Combinatorial Analysis - 26.10 Integer Partitions: Other Restrictions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
26.10.E2 | \prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}} |
|
product(1 + (q)^(j), j = 1..infinity) = product((1)/(1 - (q)^(2*j - 1)), j = 1..infinity)
|
Product[1 + (q)^(j), {j, 1, Infinity}, GenerateConditions->None] == Product[Divide[1,1 - (q)^(2*j - 1)], {j, 1, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Failed [1 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
|
26.10.E3 | \sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j}) |
sum(QBinomial(k, m, q)*(q)^(m*(m + 1)/2)* (x)^(m), m = 0..k) = product(1 + x*(q)^(j), j = 1..k)
|
Sum[QBinomial[k,m,q]*(q)^(m*(m + 1)/2)* (x)^(m), {m, 0, k}, GenerateConditions->None] == Product[1 + x*(q)^(j), {j, 1, k}, GenerateConditions->None]
|
Failure | Failure | Error | Successful [Tested: 30] |