Combinatorial Analysis - 27.2 Functions

From testwiki
Revision as of 12:06, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.2.E1 n = r = 1 ν ( n ) p r a r 𝑛 superscript subscript product 𝑟 1 number-of-primes-dividing-nu 𝑛 subscript superscript 𝑝 subscript 𝑎 𝑟 𝑟 {\displaystyle{\displaystyle n=\prod_{r=1}^{\nu\left(n\right)}p^{a_{r}}_{r}}}
n = \prod_{r=1}^{\nprimesdiv@{n}}p^{a_{r}}_{r}

n = product((p[r])^(a[r]), r = 1..ifactor(n))
Error
Error Translation Error - -
27.2.E7 ϕ ( n ) = ϕ 0 ( n ) Euler-totient-phi 𝑛 Euler-totient-phi-n 0 𝑛 {\displaystyle{\displaystyle\phi\left(n\right)=\phi_{0}\left(n\right)}}
\Eulertotientphi[]@{n} = \Eulertotientphi[0]@{n}

Error
EulerPhi[n] == Sum[If[CoprimeQ[n, m], m^(0), 0], {m, 1, n}]
Missing Macro Error Failure -
Failed [3 / 3]
Result: 1.0
Test Values: {Rule[n, 1]}

Result: 1.0
Test Values: {Rule[n, 2]}

... skip entries to safe data
27.2.E9 d ( n ) = d | n 1 divisor-function-D 𝑛 subscript divides 𝑑 𝑛 1 {\displaystyle{\displaystyle d\left(n\right)=\sum_{d\mathbin{|}n}1}}
\ndivisors[]@{n} = \sum_{d\divides n}1

numelems(Divisors(n)) = sum(1, d**n in - infinity)
Error
Translation Error Missing Macro Error - -
27.2.E10 σ α ( n ) = d | n d α divisor-sigma 𝛼 𝑛 subscript divides 𝑑 𝑛 superscript 𝑑 𝛼 {\displaystyle{\displaystyle\sigma_{\alpha}\left(n\right)=\sum_{d\mathbin{|}n}% d^{\alpha}}}
\sumdivisors{\alpha}@{n} = \sum_{d\divides n}d^{\alpha}

add(divisors(alpha)) = sum((d)^(alpha), d**n in - infinity)
Error
Translation Error Missing Macro Error - -