Jacobian Elliptic Functions - 22.14 Integrals
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
22.14.E1 | \int\Jacobiellsnk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobielldnk@{x}{k}-k\Jacobiellcnk@{x}{k}} |
|
int(JacobiSN(x, k), x) = (k)^(- 1)* ln(JacobiDN(x, k)- k*JacobiCN(x, k))
|
Integrate[JacobiSN[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* Log[JacobiDN[x, (k)^2]- k*JacobiCN[x, (k)^2]]
|
Successful | Failure | - | Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 0.5]}
... skip entries to safe data |
22.14.E2 | \int\Jacobiellcnk@{x}{k}\diff{x} = k^{-1}\Acos@{\Jacobielldnk@{x}{k}} |
|
Error
|
Integrate[JacobiCN[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* ArcCos[JacobiDN[x, (k)^2]]
|
Missing Macro Error | Failure | - | Failed [3 / 9]
Result: -1.2690416691147375
Test Values: {Rule[k, 3], Rule[x, 1.5]}
Result: -2.5226182800392123
Test Values: {Rule[k, 2], Rule[x, 2]}
... skip entries to safe data |
22.14.E3 | \int\Jacobielldnk@{x}{k}\diff{x} = \Asin@{\Jacobiellsnk@{x}{k}} |
|
Error
|
Integrate[JacobiDN[x, (k)^2], x, GenerateConditions->None] == ArcSin[JacobiSN[x, (k)^2]]
|
Missing Macro Error | Failure | - | Failed [3 / 9]
Result: 6.283185307179586
Test Values: {Rule[k, 3], Rule[x, 1.5]}
Result: 6.283185307179586
Test Values: {Rule[k, 2], Rule[x, 2]}
... skip entries to safe data |
22.14.E3 | \Asin@{\Jacobiellsnk@{x}{k}} = \Jacobiamk@{x}{k} |
|
Error
|
ArcSin[JacobiSN[x, (k)^2]] == JacobiAmplitude[x, Power[k, 2]]
|
Missing Macro Error | Failure | - | Failed [1 / 3]
Result: -6.283185307179586
Test Values: {Rule[k, 3], Rule[x, Rational[3, 2]]}
|
22.14.E4 | \int\Jacobiellcdk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobiellndk@{x}{k}+k\Jacobiellsdk@{x}{k}} |
|
int(JacobiCD(x, k), x) = (k)^(- 1)* ln(JacobiND(x, k)+ k*JacobiSD(x, k))
|
Integrate[JacobiCD[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* Log[JacobiND[x, (k)^2]+ k*JacobiSD[x, (k)^2]]
|
Successful | Failure | - | Successful [Tested: 9] |
22.14.E5 | \int\Jacobiellsdk@{x}{k}\diff{x} = (kk^{\prime})^{-1}\Asin@{-k\Jacobiellcdk@{x}{k}} |
|
Error
|
Integrate[JacobiSD[x, (k)^2], x, GenerateConditions->None] == (k*Sqrt[1 - (k)^(2)])^(- 1)* ArcSin[- k*JacobiCD[x, (k)^2]]
|
Missing Macro Error | Aborted | - | Failed [6 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 1.5]}
Result: Complex[0.7955664885698261, 0.9068996821171089]
Test Values: {Rule[k, 2], Rule[x, 1.5]}
... skip entries to safe data |
22.14.E6 | \int\Jacobiellndk@{x}{k}\diff{x} = {k^{\prime}}^{-1}\Acos@{\Jacobiellcdk@{x}{k}} |
|
Error
|
Integrate[JacobiND[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* ArcCos[JacobiCD[x, (k)^2]]
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Plus[Complex[0.0, -1.7320508075688772], Times[-0.3333333333333333, ArcCos[JacobiCD[x, 4.0]], Power[Plus[1.0, Times[-1.0, Power[JacobiCD[x, 4.0], 2]]], Rational[1, 2]], JacobiDN[x, 4.0], Power[JacobiSN[x, 4.0], -1]]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
22.14.E7 | \int\Jacobielldck@{x}{k}\diff{x} = \ln@{\Jacobiellnck@{x}{k}+\Jacobiellsck@{x}{k}} |
|
int(JacobiDC(x, k), x) = ln(JacobiNC(x, k)+ JacobiSC(x, k))
|
Integrate[JacobiDC[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNC[x, (k)^2]+ JacobiSC[x, (k)^2]]
|
Successful | Successful | - | Successful [Tested: 9] |
22.14.E8 | \int\Jacobiellnck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellsck@{x}{k}} |
|
int(JacobiNC(x, k), x) = (sqrt(1 - (k)^(2)))^(- 1)* ln(JacobiDC(x, k)+sqrt(1 - (k)^(2))*JacobiSC(x, k))
|
Integrate[JacobiNC[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* Log[JacobiDC[x, (k)^2]+Sqrt[1 - (k)^(2)]*JacobiSC[x, (k)^2]]
|
Successful | Successful | - | Successful [Tested: 9] |
22.14.E9 | \int\Jacobiellsck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellnck@{x}{k}} |
|
int(JacobiSC(x, k), x) = (sqrt(1 - (k)^(2)))^(- 1)* ln(JacobiDC(x, k)+sqrt(1 - (k)^(2))*JacobiNC(x, k))
|
Integrate[JacobiSC[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* Log[JacobiDC[x, (k)^2]+Sqrt[1 - (k)^(2)]*JacobiNC[x, (k)^2]]
|
Successful | Successful | - | Successful [Tested: 9] |
22.14.E10 | \int\Jacobiellnsk@{x}{k}\diff{x} = \ln@{\Jacobielldsk@{x}{k}-\Jacobiellcsk@{x}{k}} |
|
int(JacobiNS(x, k), x) = ln(JacobiDS(x, k)- JacobiCS(x, k))
|
Integrate[JacobiNS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiDS[x, (k)^2]- JacobiCS[x, (k)^2]]
|
Successful | Successful | - | Successful [Tested: 9] |
22.14.E11 | \int\Jacobielldsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobiellcsk@{x}{k}} |
|
int(JacobiDS(x, k), x) = ln(JacobiNS(x, k)- JacobiCS(x, k))
|
Integrate[JacobiDS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNS[x, (k)^2]- JacobiCS[x, (k)^2]]
|
Successful | Successful | - | Successful [Tested: 9] |
22.14.E12 | \int\Jacobiellcsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobielldsk@{x}{k}} |
|
int(JacobiCS(x, k), x) = ln(JacobiNS(x, k)- JacobiDS(x, k))
|
Integrate[JacobiCS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNS[x, (k)^2]- JacobiDS[x, (k)^2]]
|
Successful | Successful | - | Successful [Tested: 9] |
22.14.E13 | \int\frac{\diff{x}}{\Jacobiellsnk@{x}{k}} = \ln@{\frac{\Jacobiellsnk@{x}{k}}{\Jacobiellcnk@{x}{k}+\Jacobielldnk@{x}{k}}} |
|
int((1)/(JacobiSN(x, k)), x) = ln((JacobiSN(x, k))/(JacobiCN(x, k)+ JacobiDN(x, k)))
|
Integrate[Divide[1,JacobiSN[x, (k)^2]], x, GenerateConditions->None] == Log[Divide[JacobiSN[x, (k)^2],JacobiCN[x, (k)^2]+ JacobiDN[x, (k)^2]]]
|
Successful | Successful | - | Successful [Tested: 9] |
22.14.E14 | \int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk@{x}{k}} = \frac{1}{2}\ln@{\frac{1-\Jacobielldnk@{x}{k}}{1+\Jacobielldnk@{x}{k}}} |
|
int((JacobiCN(x, k))/(JacobiSN(x, k)), x) = (1)/(2)*ln((1 - JacobiDN(x, k))/(1 + JacobiDN(x, k)))
|
Integrate[Divide[JacobiCN[x, (k)^2],JacobiSN[x, (k)^2]], x, GenerateConditions->None] == Divide[1,2]*Log[Divide[1 - JacobiDN[x, (k)^2],1 + JacobiDN[x, (k)^2]]]
|
Failure | Failure | Successful [Tested: 9] | Failed [6 / 9]
Result: 0.6931471805599452
Test Values: {Rule[k, 2], Rule[x, 1.5]}
Result: Complex[1.0986122886681102, 3.141592653589793]
Test Values: {Rule[k, 3], Rule[x, 1.5]}
... skip entries to safe data |
22.14.E15 | \int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk^{2}@{x}{k}} = -\frac{\Jacobielldnk@{x}{k}}{\Jacobiellsnk@{x}{k}} |
|
int((JacobiCN(x, k))/((JacobiSN(x, k))^(2)), x) = -(JacobiDN(x, k))/(JacobiSN(x, k))
|
Integrate[Divide[JacobiCN[x, (k)^2],(JacobiSN[x, (k)^2])^(2)], x, GenerateConditions->None] == -Divide[JacobiDN[x, (k)^2],JacobiSN[x, (k)^2]]
|
Successful | Successful | - | Successful [Tested: 9] |
22.14.E16 | \int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellsnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}-\tfrac{1}{2}\compellintKk@{k}\ln@@{k} |
|
int(ln(JacobiSN(t, k)), t = 0..EllipticK(k)) = -(Pi)/(4)*EllipticCK(k)-(1)/(2)*EllipticK(k)*ln(k)
|
Integrate[Log[JacobiSN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == -Divide[Pi,4]*EllipticK[1-(k)^2]-Divide[1,2]*EllipticK[(k)^2]*Log[k]
|
Failure | Failure | Error | Skipped - Because timed out |
22.14.E17 | \int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellcnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}+\tfrac{1}{2}\compellintKk@{k}\ln@{k^{\prime}/k} |
|
int(ln(JacobiCN(t, k)), t = 0..EllipticK(k)) = -(Pi)/(4)*EllipticCK(k)+(1)/(2)*EllipticK(k)*ln(sqrt(1 - (k)^(2))/k)
|
Integrate[Log[JacobiCN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == -Divide[Pi,4]*EllipticK[1-(k)^2]+Divide[1,2]*EllipticK[(k)^2]*Log[Sqrt[1 - (k)^(2)]/k]
|
Failure | Failure | Error | Skipped - Because timed out |
22.14.E18 | \int_{0}^{\compellintKk@{k}}\ln@{\Jacobielldnk@{t}{k}}\diff{t} = \tfrac{1}{2}\compellintKk@{k}\ln@@{k^{\prime}} |
|
int(ln(JacobiDN(t, k)), t = 0..EllipticK(k)) = (1)/(2)*EllipticK(k)*ln(sqrt(1 - (k)^(2)))
|
Integrate[Log[JacobiDN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == Divide[1,2]*EllipticK[(k)^2]*Log[Sqrt[1 - (k)^(2)]]
|
Failure | Failure | Error | Skipped - Because timed out |