Combinatorial Analysis - 26.9 Integer Partitions:

From testwiki
Revision as of 12:06, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.9.E4 [ m n ] q = ∏ j = 1 n 1 - q m - n + j 1 - q j q-binomial π‘š 𝑛 π‘ž superscript subscript product 𝑗 1 𝑛 1 superscript π‘ž π‘š 𝑛 𝑗 1 superscript π‘ž 𝑗 {\displaystyle{\displaystyle\genfrac{[}{]}{0.0pt}{}{m}{n}_{q}=\prod_{j=1}^{n}% \frac{1-q^{m-n+j}}{1-q^{j}}}}
\qbinom{m}{n}{q} = \prod_{j=1}^{n}\frac{1-q^{m-n+j}}{1-q^{j}}
n β‰₯ 0 𝑛 0 {\displaystyle{\displaystyle n\geq 0}}
QBinomial(m, n, q) = product((1 - (q)^(m - n + j))/(1 - (q)^(j)), j = 1..n)
QBinomial[m,n,q] == Product[Divide[1 - (q)^(m - n + j),1 - (q)^(j)], {j, 1, n}, GenerateConditions->None]
Failure Failure Error
Failed [32 / 90]
Result: DirectedInfinity[]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: DirectedInfinity[]
Test Values: {Rule[m, 2], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
26.9.E5 ∏ j = 1 k 1 1 - q j = 1 + βˆ‘ m = 1 ∞ [ k + m - 1 m ] q ⁒ q m superscript subscript product 𝑗 1 π‘˜ 1 1 superscript π‘ž 𝑗 1 superscript subscript π‘š 1 q-binomial π‘˜ π‘š 1 π‘š π‘ž superscript π‘ž π‘š {\displaystyle{\displaystyle\prod_{j=1}^{k}\frac{1}{1-q^{j}}=1+\sum_{m=1}^{% \infty}\genfrac{[}{]}{0.0pt}{}{k+m-1}{m}_{q}q^{m}}}
\prod_{j=1}^{k}\frac{1}{1-q^{j}} = 1+\sum_{m=1}^{\infty}\qbinom{k+m-1}{m}{q}q^{m}

product((1)/(1 - (q)^(j)), j = 1..k) = 1 + sum(QBinomial(k + m - 1, m, q)*(q)^(m), m = 1..infinity)
Product[Divide[1,1 - (q)^(j)], {j, 1, k}, GenerateConditions->None] == 1 + Sum[QBinomial[k + m - 1,m,q]*(q)^(m), {m, 1, Infinity}, GenerateConditions->None]
Failure Aborted Error Skipped - Because timed out
26.9.E7 1 + βˆ‘ k = 1 ∞ [ m + k k ] q ⁒ x k = ∏ j = 0 m 1 1 - x ⁒ q j 1 superscript subscript π‘˜ 1 q-binomial π‘š π‘˜ π‘˜ π‘ž superscript π‘₯ π‘˜ superscript subscript product 𝑗 0 π‘š 1 1 π‘₯ superscript π‘ž 𝑗 {\displaystyle{\displaystyle 1+\sum_{k=1}^{\infty}\genfrac{[}{]}{0.0pt}{}{m+k}% {k}_{q}x^{k}=\prod_{j=0}^{m}\frac{1}{1-x\,q^{j}}}}
1+\sum_{k=1}^{\infty}\qbinom{m+k}{k}{q}x^{k} = \prod_{j=0}^{m}\frac{1}{1-x\,q^{j}}

1 + sum(QBinomial(m + k, k, q)*(x)^(k), k = 1..infinity) = product((1)/(1 - x*(q)^(j)), j = 0..m)
1 + Sum[QBinomial[m + k,k,q]*(x)^(k), {k, 1, Infinity}, GenerateConditions->None] == Product[Divide[1,1 - x*(q)^(j)], {j, 0, m}, GenerateConditions->None]
Failure Aborted Error Skipped - Because timed out