Weierstrass Elliptic and Modular Functions - 23.10 Addition Theorems and Other Identities

From testwiki
Revision as of 12:00, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.10.E15 A n = ( π 2 G 2 ω 1 ) n 2 - 1 q n ( n - 1 ) / 2 i n - 1 exp ( - ( n - 1 ) η 1 3 ω 1 ( ( 2 n - 1 ) ( ω 1 2 + ω 3 2 ) + 3 ( n - 1 ) ω 1 ω 3 ) ) subscript 𝐴 𝑛 superscript superscript 𝜋 2 superscript 𝐺 2 subscript 𝜔 1 superscript 𝑛 2 1 superscript 𝑞 𝑛 𝑛 1 2 superscript 𝑖 𝑛 1 𝑛 1 subscript 𝜂 1 3 subscript 𝜔 1 2 𝑛 1 superscript subscript 𝜔 1 2 superscript subscript 𝜔 3 2 3 𝑛 1 subscript 𝜔 1 subscript 𝜔 3 {\displaystyle{\displaystyle A_{n}=\left(\frac{\pi^{2}G^{2}}{\omega_{1}}\right% )^{n^{2}-1}\frac{q^{n(n-1)/2}}{i^{n-1}}\exp\left(-\frac{(n-1)\eta_{1}}{3\omega% _{1}}\left((2n-1)(\omega_{1}^{2}+\omega_{3}^{2})+3(n-1)\omega_{1}\omega_{3}% \right)\right)}}
A_{n} = \left(\frac{\pi^{2}G^{2}}{\omega_{1}}\right)^{n^{2}-1}\frac{q^{n(n-1)/2}}{i^{n-1}}\exp@{-\frac{(n-1)\eta_{1}}{3\omega_{1}}\left((2n-1)(\omega_{1}^{2}+\omega_{3}^{2})+3(n-1)\omega_{1}\omega_{3}\right)}

A[n] = (((Pi)^(2)* (G)^(2))/(omega[1]))^((n)^(2)- 1)*((q)^(n*(n - 1)/2))/((I)^(n - 1))*exp(-((n - 1)*eta[1])/(3*omega[1])*((2*n - 1)*((omega[1])^(2)+ (omega[3])^(2))+ 3*(n - 1)*omega[1]*omega[3]))
Subscript[A, n] == (Divide[(Pi)^(2)* (G)^(2),Subscript[\[Omega], 1]])^((n)^(2)- 1)*Divide[(q)^(n*(n - 1)/2),(I)^(n - 1)]*Exp[-Divide[(n - 1)*Subscript[\[Eta], 1],3*Subscript[\[Omega], 1]]*((2*n - 1)*((Subscript[\[Omega], 1])^(2)+ (Subscript[\[Omega], 3])^(2))+ 3*(n - 1)*Subscript[\[Omega], 1]*Subscript[\[Omega], 3])]
Failure Failure
Failed [300 / 300]
Result: -.1339745960+.5000000000*I
Test Values: {G = 1/2*3^(1/2)+1/2*I, eta = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, A[n] = 1/2*3^(1/2)+1/2*I, eta[1] = 1/2*3^(1/2)+1/2*I, omega[1] = 1/2*3^(1/2)+1/2*I, omega[3] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: 1.057001493+.6153915143*I
Test Values: {G = 1/2*3^(1/2)+1/2*I, eta = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, A[n] = 1/2*3^(1/2)+1/2*I, eta[1] = 1/2*3^(1/2)+1/2*I, omega[1] = 1/2*3^(1/2)+1/2*I, omega[3] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Skipped - Because timed out
23.10#Ex1 q = e π i ω 3 / ω 1 𝑞 superscript 𝑒 𝜋 𝑖 subscript 𝜔 3 subscript 𝜔 1 {\displaystyle{\displaystyle q=e^{\pi i\omega_{3}/\omega_{1}}}}
q = e^{\pi i\omega_{3}/\omega_{1}}

q = exp(Pi*I*omega[3]/omega[1])
q == Exp[Pi*I*Subscript[\[Omega], 3]/Subscript[\[Omega], 1]]
Skipped - no semantic math Skipped - no semantic math - -
23.10#Ex2 G = n = 1 ( 1 - q 2 n ) 𝐺 superscript subscript product 𝑛 1 1 superscript 𝑞 2 𝑛 {\displaystyle{\displaystyle G=\prod_{n=1}^{\infty}(1-q^{2n})}}
G = \prod_{n=1}^{\infty}(1-q^{2n})

G = product(1 - (q)^(2*n), n = 1..infinity)
G == Product[1 - (q)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -