Jacobian Elliptic Functions - 22.16 Related Functions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
22.16.E1 | \Jacobiamk@{x}{k} = \Asin@{\Jacobiellsnk@{x}{k}} |
|
Error
|
JacobiAmplitude[x, Power[k, 2]] == ArcSin[JacobiSN[x, (k)^2]]
|
Missing Macro Error | Failure | - | Failed [1 / 3]
Result: 6.283185307179586
Test Values: {Rule[k, 3], Rule[x, Rational[3, 2]]}
|
22.16.E2 | \Jacobiamk@{x+2K}{k} = \Jacobiamk@{x}{k}+\pi |
|
JacobiAM(x + 2*EllipticK(k), k) = JacobiAM(x, k)+ Pi
|
JacobiAmplitude[x + 2*EllipticK[(k)^2], Power[k, 2]] == JacobiAmplitude[x, Power[k, 2]]+ Pi
|
Failure | Failure | Error | Failed [1 / 3]
Result: Plus[-4.273320998840302, Gudermannian[DirectedInfinity[]]]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]]}
|
22.16.E3 | \Jacobiamk@{x}{k} = \int_{0}^{x}\Jacobielldnk@{t}{k}\diff{t} |
|
JacobiAM(x, k) = int(JacobiDN(t, k), t = 0..x)
|
JacobiAmplitude[x, Power[k, 2]] == Integrate[JacobiDN[t, (k)^2], {t, 0, x}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 9] | Successful [Tested: 9] |
22.16.E4 | \Jacobiamk@{x}{0} = x |
|
JacobiAM(x, 0) = x
|
JacobiAmplitude[x, Power[0, 2]] == x
|
Successful | Successful | - | Successful [Tested: 3] |
22.16.E5 | \Jacobiamk@{x}{1} = \Gudermannian@{x} |
JacobiAM(x, 1) = arctan(sinh(x))
|
JacobiAmplitude[x, Power[1, 2]] == Gudermannian[x]
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
22.16.E9 | \Jacobiamk@{x}{k} = \frac{\pi}{2K}x+2\sum_{n=1}^{\infty}\frac{q^{n}\sin@{2n\zeta}}{n(1+q^{2n})} |
|
JacobiAM(x, k) = (Pi)/(2*EllipticK(k))*x + 2*sum(((exp(- Pi*EllipticCK(k)/EllipticK(k)))^(n)* sin(2*n*zeta))/(n*(1 +(exp(- Pi*EllipticCK(k)/EllipticK(k)))^(2*n))), n = 1..infinity)
|
JacobiAmplitude[x, Power[k, 2]] == Divide[Pi,2*EllipticK[(k)^2]]*x + 2*Sum[Divide[(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^(n)* Sin[2*n*\[Zeta]],n*(1 +(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^(2*n))], {n, 1, Infinity}, GenerateConditions->None]
|
Failure | Failure | Skipped - Because timed out | Failed [30 / 30]
Result: Plus[Complex[1.9977537490349477, 0.49999999999999994], Times[-1.0, Gudermannian[DirectedInfinity[]]]]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.6288351638274511, -0.8359897636003678]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.16.E10 | x = \incellintFk@{\phi}{k} |
|
x = EllipticF(sin(phi), k)
|
x == EllipticF[\[Phi], (k)^2]
|
Failure | Failure | Failed [90 / 90] Result: .6791299710-.6773780507*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}
Result: 1.016811658-.7182528229*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[0.6791299712710547, -0.6773780505641274]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.0168116579433883, -0.7182528227883367]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.16.E11 | \Jacobiamk@{x}{k} = \phi |
|
JacobiAM(x, k) = phi
|
JacobiAmplitude[x, Power[k, 2]] == \[Phi]
|
Failure | Failure | Failed [90 / 90] Result: .2657029410-.5000000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}
Result: -.6844899651-.5000000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[0.26570294146607043, -0.49999999999999994]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.6844899649247672, -0.49999999999999994]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.16.E12 | \Jacobiellsnk@{x}{k} = \sin@@{\phi} |
|
JacobiSN(x, k) = sin(phi)
|
JacobiSN[x, (k)^2] == Sin[\[Phi]]
|
Failure | Failure | Failed [90 / 90] Result: .461679191e-1-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}
Result: -.6784403409-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[0.046167919344728525, -0.33759646322287]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.678440340667692, -0.33759646322287]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.16.E12 | \sin@@{\phi} = \sin@{\Jacobiamk@{x}{k}} |
|
sin(phi) = sin(JacobiAM(x, k))
|
Sin[\[Phi]] == Sin[JacobiAmplitude[x, Power[k, 2]]]
|
Failure | Failure | Failed [90 / 90] Result: -.461679191e-1+.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}
Result: .6784403409+.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-0.046167919344728525, 0.33759646322287]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.678440340667692, 0.33759646322287]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.16.E13 | \Jacobiellcnk@{x}{k} = \cos@@{\phi} |
|
JacobiCN(x, k) = cos(phi)
|
JacobiCN[x, (k)^2] == Cos[\[Phi]]
|
Failure | Failure | Failed [90 / 90] Result: -.3054469840+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}
Result: .2530246253+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[-0.3054469841149447, 0.3969495502290325]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.2530246251336542, 0.3969495502290325]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.16.E13 | \cos@@{\phi} = \cos@{\Jacobiamk@{x}{k}} |
|
cos(phi) = cos(JacobiAM(x, k))
|
Cos[\[Phi]] == Cos[JacobiAmplitude[x, Power[k, 2]]]
|
Failure | Failure | Failed [90 / 90] Result: .3054469840-.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}
Result: -.2530246253-.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[0.3054469841149447, -0.3969495502290325]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.2530246251336542, -0.3969495502290325]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.16.E33 | \JacobiZetak@{x+K}{k} = \JacobiZetak@{x}{k}-k^{2}\Jacobiellsnk@{x}{k}\Jacobiellcdk@{x}{k} |
|
JacobiZeta(x + EllipticK(k), k) = JacobiZeta(x, k)- (k)^(2)* JacobiSN(x, k)*JacobiCD(x, k)
|
JacobiZeta[x + EllipticK[(k)^2], k] == JacobiZeta[x, k]- (k)^(2)* JacobiSN[x, (k)^2]*JacobiCD[x, (k)^2]
|
Failure | Failure | Error | Failed [9 / 9]
Result: Plus[-0.09234673295918805, JacobiZeta[DirectedInfinity[], 1.0]]
Test Values: {Rule[k, 1], Rule[x, 1.5]}
Result: Complex[-2.7319699839312124, -0.6260098794347219]
Test Values: {Rule[k, 2], Rule[x, 1.5]}
... skip entries to safe data |
22.16.E34 | \JacobiZetak@{x+2K}{k} = \JacobiZetak@{x}{k} |
|
JacobiZeta(x + 2*EllipticK(k), k) = JacobiZeta(x, k)
|
JacobiZeta[x + 2*EllipticK[(k)^2], k] == JacobiZeta[x, k]
|
Successful | Failure | - | Failed [9 / 9]
Result: Plus[-0.9974949866040544, JacobiZeta[DirectedInfinity[], 1.0]]
Test Values: {Rule[k, 1], Rule[x, 1.5]}
Result: Complex[-0.2870190432201134, -5.437509139287473]
Test Values: {Rule[k, 2], Rule[x, 1.5]}
... skip entries to safe data |