Jacobian Elliptic Functions - 22.17 Moduli Outside the Interval [0,1]

From testwiki
Revision as of 12:00, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
22.17.E1 p q ( z , k ) = p q ( z , - k ) abstract-Jacobi-elliptic p q 𝑧 𝑘 abstract-Jacobi-elliptic p q 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{pq}\left(z,k\right)=\operatorname{pq% }\left(z,-k\right)}}
\genJacobiellk{p}{q}@{z}{k} = \genJacobiellk{p}{q}@{z}{-k}

genJacobiellk(p)*q* z*k = genJacobiellk(p)*q* z- k
genJacobiellk[p]*q* z*k == genJacobiellk[p]*q* z- k
Failure Failure Error
Failed [300 / 300]
Result: 1.0
Test Values: {Rule[k, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[2.0, Times[Complex[0.0, 1.0], genJacobiellk]]
Test Values: {Rule[k, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.17.E2 sn ( z , 1 / k ) = k sn ( z / k , k ) Jacobi-elliptic-sn 𝑧 1 𝑘 𝑘 Jacobi-elliptic-sn 𝑧 𝑘 𝑘 {\displaystyle{\displaystyle\operatorname{sn}\left(z,1/k\right)=k\operatorname% {sn}\left(z/k,k\right)}}
\Jacobiellsnk@{z}{1/k} = k\Jacobiellsnk@{z/k}{k}

JacobiSN(z, 1/k) = k*JacobiSN(z/k, k)
JacobiSN[z, (1/k)^2] == k*JacobiSN[z/k, (k)^2]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
22.17.E3 cn ( z , 1 / k ) = dn ( z / k , k ) Jacobi-elliptic-cn 𝑧 1 𝑘 Jacobi-elliptic-dn 𝑧 𝑘 𝑘 {\displaystyle{\displaystyle\operatorname{cn}\left(z,1/k\right)=\operatorname{% dn}\left(z/k,k\right)}}
\Jacobiellcnk@{z}{1/k} = \Jacobielldnk@{z/k}{k}

JacobiCN(z, 1/k) = JacobiDN(z/k, k)
JacobiCN[z, (1/k)^2] == JacobiDN[z/k, (k)^2]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
22.17.E4 dn ( z , 1 / k ) = cn ( z / k , k ) Jacobi-elliptic-dn 𝑧 1 𝑘 Jacobi-elliptic-cn 𝑧 𝑘 𝑘 {\displaystyle{\displaystyle\operatorname{dn}\left(z,1/k\right)=\operatorname{% cn}\left(z/k,k\right)}}
\Jacobielldnk@{z}{1/k} = \Jacobiellcnk@{z/k}{k}

JacobiDN(z, 1/k) = JacobiCN(z/k, k)
JacobiDN[z, (1/k)^2] == JacobiCN[z/k, (k)^2]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]