Spheroidal Wave Functions - 30.13 Wave Equation in Prolate Spheroidal Coordinates
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
30.13#Ex4 | 1 < \xi |
|
1 < xi |
1 < \[Xi] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.13#Ex5 | -1 < \eta |
|
- 1 < eta |
- 1 < \[Eta] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.13#Ex6 | 0 \leq \phi |
|
0 <= phi |
0 <= \[Phi] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.13.E3 | h_{\xi}^{2} = \left(\pderiv{x}{\xi}\right)^{2}+\left(\pderiv{y}{\xi}\right)^{2}+\left(\pderiv{z}{\xi}\right)^{2} |
|
(h[xi])^(2) = (diff(x, xi))^(2)+(diff(y, xi))^(2)+(diff(x + y*I, xi))^(2)
|
(Subscript[h, \[Xi]])^(2) == (D[x, \[Xi]])^(2)+(D[y, \[Xi]])^(2)+(D[x + y*I, \[Xi]])^(2)
|
Failure | Failure | Failed [300 / 300] Result: .5000000004+.8660254040*I
Test Values: {x = 3/2, xi = 1/2*3^(1/2)+1/2*I, y = -3/2, h[xi] = 1/2*3^(1/2)+1/2*I}
Result: -.5000000004-.8660254040*I
Test Values: {x = 3/2, xi = 1/2*3^(1/2)+1/2*I, y = -3/2, h[xi] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.5000000000000001, 0.8660254037844386]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[h, ΞΎ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.4999999999999998, -0.8660254037844387]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[h, ΞΎ], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
30.13.E3 | \left(\pderiv{x}{\xi}\right)^{2}+\left(\pderiv{y}{\xi}\right)^{2}+\left(\pderiv{z}{\xi}\right)^{2} = \frac{c^{2}(\xi^{2}-\eta^{2})}{\xi^{2}-1} |
|
(diff(x, xi))^(2)+(diff(y, xi))^(2)+(diff(x + y*I, xi))^(2) = ((c)^(2)*((xi)^(2)- (eta)^(2)))/((xi)^(2)- 1)
|
(D[x, \[Xi]])^(2)+(D[y, \[Xi]])^(2)+(D[x + y*I, \[Xi]])^(2) == Divide[(c)^(2)*(\[Xi]^(2)- \[Eta]^(2)),\[Xi]^(2)- 1]
|
Failure | Failure | Failed [240 / 300] Result: -2.250000002-1.299038105*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = -1/2+1/2*I*3^(1/2), y = -3/2}
Result: -2.250000002-1.299038105*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = -1/2+1/2*I*3^(1/2), y = 3/2}
... skip entries to safe data |
Failed [240 / 300]
Result: Complex[-2.25, -1.2990381056766578]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[y, -1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-2.25, -1.2990381056766578]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[y, -1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
30.13.E4 | h_{\eta}^{2} = \left(\pderiv{x}{\eta}\right)^{2}+\left(\pderiv{y}{\eta}\right)^{2}+\left(\pderiv{z}{\eta}\right)^{2} |
|
(h[eta])^(2) = (diff(x, eta))^(2)+(diff(y, eta))^(2)+(diff(x + y*I, eta))^(2)
|
(Subscript[h, \[Eta]])^(2) == (D[x, \[Eta]])^(2)+(D[y, \[Eta]])^(2)+(D[x + y*I, \[Eta]])^(2)
|
Failure | Failure | Failed [300 / 300] Result: .5000000004+.8660254040*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, h[eta] = 1/2*3^(1/2)+1/2*I}
Result: -.5000000004-.8660254040*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, h[eta] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.5000000000000001, 0.8660254037844386]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[h, Ξ·], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.4999999999999998, -0.8660254037844387]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[h, Ξ·], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
30.13.E4 | \left(\pderiv{x}{\eta}\right)^{2}+\left(\pderiv{y}{\eta}\right)^{2}+\left(\pderiv{z}{\eta}\right)^{2} = \frac{c^{2}(\xi^{2}-\eta^{2})}{1-\eta^{2}} |
|
(diff(x, eta))^(2)+(diff(y, eta))^(2)+(diff(x + y*I, eta))^(2) = ((c)^(2)*((xi)^(2)- (eta)^(2)))/(1 - (eta)^(2))
|
(D[x, \[Eta]])^(2)+(D[y, \[Eta]])^(2)+(D[x + y*I, \[Eta]])^(2) == Divide[(c)^(2)*(\[Xi]^(2)- \[Eta]^(2)),1 - \[Eta]^(2)]
|
Failure | Failure | Failed [240 / 300] Result: -2.250000002+3.897114318*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = -1/2+1/2*I*3^(1/2), y = -3/2}
Result: -2.250000002+3.897114318*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = -1/2+1/2*I*3^(1/2), y = 3/2}
... skip entries to safe data |
Failed [240 / 300]
Result: Complex[-2.2500000000000004, 3.897114317029973]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[y, -1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-2.2500000000000004, 3.897114317029973]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[y, -1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
30.13.E5 | h_{\phi}^{2} = \left(\pderiv{x}{\phi}\right)^{2}+\left(\pderiv{y}{\phi}\right)^{2}+\left(\pderiv{z}{\phi}\right)^{2} |
|
(h[phi])^(2) = (diff(x, phi))^(2)+(diff(y, phi))^(2)+(diff(x + y*I, phi))^(2)
|
(Subscript[h, \[Phi]])^(2) == (D[x, \[Phi]])^(2)+(D[y, \[Phi]])^(2)+(D[x + y*I, \[Phi]])^(2)
|
Failure | Failure | Failed [300 / 300] Result: .5000000004+.8660254040*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, h[phi] = 1/2*3^(1/2)+1/2*I}
Result: -.5000000004-.8660254040*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, h[phi] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.5000000000000001, 0.8660254037844386]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[h, Ο], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.4999999999999998, -0.8660254037844387]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[h, Ο], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
30.13.E5 | \left(\pderiv{x}{\phi}\right)^{2}+\left(\pderiv{y}{\phi}\right)^{2}+\left(\pderiv{z}{\phi}\right)^{2} = c^{2}(\xi^{2}-1)(1-\eta^{2}) |
|
(diff(x, phi))^(2)+(diff(y, phi))^(2)+(diff(x + y*I, phi))^(2) = (c)^(2)*((xi)^(2)- 1)*(1 - (eta)^(2))
|
(D[x, \[Phi]])^(2)+(D[y, \[Phi]])^(2)+(D[x + y*I, \[Phi]])^(2) == (c)^(2)*(\[Xi]^(2)- 1)*(1 - \[Eta]^(2))
|
Failure | Failure | Failed [300 / 300] Result: -1.125000002-1.948557157*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = 1/2*3^(1/2)+1/2*I, y = -3/2}
Result: -1.125000002-1.948557157*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = 1/2*3^(1/2)+1/2*I, y = 3/2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-1.125, -1.9485571585149866]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[y, -1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.125, -1.9485571585149866]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[y, -1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
30.13.E6 | \frac{1}{h_{\xi}h_{\eta}h_{\phi}}\left(\pderiv{}{\xi}\left(\frac{h_{\eta}h_{\phi}}{h_{\xi}}\pderiv{}{\xi}\right)+\pderiv{}{\eta}\left(\frac{h_{\xi}h_{\phi}}{h_{\eta}}\pderiv{}{\eta}\right)+\pderiv{}{\phi}\left(\frac{h_{\xi}h_{\eta}}{h_{\phi}}\pderiv{}{\phi}\right)\right) = \frac{1}{c^{2}(\xi^{2}-\eta^{2})}\left(\pderiv{}{\xi}\left((\xi^{2}-1)\pderiv{}{\xi}\right)+\pderiv{}{\eta}\left((1-\eta^{2})\pderiv{}{\eta}\right)+\frac{\xi^{2}-\eta^{2}}{(\xi^{2}-1)(1-\eta^{2})}\pderiv[2]{}{\phi}\right) |
|
(diff((((xi)^(2)- 1)*diff((1)/((c)^(2)*((xi)^(2)- (eta)^(2)))*((xi)^(2)- 1), xi))+ diff(diff(((1 - (eta)^(2))*diff((diff(((h[eta]*h[phi])/(h[xi])*diff((1)/(h[xi]*h[eta]*h[phi])*(h[eta]*h[phi])/(h[xi]), xi))+ diff(((h[xi]*h[phi])/(h[eta])*diff(((h[eta]*h[phi])/(h[xi])*diff((1)/(h[xi]*h[eta]*h[phi])*(h[eta]*h[phi])/(h[xi]), xi))+ (h[xi]*h[phi])/(h[eta]), eta))+ diff((h[xi]*h[eta])/(h[phi])*diff(((h[xi]*h[phi])/(h[eta])*diff(((h[eta]*h[phi])/(h[xi])*diff((1)/(h[xi]*h[eta]*h[phi])*(h[eta]*h[phi])/(h[xi]), xi))+ (h[xi]*h[phi])/(h[eta]), eta))+ (h[xi]*h[eta])/(h[phi]), phi), phi), eta), xi)) (((xi)^(2)- 1)*diff((1)/((c)^(2)*((xi)^(2)- (eta)^(2)))*((xi)^(2)- 1), xi))+ (1 - (eta)^(2)), eta))+((xi)^(2)- (eta)^(2))/(((xi)^(2)- 1)*(1 - (eta)^(2))), [phi$(2)]), eta), xi))
|
(D[((\[Xi]^(2)- 1)*D[Divide[1,(c)^(2)*(\[Xi]^(2)- \[Eta]^(2))]*(\[Xi]^(2)- 1), \[Xi]])+ D[D[((1 - \[Eta]^(2))*D[(D[(Divide[Subscript[h, \[Eta]]*Subscript[h, \[Phi]],Subscript[h, \[Xi]]]*D[Divide[1,Subscript[h, \[Xi]]*Subscript[h, \[Eta]]*Subscript[h, \[Phi]]]*Divide[Subscript[h, \[Eta]]*Subscript[h, \[Phi]],Subscript[h, \[Xi]]], \[Xi]])+ D[(Divide[Subscript[h, \[Xi]]*Subscript[h, \[Phi]],Subscript[h, \[Eta]]]*D[(Divide[Subscript[h, \[Eta]]*Subscript[h, \[Phi]],Subscript[h, \[Xi]]]*D[Divide[1,Subscript[h, \[Xi]]*Subscript[h, \[Eta]]*Subscript[h, \[Phi]]]*Divide[Subscript[h, \[Eta]]*Subscript[h, \[Phi]],Subscript[h, \[Xi]]], \[Xi]])+ Divide[Subscript[h, \[Xi]]*Subscript[h, \[Phi]],Subscript[h, \[Eta]]], \[Eta]])+ D[Divide[Subscript[h, \[Xi]]*Subscript[h, \[Eta]],Subscript[h, \[Phi]]]*D[(Divide[Subscript[h, \[Xi]]*Subscript[h, \[Phi]],Subscript[h, \[Eta]]]*D[(Divide[Subscript[h, \[Eta]]*Subscript[h, \[Phi]],Subscript[h, \[Xi]]]*D[Divide[1,Subscript[h, \[Xi]]*Subscript[h, \[Eta]]*Subscript[h, \[Phi]]]*Divide[Subscript[h, \[Eta]]*Subscript[h, \[Phi]],Subscript[h, \[Xi]]], \[Xi]])+ Divide[Subscript[h, \[Xi]]*Subscript[h, \[Phi]],Subscript[h, \[Eta]]], \[Eta]])+ Divide[Subscript[h, \[Xi]]*Subscript[h, \[Eta]],Subscript[h, \[Phi]]], \[Phi]], \[Phi]], \[Eta]], \[Xi]]) ((\[Xi]^(2)- 1)*D[Divide[1,(c)^(2)*(\[Xi]^(2)- \[Eta]^(2))]*(\[Xi]^(2)- 1), \[Xi]])+ (1 - \[Eta]^(2)), \[Eta]])+Divide[\[Xi]^(2)- \[Eta]^(2),(\[Xi]^(2)- 1)*(1 - \[Eta]^(2))], {\[Phi], 2}], \[Eta]], \[Xi]])
|
Translation Error | Translation Error | - | - |
30.13.E8 | w(\xi,\eta,\phi) = w_{1}(\xi)w_{2}(\eta)w_{3}(\phi) |
|
w(xi , eta , phi) = w[1](xi)* w[2](eta)* w[3](phi) |
w[\[Xi], \[Eta], \[Phi]] == Subscript[w, 1][\[Xi]]* Subscript[w, 2][\[Eta]]* Subscript[w, 3][\[Phi]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.13.E9 | \deriv{}{\xi}\left((1-\xi^{2})\deriv{w_{1}}{\xi}\right)+\left(\lambda+\gamma^{2}(1-\xi^{2})-\frac{\mu^{2}}{1-\xi^{2}}\right)w_{1} = 0 |
|
diff(((1 - (xi)^(2))*diff(w[1], xi))+(lambda + (gamma)^(2)*(1 - (xi)^(2))-((mu)^(2))/(1 - (xi)^(2)))*w[1], xi) = 0
|
D[((1 - \[Xi]^(2))*D[Subscript[w, 1], \[Xi]])+(\[Lambda]+ \[Gamma]^(2)*(1 - \[Xi]^(2))-Divide[\[Mu]^(2),1 - \[Xi]^(2)])*Subscript[w, 1], \[Xi]] == 0
|
Failure | Failure | Failed [260 / 300] Result: .6668220767+1.154969718*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, w[1] = 1/2*3^(1/2)+1/2*I}
Result: -1.154969718+.6668220767*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, w[1] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[2.0, 2.220446049250313*^-16]
Test Values: {Rule[Ξ³, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ», Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΌ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, 1.9999999999999998]
Test Values: {Rule[Ξ³, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ», Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΌ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
30.13.E10 | \deriv{}{\eta}\left((1-\eta^{2})\deriv{w_{2}}{\eta}\right)+\left(\lambda+\gamma^{2}(1-\eta^{2})-\frac{\mu^{2}}{1-\eta^{2}}\right)w_{2} = 0 |
|
diff(((1 - (eta)^(2))*diff(w[2], eta))+(lambda + (gamma)^(2)*(1 - (eta)^(2))-((mu)^(2))/(1 - (eta)^(2)))*w[2], eta) = 0
|
D[((1 - \[Eta]^(2))*D[Subscript[w, 2], \[Eta]])+(\[Lambda]+ \[Gamma]^(2)*(1 - \[Eta]^(2))-Divide[\[Mu]^(2),1 - \[Eta]^(2)])*Subscript[w, 2], \[Eta]] == 0
|
Failure | Failure | Failed [300 / 300] Result: .6668220767+1.154969718*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, w[2] = 1/2*3^(1/2)+1/2*I}
Result: -1.154969718+.6668220767*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, w[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[2.0, 2.220446049250313*^-16]
Test Values: {Rule[Ξ³, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ», Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΌ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, 1.9999999999999998]
Test Values: {Rule[Ξ³, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ», Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΌ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
30.13.E11 | \deriv[2]{w_{3}}{\phi}+\mu^{2}w_{3} = 0 |
|
diff(w[3], [phi$(2)])+ (mu)^(2)* w[3] = 0
|
D[Subscript[w, 3], {\[Phi], 2}]+ \[Mu]^(2)* Subscript[w, 3] == 0
|
Failure | Failure | Failed [300 / 300] Result: .3233738859e-9+1.000000001*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, w[3] = 1/2*3^(1/2)+1/2*I}
Result: -1.000000001+.3464101616e-9*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, w[3] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.0, 1.0]
Test Values: {Rule[ΞΌ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: -1.0
Test Values: {Rule[ΞΌ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 3], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
30.13.E12 | w_{3}(\phi) = a_{3}\cos@{m\phi}+b_{3}\sin@{m\phi} |
|
w[3](phi) = a[3]*cos(m*phi)+ b[3]*sin(m*phi)
|
Subscript[w, 3][\[Phi]] == Subscript[a, 3]*Cos[m*\[Phi]]+ Subscript[b, 3]*Sin[m*\[Phi]]
|
Failure | Failure | Failed [300 / 300] Result: -.9062441475+.1226650086*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, a[3] = 1/2*3^(1/2)+1/2*I, b[3] = 1/2*3^(1/2)+1/2*I, w[3] = 1/2*3^(1/2)+1/2*I, m = 1}
Result: -1.278771435+1.396327873*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, a[3] = 1/2*3^(1/2)+1/2*I, b[3] = 1/2*3^(1/2)+1/2*I, w[3] = 1/2*3^(1/2)+1/2*I, m = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.9062441474191866, 0.12266500824612203]
Test Values: {Rule[m, 1], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.2787714355239146, 1.3963278722366796]
Test Values: {Rule[m, 2], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
30.13.E14 | w_{1}(\xi) = a_{1}\radsphwaveS{m}{1}{n}@{\xi}{\gamma}+b_{1}\radsphwaveS{m}{2}{n}@{\xi}{\gamma} |
|
Error
|
Subscript[w, 1][\[Xi]] == Subscript[a, 1]*SpheroidalS1[n, m, \[Xi], \[Gamma]]+ Subscript[b, 1]*SpheroidalS2[n, m, \[Xi], \[Gamma]]
|
Missing Macro Error | Failure | - | Skipped - Because timed out |
30.13.E15 | \radsphwaveS{m}{1}{n}@{\xi_{0}}{\gamma} = 0 |
|
Error
|
SpheroidalS1[n, m, Subscript[\[Xi], 0], \[Gamma]] == 0
|
Missing Macro Error | Failure | - | Skipped - Because timed out |
30.13.E16 | w_{1}(\xi_{1}) = w_{1}(\xi_{2}) |
|
w[1](xi[1]) = w[1](xi[2]) |
Subscript[w, 1][Subscript[\[Xi], 1]] == Subscript[w, 1][Subscript[\[Xi], 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |