Mathieu Functions and Hill’s Equation - 28.30 Expansions in Series of Eigenfunctions

From testwiki
Revision as of 12:08, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.30.E2 1 2 π 0 2 π w m ( x ) w n ( x ) d x = δ m , n 1 2 𝜋 superscript subscript 0 2 𝜋 subscript 𝑤 𝑚 𝑥 subscript 𝑤 𝑛 𝑥 𝑥 Kronecker 𝑚 𝑛 {\displaystyle{\displaystyle\frac{1}{2\pi}\int_{0}^{2\pi}w_{m}(x)w_{n}(x)% \mathrm{d}x=\delta_{m,n}}}
\frac{1}{2\pi}\int_{0}^{2\pi}w_{m}(x)w_{n}(x)\diff{x} = \Kroneckerdelta{m}{n}

(1)/(2*Pi)*int(w[m](x)* w[n](x), x = 0..2*Pi) = KroneckerDelta[m, n]
Divide[1,2*Pi]*Integrate[Subscript[w, m][x]* Subscript[w, n][x], {x, 0, 2*Pi}, GenerateConditions->None] == KroneckerDelta[m, n]
Failure Failure
Failed [300 / 300]
Result: 5.579736275+11.39643752*I
Test Values: {w[m] = 1/2*3^(1/2)+1/2*I, w[n] = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}

Result: 6.579736275+11.39643752*I
Test Values: {w[m] = 1/2*3^(1/2)+1/2*I, w[n] = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[5.579736267392906, 11.396437515528111]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[Subscript[w, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[6.579736267392906, 11.396437515528111]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[Subscript[w, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data