Functions of Number Theory - 27.4 Euler Products and Dirichlet Series
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
27.4.E3 | \Riemannzeta@{s} = \sum_{n=1}^{\infty}n^{-s} |
Zeta(s) = sum((n)^(- s), n = 1..infinity)
|
Zeta[s] == Sum[(n)^(- s), {n, 1, Infinity}, GenerateConditions->None]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 2] | |
27.4.E3 | \sum_{n=1}^{\infty}n^{-s} = \prod_{p}(1-p^{-s})^{-1} |
sum((n)^(- s), n = 1..infinity) = product((1 - (p)^(- s))^(- 1), p = - infinity..infinity)
|
Sum[(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] == Product[(1 - (p)^(- s))^(- 1), {p, - Infinity, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Failed [2 / 2]
Result: Plus[2.612375348685488, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -1.5]]], -1]
Test Values: {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 1.5]}
Result: Plus[1.6449340668482262, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -2]]], -1]
Test Values: {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 2]}
| |
27.4.E6 | \sum_{n=1}^{\infty}\Eulertotientphi[]@{n}n^{-s} = \frac{\Riemannzeta@{s-1}}{\Riemannzeta@{s}} |
sum(phi(n)*(n)^(- s), n = 1..infinity) = (Zeta(s - 1))/(Zeta(s))
|
Sum[EulerPhi[n]*(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] == Divide[Zeta[s - 1],Zeta[s]]
|
Failure | Successful | Error | Successful [Tested: 0] | |
27.4.E9 | \sum_{n=1}^{\infty}2^{\nprimesdiv@{n}}n^{-s} = \frac{(\Riemannzeta@{s})^{2}}{\Riemannzeta@{2s}} |
sum((2)^(ifactor(n))* (n)^(- s), n = 1..infinity) = ((Zeta(s))^(2))/(Zeta(2*s))
|
Error
|
Error | Missing Macro Error | - | - | |
27.4.E11 | \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}n^{-s} = \Riemannzeta@{s}\Riemannzeta@{s-\alpha} |
sum(add(divisors(alpha))*(n)^(- s), n = 1..infinity) = Zeta(s)*Zeta(s - alpha)
|
Error
|
Failure | Missing Macro Error | Failed [18 / 18] Result: Float(infinity)
Test Values: {alpha = 3/2, s = -3/2}
Result: 5.224750698
Test Values: {alpha = 3/2, s = 3/2}
... skip entries to safe data |
- | |
27.4.E13 | \sum_{n=2}^{\infty}(\ln@@{n})n^{-s} = -\Riemannzeta'@{s} |
sum((ln(n))*(n)^(- s), n = 2..infinity) = - diff( Zeta(s), s$(1) )
|
Sum[(Log[n])*(n)^(- s), {n, 2, Infinity}, GenerateConditions->None] == - D[Zeta[s], {s, 1}]
|
Successful | Successful | - | Successful [Tested: 2] |