(Subscript[t, 0])^(2))]/Sqrt[t(Subscript[t, 0])^(2)+ \[Theta]*a(Subscript[a, 0])^(2)-t(Subscript[t, 0])^(2)] == EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)] Error Failure -
Failed [300 / 300]
{Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]] <- {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284
19.36.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}} = \CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}}} Error EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))] Missing Macro Error Failure -
Failed [300 / 300]
{Complex[-1.634056915706757, -0.008820605997006181] <- {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-1.6914869520542948, 0.13073697514602478] <- {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.36#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{3}^{2} = 2.46209\;30206\;0} (a[3])^(2) = 2.46209302060 (Subscript[a, 3])^(2) == 2.46209302060 Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle t_{3}^{2} = 1.46971\;53173\;1} (t[3])^(2) = 1.46971531731 (Subscript[t, 3])^(2) == 1.46971531731 Skipped - no semantic math Skipped - no semantic math - -
19.36.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{1}{2}{4} = \CarlsonellintRC@{T^{2}+M^{2}}{T^{2}}} Error EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))] Missing Macro Error Failure -
Failed [100 / 100]
{Complex[-0.841498016533642, 0.8813735870195429] <- {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[-0.8857105197615976, -2.720699010523131] <- {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.36.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonellintRC@{T^{2}+M^{2}}{T^{2}} = 0.68508\;58166} Error 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))] == 0.6850858166 Missing Macro Error Failure -
Failed [100 / 100]
{Complex[0.8414980165670778, -0.8813735870195429] <- {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Complex[0.8857105197950335, 2.720699010523131] <- {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
19.36#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle h_{n} = \sqrt{t_{n}^{2}+\theta a_{n}^{2}}} sqrt(t(t[n])^(2)+ theta*a(a[n])^(2)) Sqrt[t(Subscript[t, n])^(2)+ \[Theta]*a(Subscript[a, n])^(2)] Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle h_{n} = h_{n-1}\frac{t_{n}}{\sqrt{t_{n}^{2}+\theta c_{n}^{2}}}} h[n] (t[n])/(sqrt(t(t[n])^(2)+ theta*c(c[n])^(2))) Subscript[h, n] Divide[Subscript[t, n],Sqrt[t(Subscript[t, n])^(2)+ \[Theta]*c(Subscript[c, n])^(2)]] Skipped - no semantic math Skipped - no semantic math - -
19.36.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\CarlsonsymellintRG@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \left(t_{0}^{2}+\theta\sum_{m=0}^{\infty}2^{m-1}c_{m}^{2}\right)\CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}}+h_{0}+\sum_{m=1}^{\infty}2^{m}(h_{m}-h_{m-1})} Error (t(Subscript[t, 0])^(2)+ \[Theta]*Sum[(2)^(m - 1)* c(Subscript[c, m])^(2), {m, 0, Infinity}, GenerateConditions->None])* 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))]+ Subscript[h, 0]+ Sum[(2)^(m)*(Subscript[h, m]- Subscript[h, m - 1]), {m, 1, Infinity}, GenerateConditions->None] Missing Macro Error Aborted -
Failed [1 / 1]