Coulomb Functions - 33.6 Power-Series Expansions in

From testwiki
Revision as of 12:14, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
33.6.E3 ( k + ) ( k - - 1 ) A k = 2 η A k - 1 - A k - 2 𝑘 𝑘 1 superscript subscript 𝐴 𝑘 2 𝜂 superscript subscript 𝐴 𝑘 1 superscript subscript 𝐴 𝑘 2 {\displaystyle{\displaystyle(k+\ell)(k-\ell-1)A_{k}^{\ell}=2\eta A_{k-1}^{\ell% }-A_{k-2}^{\ell}}}
(k+\ell)(k-\ell-1)A_{k}^{\ell} = 2\eta A_{k-1}^{\ell}-A_{k-2}^{\ell}
k = + 3 𝑘 3 {\displaystyle{\displaystyle k=\ell+3}}
(k + ell)*(k - ell - 1)*(A[k])^(ell) = 2*eta*(A[k - 1])^(ell)- (A[k - 2])^(ell)
(k + \[ScriptL])*(k - \[ScriptL]- 1)*(Subscript[A, k])^\[ScriptL] == 2*\[Eta]*(Subscript[A, k - 1])^\[ScriptL]- (Subscript[A, k - 2])^\[ScriptL]
Skipped - no semantic math Skipped - no semantic math - -
33.6.E4 A k ( η ) = ( - i ) k - - 1 ( k - - 1 ) ! F 1 2 ( + 1 - k , + 1 - i η ; 2 + 2 ; 2 ) superscript subscript 𝐴 𝑘 𝜂 superscript imaginary-unit 𝑘 1 𝑘 1 Gauss-hypergeometric-F-as-2F1 1 𝑘 1 imaginary-unit 𝜂 2 2 2 {\displaystyle{\displaystyle A_{k}^{\ell}(\eta)=\dfrac{(-\mathrm{i})^{k-\ell-1% }}{(k-\ell-1)!}\*{{}_{2}F_{1}}\left(\ell+1-k,\ell+1-\mathrm{i}\eta;2\ell+2;2% \right)}}
A_{k}^{\ell}(\eta) = \dfrac{(-\iunit)^{k-\ell-1}}{(k-\ell-1)!}\*\genhyperF{2}{1}@{\ell+1-k,\ell+1-\iunit\eta}{2\ell+2}{2}

(A[k])^(ell)(eta) = ((- I)^(k - ell - 1))/(factorial(k - ell - 1))* hypergeom([ell + 1 - k , ell + 1 - I*eta], [2*ell + 2], 2)
(Subscript[A, k])^\[ScriptL][\[Eta]] == Divide[(- I)^(k - \[ScriptL]- 1),(k - \[ScriptL]- 1)!]* HypergeometricPFQ[{\[ScriptL]+ 1 - k , \[ScriptL]+ 1 - I*\[Eta]}, {2*\[ScriptL]+ 2}, 2]
Failure Failure Error
Failed [293 / 300]
Result: Complex[0.5000000000000001, 0.8660254037844386]
Test Values: {Rule[k, 1], Rule[, 1], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[A, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, 1.0]
Test Values: {Rule[k, 1], Rule[, 2], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[A, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data