Bernoulli and Euler Polynomials - 24.9 Inequalities
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
24.9.E1 | |\BernoullinumberB{2n}| > |\BernoullipolyB{2n}@{x}| |
abs(bernoulli(2*n)) > abs(bernoulli(2*n, x))
|
Abs[BernoulliB[2*n]] > Abs[BernoulliB[2*n, x]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
24.9.E2 | (2-2^{1-2n})|\BernoullinumberB{2n}| \geq |\BernoullipolyB{2n}@{x}-\BernoullinumberB{2n}| |
(2 - (2)^(1 - 2*n))*abs(bernoulli(2*n)) >= abs(bernoulli(2*n, x)- bernoulli(2*n))
|
(2 - (2)^(1 - 2*n))*Abs[BernoulliB[2*n]] >= Abs[BernoulliB[2*n, x]- BernoulliB[2*n]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
24.9.E3 | 4^{-n}|\EulernumberE{2n}| > (-1)^{n}\EulerpolyE{2n}@{x} |
|
(4)^(- n)*abs(euler(2*n)) > (- 1)^(n)* euler(2*n, x)
|
(4)^(- n)*Abs[EulerE[2*n]] > (- 1)^(n)* EulerE[2*n, x]
|
Missing Macro Error | Failure | Skip - symbolical successful subtest | Failed [4 / 9]
Result: False
Test Values: {Rule[n, 1], Rule[x, 0.5]}
Result: False
Test Values: {Rule[n, 2], Rule[x, 0.5]}
... skip entries to safe data |
24.9.E3 | (-1)^{n}\EulerpolyE{2n}@{x} > 0 |
|
(- 1)^(n)* euler(2*n, x) > 0
|
(- 1)^(n)* EulerE[2*n, x] > 0
|
Failure | Failure | Failed [5 / 9] Result: 0. < -.7500000000
Test Values: {x = 3/2, n = 1}
Result: 0. < -.1875000000
Test Values: {x = 3/2, n = 2}
... skip entries to safe data |
Failed [5 / 9]
Result: False
Test Values: {Rule[n, 1], Rule[x, 1.5]}
Result: False
Test Values: {Rule[n, 2], Rule[x, 1.5]}
... skip entries to safe data |
24.9.E4 | \frac{2(2n+1)!}{(2\pi)^{2n+1}} > (-1)^{n+1}\BernoullipolyB{2n+1}@{x} |
|
(2*factorial(2*n + 1))/((2*Pi)^(2*n + 1)) > (- 1)^(n + 1)* bernoulli(2*n + 1, x)
|
Divide[2*(2*n + 1)!,(2*Pi)^(2*n + 1)] > (- 1)^(n + 1)* BernoulliB[2*n + 1, x]
|
Failure | Failure | Successful [Tested: 3] | Failed [4 / 9]
Result: False
Test Values: {Rule[n, 1], Rule[x, 1.5]}
Result: False
Test Values: {Rule[n, 3], Rule[x, 1.5]}
... skip entries to safe data |
24.9.E4 | (-1)^{n+1}\BernoullipolyB{2n+1}@{x} > 0 |
|
(- 1)^(n + 1)* bernoulli(2*n + 1, x) > 0
|
(- 1)^(n + 1)* BernoulliB[2*n + 1, x] > 0
|
Failure | Failure | Failed [3 / 3] Result: 0. < -.3125000000
Test Values: {x = 3/2, n = 2}
Result: 0. < 0.
Test Values: {x = 1/2, n = 2}
... skip entries to safe data |
Failed [5 / 9]
Result: False
Test Values: {Rule[n, 2], Rule[x, 1.5]}
Result: False
Test Values: {Rule[n, 1], Rule[x, 0.5]}
... skip entries to safe data |
24.9.E5 | \frac{4(2n-1)!}{\pi^{2n}}\frac{2^{2n}-1}{2^{2n}-2} > (-1)^{n}\EulerpolyE{2n-1}@{x} |
|
(4*factorial(2*n - 1))/((Pi)^(2*n))*((2)^(2*n)- 1)/((2)^(2*n)- 2) > (- 1)^(n)* euler(2*n - 1, x)
|
Divide[4*(2*n - 1)!,(Pi)^(2*n)]*Divide[(2)^(2*n)- 1,(2)^(2*n)- 2] > (- 1)^(n)* EulerE[2*n - 1, x]
|
Failure | Failure | Failed [1 / 9] Result: 2.250000000 < .2639824007
Test Values: {x = 2, n = 2}
|
Failed [1 / 9]
Result: False
Test Values: {Rule[n, 2], Rule[x, 2]}
|
24.9.E5 | (-1)^{n}\EulerpolyE{2n-1}@{x} > 0 |
|
(- 1)^(n)* euler(2*n - 1, x) > 0
|
(- 1)^(n)* EulerE[2*n - 1, x] > 0
|
Failure | Failure | Failed [7 / 9] Result: 0. < -1.
Test Values: {x = 3/2, n = 1}
Result: 0. < -.6250000000e-1
Test Values: {x = 3/2, n = 3}
... skip entries to safe data |
Failed [7 / 9]
Result: False
Test Values: {Rule[n, 1], Rule[x, 1.5]}
Result: False
Test Values: {Rule[n, 3], Rule[x, 1.5]}
... skip entries to safe data |
24.9.E6 | 5\sqrt{\pi n}\left(\frac{n}{\pi e}\right)^{2n} > (-1)^{n+1}\BernoullinumberB{2n} |
|
5*sqrt(Pi*n)*((n)/(Pi*exp(1)))^(2*n) > (- 1)^(n + 1)* bernoulli(2*n)
|
5*Sqrt[Pi*n]*(Divide[n,Pi*E])^(2*n) > (- 1)^(n + 1)* BernoulliB[2*n]
|
Failure | Failure | Failed [1 / 3] Result: .1666666667 < .1215223702
Test Values: {n = 1}
|
Failed [1 / 3]
Result: False
Test Values: {Rule[n, 1]}
|
24.9.E6 | (-1)^{n+1}\BernoullinumberB{2n} > 4\sqrt{\pi n}\left(\frac{n}{\pi e}\right)^{2n} |
|
(- 1)^(n + 1)* bernoulli(2*n) > 4*sqrt(Pi*n)*((n)/(Pi*exp(1)))^(2*n)
|
(- 1)^(n + 1)* BernoulliB[2*n] > 4*Sqrt[Pi*n]*(Divide[n,Pi*E])^(2*n)
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
24.9.E7 | 8\sqrt{\frac{n}{\pi}}\left(\frac{4n}{\pi e}\right)^{2n}\left(1+\frac{1}{12n}\right) > (-1)^{n}\EulernumberE{2n} |
|
8*sqrt((n)/(Pi))*((4*n)/(Pi*exp(1)))^(2*n)*(1 +(1)/(12*n)) > (- 1)^(n)* euler(2*n)
|
8*Sqrt[Divide[n,Pi]]*(Divide[4*n,Pi*E])^(2*n)*(1 +Divide[1,12*n]) > (- 1)^(n)* EulerE[2*n]
|
Missing Macro Error | Failure | - | Successful [Tested: 3] |
24.9.E7 | (-1)^{n}\EulernumberE{2n} > 8\sqrt{\frac{n}{\pi}}\left(\frac{4n}{\pi e}\right)^{2n} |
|
(- 1)^(n)* euler(2*n) > 8*sqrt((n)/(Pi))*((4*n)/(Pi*exp(1)))^(2*n)
|
(- 1)^(n)* EulerE[2*n] > 8*Sqrt[Divide[n,Pi]]*(Divide[4*n,Pi*E])^(2*n)
|
Missing Macro Error | Failure | - | Successful [Tested: 3] |
24.9.E8 | \frac{2(2n)!}{(2\pi)^{2n}}\frac{1}{1-2^{\beta-2n}} \geq (-1)^{n+1}\BernoullinumberB{2n}\geq\frac{2(2n)!}{(2\pi)^{2n}}\frac{1}{1-2^{-2n}} |
|
(2*factorial(2*n))/((2*Pi)^(2*n))*(1)/(1 - (2)^(beta - 2*n)) >= (- 1)^(n + 1)* bernoulli(2*n) >= (2*factorial(2*n))/((2*Pi)^(2*n))*(1)/(1 - (2)^(- 2*n))
|
Divide[2*(2*n)!,(2*Pi)^(2*n)]*Divide[1,1 - (2)^(\[Beta]- 2*n)] >= (- 1)^(n + 1)* BernoulliB[2*n] >= Divide[2*(2*n)!,(2*Pi)^(2*n)]*Divide[1,1 - (2)^(- 2*n)]
|
Failure | Failure | Error | Failed [2 / 9]
Result: False
Test Values: {Rule[n, 1], Rule[β, 0.5]}
Result: GreaterEqual[DirectedInfinity[], 0.16666666666666666]
Test Values: {Rule[n, 1], Rule[β, 2]}
|
24.9.E9 | \beta = 2+\frac{\ln@{1-6\pi^{-2}}}{\ln@@{2}} |
|
beta = 2 +(ln(1 - 6*(Pi)^(- 2)))/(ln(2))
|
\[Beta] == 2 +Divide[Log[1 - 6*(Pi)^(- 2)],Log[2]]
|
Aborted | Failure | Failed [3 / 3] Result: .850806174
Test Values: {beta = 3/2}
Result: -.1491938260
Test Values: {beta = 1/2}
... skip entries to safe data |
Failed [3 / 3]
Result: 0.850806175200028
Test Values: {Rule[β, 1.5]}
Result: -0.149193824799972
Test Values: {Rule[β, 0.5]}
... skip entries to safe data |
24.9.E9 | 2+\frac{\ln@{1-6\pi^{-2}}}{\ln@@{2}} = 0.6491\dots |
|
2 +(ln(1 - 6*(Pi)^(- 2)))/(ln(2)) = 0.6491
|
2 +Divide[Log[1 - 6*(Pi)^(- 2)],Log[2]] == 0.6491
|
Error | Failure | Skip - symbolical successful subtest | Successful [Tested: 1] |
24.9.E10 | \frac{4^{n+1}(2n)!}{\pi^{2n+1}} > (-1)^{n}\EulernumberE{2n} |
|
((4)^(n + 1)*factorial(2*n))/((Pi)^(2*n + 1)) > (- 1)^(n)* euler(2*n)
|
Divide[(4)^(n + 1)*(2*n)!,(Pi)^(2*n + 1)] > (- 1)^(n)* EulerE[2*n]
|
Missing Macro Error | Failure | - | Successful [Tested: 3] |
24.9.E10 | (-1)^{n}\EulernumberE{2n} > \frac{4^{n+1}(2n)!}{\pi^{2n+1}}\frac{1}{1+3^{-1-2n}} |
|
(- 1)^(n)* euler(2*n) > ((4)^(n + 1)*factorial(2*n))/((Pi)^(2*n + 1))*(1)/(1 + (3)^(- 1 - 2*n))
|
(- 1)^(n)* EulerE[2*n] > Divide[(4)^(n + 1)*(2*n)!,(Pi)^(2*n + 1)]*Divide[1,1 + (3)^(- 1 - 2*n)]
|
Missing Macro Error | Failure | - | Successful [Tested: 3] |