Bernoulli and Euler Polynomials - 24.12 Zeros
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
24.12.E1 | \tfrac{1}{2} \leq x_{1}^{(n)} |
|
(1)/(2) <= (x[1])^(n) |
Divide[1,2] <= (Subscript[x, 1])^(n) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
24.12.E2 | \frac{3}{4}+\frac{1}{2^{n+2}\pi} < x^{(n)}_{1} |
|
(3)/(4)+(1)/((2)^(n + 2)* Pi) < (x[1])^(n) |
Divide[3,4]+Divide[1,(2)^(n + 2)* Pi] < (Subscript[x, 1])^(n) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
24.12.E7 | \tfrac{1}{2} \leq y^{(n)}_{1} |
|
(1)/(2) <= (y[1])^(n) |
Divide[1,2] <= (Subscript[y, 1])^(n) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
24.12.E9 | \frac{3}{2}-\frac{\pi^{n+1}}{3(n!)} < y^{(n)}_{2} |
|
(3)/(2)-((Pi)^(n + 1))/(3*(factorial(n))) < (y[2])^(n) |
Divide[3,2]-Divide[(Pi)^(n + 1),3*((n)!)] < (Subscript[y, 2])^(n) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
24.12.E10 | \frac{3}{2} < y^{(n)}_{2} |
|
(3)/(2) < (y[2])^(n) |
Divide[3,2] < (Subscript[y, 2])^(n) |
Skipped - no semantic math | Skipped - no semantic math | - | - |