Coulomb Functions - 34.1 Special Notation

From testwiki
Revision as of 12:14, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
34.1.E1 ( j 1 m 1 j 2 m 2 | j 1 j 2 j 3 m 3 ) = ( - 1 ) j 1 - j 2 + m 3 ( 2 j 3 + 1 ) 1 2 3 j j 1 j 2 j 3 m 1 m 2 - m 3 clebsch-gordan subscript 𝑗 1 subscript 𝑚 1 subscript 𝑗 2 subscript 𝑚 2 subscript 𝑗 3 subscript 𝑚 3 superscript 1 subscript 𝑗 1 subscript 𝑗 2 subscript 𝑚 3 superscript 2 subscript 𝑗 3 1 1 2 threej subscript 𝑗 1 subscript 𝑗 2 subscript 𝑗 3 subscript 𝑚 1 subscript 𝑚 2 subscript 𝑚 3 {\displaystyle{\displaystyle\left(j_{1}\;m_{1}\;j_{2}\;m_{2}|j_{1}\;j_{2}\;j_{% 3}\,\,m_{3}\right)=(-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\mathit{3j}% {j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}}}
\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}

Error
ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (- 1)^(Subscript[j, 1]- Subscript[j, 2]+ Subscript[m, 3])*(2*Subscript[j, 3]+ 1)^(Divide[1,2])* ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[m, 1], - Subscript[m, 3]}]
Missing Macro Error Failure - Successful [Tested: 300]