Combinatorial Analysis - 26.11 Integer Partitions: Compositions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
26.11.E2 | \ncompositions[m]@{0} = \Kroneckerdelta{0}{m} |
|
numbcomp(0, m) = KroneckerDelta[0, m]
|
Error
|
Error | Missing Macro Error | - | - |
26.11.E3 | \ncompositions[m]@{n} = \binom{n-1}{m-1} |
|
numbcomp(n, m) = binomial(n - 1,m - 1)
|
Error
|
Error | Missing Macro Error | - | - |
26.11.E4 | \sum_{n=0}^{\infty}\ncompositions[m]@{n}q^{n} = \frac{q^{m}}{(1-q)^{m}} |
|
sum(numbcomp(n, m)*(q)^(n), n = 0..infinity) = ((q)^(m))/((1 - q)^(m))
|
Error
|
Error | Missing Macro Error | - | - |
26.11#Ex1 | F_{0} = 0 |
|
F[0] = 0 |
Subscript[F, 0] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.11#Ex2 | F_{1} = 1 |
|
F[1] = 1 |
Subscript[F, 1] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.11#Ex3 | F_{n} = F_{n-1}+F_{n-2} |
F[n] = F[n - 1]+ F[n - 2] |
Subscript[F, n] == Subscript[F, n - 1]+ Subscript[F, n - 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
26.11.E7 | F_{n} = \frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n}\,\sqrt{5}} |
|
F[n] = ((1 +sqrt(5))^(n)-(1 -sqrt(5))^(n))/((2)^(n)*sqrt(5)) |
Subscript[F, n] == Divide[(1 +Sqrt[5])^(n)-(1 -Sqrt[5])^(n),(2)^(n)*Sqrt[5]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |