Functions of Number Theory - 27.3 Multiplicative Properties
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
27.3.E3 | \Eulertotientphi[]@{n} = n\prod_{p\divides n}(1-p^{-1}) |
|
phi(n) = n*product(1 - (p)^(- 1), p**n in - infinity)
|
EulerPhi[n] == n*Product[1 - (p)^(- 1), {p**n, - Infinity}, GenerateConditions->None]
|
Translation Error | Translation Error | - | - |
27.3.E5 | \ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r}) |
|
numelems(Divisors(n)) = product(1 + a[r], r = 1..ifactor(n))
|
Error
|
Error | Missing Macro Error | - | - |
27.3.E6 | \sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1} |
add(divisors(alpha)) = product(((p[r])^(alpha*(1 + a[r]))- 1)/((p[r])^(alpha)- 1), r = 1..ifactor(n))
|
Error
|
Failure | Missing Macro Error | Error | - | |
27.3.E8 | \Eulertotientphi[]@{m}\Eulertotientphi[]@{n} = \Eulertotientphi[]@{mn}\Eulertotientphi[]@{\pgcd{m,n}}/\pgcd{m,n} |
|
phi(m)*phi(n) = phi(m*n)*phi(gcd(m , n))/gcd(m , n)
|
EulerPhi[m]*EulerPhi[n] == EulerPhi[m*n]*EulerPhi[GCD[m , n]]/GCD[m , n]
|
Failure | Failure | Failed [2 / 9] Result: -1.
Test Values: {m = 2, n = 2}
Result: -2.
Test Values: {m = 3, n = 3}
|
Successful [Tested: 9] |