Functions of Number Theory - 27.3 Multiplicative Properties

From testwiki
Revision as of 12:06, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.3.E3 ϕ ( n ) = n p | n ( 1 - p - 1 ) Euler-totient-phi 𝑛 𝑛 subscript product divides 𝑝 𝑛 1 superscript 𝑝 1 {\displaystyle{\displaystyle\phi\left(n\right)=n\prod_{p\mathbin{|}n}(1-p^{-1}% )}}
\Eulertotientphi[]@{n} = n\prod_{p\divides n}(1-p^{-1})

phi(n) = n*product(1 - (p)^(- 1), p**n in - infinity)
EulerPhi[n] == n*Product[1 - (p)^(- 1), {p**n, - Infinity}, GenerateConditions->None]
Translation Error Translation Error - -
27.3.E5 d ( n ) = r = 1 ν ( n ) ( 1 + a r ) divisor-function-D 𝑛 superscript subscript product 𝑟 1 number-of-primes-dividing-nu 𝑛 1 subscript 𝑎 𝑟 {\displaystyle{\displaystyle d\left(n\right)=\prod_{r=1}^{\nu\left(n\right)}(1% +a_{r})}}
\ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r})

numelems(Divisors(n)) = product(1 + a[r], r = 1..ifactor(n))
Error
Error Missing Macro Error - -
27.3.E6 σ α ( n ) = r = 1 ν ( n ) p r α ( 1 + a r ) - 1 p r α - 1 divisor-sigma 𝛼 𝑛 superscript subscript product 𝑟 1 number-of-primes-dividing-nu 𝑛 subscript superscript 𝑝 𝛼 1 subscript 𝑎 𝑟 𝑟 1 subscript superscript 𝑝 𝛼 𝑟 1 {\displaystyle{\displaystyle\sigma_{\alpha}\left(n\right)=\prod_{r=1}^{\nu% \left(n\right)}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}}}
\sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}
α 0 𝛼 0 {\displaystyle{\displaystyle\alpha\neq 0}}
add(divisors(alpha)) = product(((p[r])^(alpha*(1 + a[r]))- 1)/((p[r])^(alpha)- 1), r = 1..ifactor(n))
Error
Failure Missing Macro Error Error -
27.3.E8 ϕ ( m ) ϕ ( n ) = ϕ ( m n ) ϕ ( ( m , n ) ) / ( m , n ) Euler-totient-phi 𝑚 Euler-totient-phi 𝑛 Euler-totient-phi 𝑚 𝑛 Euler-totient-phi 𝑚 𝑛 𝑚 𝑛 {\displaystyle{\displaystyle\phi\left(m\right)\phi\left(n\right)=\phi\left(mn% \right)\phi\left(\left(m,n\right)\right)/\left(m,n\right)}}
\Eulertotientphi[]@{m}\Eulertotientphi[]@{n} = \Eulertotientphi[]@{mn}\Eulertotientphi[]@{\pgcd{m,n}}/\pgcd{m,n}

phi(m)*phi(n) = phi(m*n)*phi(gcd(m , n))/gcd(m , n)
EulerPhi[m]*EulerPhi[n] == EulerPhi[m*n]*EulerPhi[GCD[m , n]]/GCD[m , n]
Failure Failure
Failed [2 / 9]
Result: -1.
Test Values: {m = 2, n = 2}

Result: -2.
Test Values: {m = 3, n = 3}

Successful [Tested: 9]