Weierstrass Elliptic and Modular Functions - 23.19 Interrelations

From testwiki
Revision as of 12:01, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.19.E1 λ ( τ ) = 16 ( η 2 ( 2 τ ) η ( 1 2 τ ) η 3 ( τ ) ) 8 modular-Lambda 𝜏 16 superscript Dedekind-modular-Eta 2 2 𝜏 Dedekind-modular-Eta 1 2 𝜏 Dedekind-modular-Eta 3 𝜏 8 {\displaystyle{\displaystyle\lambda\left(\tau\right)=16\left(\frac{{\eta^{2}}% \left(2\tau\right)\eta\left(\tfrac{1}{2}\tau\right)}{{\eta^{3}}\left(\tau% \right)}\right)^{8}}}
\modularlambdatau@{\tau} = 16\left(\frac{\Dedekindeta^{2}@{2\tau}\Dedekindeta@{\tfrac{1}{2}\tau}}{\Dedekindeta^{3}@{\tau}}\right)^{8}

Error
ModularLambda[\[Tau]] == 16*(Divide[(DedekindEta[2*\[Tau]])^(2)* DedekindEta[Divide[1,2]*\[Tau]],(DedekindEta[\[Tau]])^(3)])^(8)
Missing Macro Error Failure - Successful [Tested: 10]
23.19.E2 J ( τ ) = 4 27 ( 1 - λ ( τ ) + λ 2 ( τ ) ) 3 ( λ ( τ ) ( 1 - λ ( τ ) ) ) 2 Kleins-invariant-modular-J 𝜏 4 27 superscript 1 modular-Lambda 𝜏 modular-Lambda 2 𝜏 3 superscript modular-Lambda 𝜏 1 modular-Lambda 𝜏 2 {\displaystyle{\displaystyle J\left(\tau\right)=\frac{4}{27}\frac{\left(1-% \lambda\left(\tau\right)+{\lambda^{2}}\left(\tau\right)\right)^{3}}{\left(% \lambda\left(\tau\right)\left(1-\lambda\left(\tau\right)\right)\right)^{2}}}}
\KleincompinvarJtau@{\tau} = \frac{4}{27}\frac{\left(1-\modularlambdatau@{\tau}+\modularlambdatau^{2}@{\tau}\right)^{3}}{\left(\modularlambdatau@{\tau}\left(1-\modularlambdatau@{\tau}\right)\right)^{2}}

Error
KleinInvariantJ[\[Tau]] == Divide[4,27]*Divide[(1 - ModularLambda[\[Tau]]+ (ModularLambda[\[Tau]])^(2))^(3),(ModularLambda[\[Tau]]*(1 - ModularLambda[\[Tau]]))^(2)]
Missing Macro Error Failure - Successful [Tested: 10]
23.19.E4 Δ = ( 2 π ) 12 η 24 ( τ ) Δ superscript 2 𝜋 12 Dedekind-modular-Eta 24 𝜏 {\displaystyle{\displaystyle\Delta=(2\pi)^{12}{\eta^{24}}\left(\tau\right)}}
\Delta = (2\pi)^{12}\Dedekindeta^{24}@{\tau}

Error
\[CapitalDelta] == (2*Pi)^(12)* (DedekindEta[\[Tau]])^(24)
Missing Macro Error Failure -
Failed [20 / 100]
Result: Complex[-8.27953934969212*^7, 0.49999990438754693]
Test Values: {Rule[Δ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.8191325291713696*^7, 0.49999997450648886]
Test Values: {Rule[Δ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data