Painlevé Transcendents - 32.4 Isomonodromy Problems

From testwiki
Revision as of 13:12, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
32.4#Ex1 𝚿 λ = 𝐀 ( z , λ ) 𝚿 partial-derivative 𝚿 𝜆 𝐀 𝑧 𝜆 𝚿 {\displaystyle{\displaystyle\frac{\partial\boldsymbol{{\Psi}}}{\partial\lambda% }=\mathbf{A}(z,\lambda)\boldsymbol{{\Psi}}}}
\pderiv{\boldsymbol{{\Psi}}}{\lambda} = \mathbf{A}(z,\lambda)\boldsymbol{{\Psi}}

diff(Psi, lambda) = A(z , lambda)* Psi
D[\[CapitalPsi], \[Lambda]] == A[z , \[Lambda]]* \[CapitalPsi]
Failure Failure Error Error
32.4#Ex2 𝚿 z = 𝐁 ( z , λ ) 𝚿 partial-derivative 𝚿 𝑧 𝐁 𝑧 𝜆 𝚿 {\displaystyle{\displaystyle\frac{\partial\boldsymbol{{\Psi}}}{\partial z}=% \mathbf{B}(z,\lambda)\boldsymbol{{\Psi}}}}
\pderiv{\boldsymbol{{\Psi}}}{z} = \mathbf{B}(z,\lambda)\boldsymbol{{\Psi}}

diff(Psi, z) = B(z , lambda)* Psi
D[\[CapitalPsi], z] == B[z , \[Lambda]]* \[CapitalPsi]
Failure Failure Error Error
32.4.E3 𝐀 z - 𝐁 λ + 𝐀𝐁 - 𝐁𝐀 = 0 partial-derivative 𝐀 𝑧 partial-derivative 𝐁 𝜆 𝐀𝐁 𝐁𝐀 0 {\displaystyle{\displaystyle\frac{\partial\mathbf{A}}{\partial z}-\frac{% \partial\mathbf{B}}{\partial\lambda}+\mathbf{A}\mathbf{B}-\mathbf{B}\mathbf{A}% =0}}
\pderiv{\mathbf{A}}{z}-\pderiv{\mathbf{B}}{\lambda}+\mathbf{A}\mathbf{B}-\mathbf{B}\mathbf{A} = 0

diff(A, z)- diff(B, lambda)+ A*B - B*A = 0
D[A, z]- D[B, \[Lambda]]+ A*B - B*A == 0
Successful Successful - Successful [Tested: 300]
32.4.E15 ( α , β , γ , δ ) = ( 2 θ 0 , 2 ( 1 - θ ) , 1 , - 1 ) 𝛼 𝛽 𝛾 𝛿 2 subscript 𝜃 0 2 1 subscript 𝜃 1 1 {\displaystyle{\displaystyle(\alpha,\beta,\gamma,\delta)=\left(2\theta_{0},2(1% -\theta_{\infty}),1,-1\right)}}
(\alpha,\beta,\gamma,\delta) = \left(2\theta_{0},2(1-\theta_{\infty}),1,-1\right)

(alpha , beta , gamma , delta) = (2*theta[0], 2*(1 - theta[infinity]), 1 , - 1)
(\[Alpha], \[Beta], \[Gamma], \[Delta]) == (2*Subscript[\[Theta], 0], 2*(1 - Subscript[\[Theta], Infinity]), 1 , - 1)
Skipped - no semantic math Skipped - no semantic math - -
32.4.E16 θ 0 = 4 v 0 z ( θ ( 1 - z 4 v 0 ) + z - 2 v 0 2 v 0 v 1 u 0 + u 1 v 1 ) subscript 𝜃 0 4 subscript 𝑣 0 𝑧 subscript 𝜃 1 𝑧 4 subscript 𝑣 0 𝑧 2 subscript 𝑣 0 2 subscript 𝑣 0 subscript 𝑣 1 subscript 𝑢 0 subscript 𝑢 1 subscript 𝑣 1 {\displaystyle{\displaystyle\theta_{0}=\frac{4v_{0}}{z}\left(\theta_{\infty}% \left(1-\frac{z}{4v_{0}}\right)+\frac{z-2v_{0}}{2v_{0}v_{1}}u_{0}+u_{1}v_{1}% \right)}}
\theta_{0} = \frac{4v_{0}}{z}\left(\theta_{\infty}\left(1-\frac{z}{4v_{0}}\right)+\frac{z-2v_{0}}{2v_{0}v_{1}}u_{0}+u_{1}v_{1}\right)

theta[0] = (4*v[0])/(z)*(theta[infinity]*(1 -(z)/(4*v[0]))+(z - 2*v[0])/(2*v[0]*v[1])*u[0]+ u[1]*v[1])
Subscript[\[Theta], 0] == Divide[4*Subscript[v, 0],z]*(Subscript[\[Theta], Infinity]*(1 -Divide[z,4*Subscript[v, 0]])+Divide[z - 2*Subscript[v, 0],2*Subscript[v, 0]*Subscript[v, 1]]*Subscript[u, 0]+ Subscript[u, 1]*Subscript[v, 1])
Skipped - no semantic math Skipped - no semantic math - -