Jacobian Elliptic Functions - 23.2 Definitions and Periodic Properties
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
23.2.E1 | \omega_{1}+\omega_{2}+\omega_{3} = 0 |
|
omega[1]+ omega[2]+ omega[3] = 0 |
Subscript[\[Omega], 1]+ Subscript[\[Omega], 2]+ Subscript[\[Omega], 3] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.2#Ex1 | \chi_{1} = a\omega_{1}+b\omega_{3} |
|
chi[1] = a*omega[1]+ b*omega[3] |
Subscript[\[Chi], 1] == a*Subscript[\[Omega], 1]+ b*Subscript[\[Omega], 3] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.2#Ex2 | \chi_{3} = c\omega_{1}+d\omega_{3} |
|
chi[3] = c*omega[1]+ d*omega[3] |
Subscript[\[Chi], 3] == c*Subscript[\[Omega], 1]+ d*Subscript[\[Omega], 3] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.2.E3 | ad-bc = 1 |
|
a*d - b*c = 1 |
a*d - b*c == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.2.E13 | \eta_{1}+\eta_{2}+\eta_{3} = 0 |
|
eta[1]+ eta[2]+ eta[3] = 0 |
Subscript[\[Eta], 1]+ Subscript[\[Eta], 2]+ Subscript[\[Eta], 3] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.2.E14 | \eta_{3}\omega_{2}-\eta_{2}\omega_{3} = \eta_{2}\omega_{1}-\eta_{1}\omega_{2} |
|
eta[3]*omega[2]- eta[2]*omega[3] = eta[2]*omega[1]- eta[1]*omega[2] |
Subscript[\[Eta], 3]*Subscript[\[Omega], 2]- Subscript[\[Eta], 2]*Subscript[\[Omega], 3] == Subscript[\[Eta], 2]*Subscript[\[Omega], 1]- Subscript[\[Eta], 1]*Subscript[\[Omega], 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |