Theta Functions - 21.2 Definitions

From testwiki
Revision as of 11:56, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
21.2.E1 ΞΈ ⁑ ( 𝐳 | 𝛀 ) = βˆ‘ 𝐧 ∈ β„€ g e 2 ⁒ Ο€ ⁒ i ⁒ ( 1 2 ⁒ 𝐧 β‹… 𝛀 β‹… 𝐧 + 𝐧 β‹… 𝐳 ) Riemann-theta 𝐳 𝛀 subscript 𝐧 𝑔 superscript 𝑒 2 πœ‹ 𝑖 β‹… 1 2 𝐧 𝛀 𝐧 β‹… 𝐧 𝐳 {\displaystyle{\displaystyle\theta\left(\mathbf{z}\middle|\boldsymbol{{\Omega}% }\right)=\sum_{\mathbf{n}\in{\mathbb{Z}^{g}}}e^{2\pi i\left(\frac{1}{2}\mathbf% {n}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}}}
\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}} = \sum_{\mathbf{n}\in\Integers^{g}}e^{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}

RiemannTheta(z, Omega) = sum(exp(2*Pi*I*((1)/(2)*n * Omega * n + n * z)),  = ..infinity)
Error
Missing Macro Error Missing Macro Error - -
21.2.E8 ΞΈ ⁑ ( z | Ξ© ) = ΞΈ 3 ⁑ ( Ο€ ⁒ z | Ξ© ) Riemann-theta 𝑧 Ξ© Jacobi-theta-tau 3 πœ‹ 𝑧 Ξ© {\displaystyle{\displaystyle\theta\left(z\middle|\Omega\right)=\theta_{3}\left% (\pi z\middle|\Omega\right)}}
\Riemanntheta@{z}{\Omega} = \Jacobithetatau{3}@{\pi z}{\Omega}

RiemannTheta(z, Omega) = JacobiTheta3(Pi*z,exp(I*Pi*Omega))
Error
Missing Macro Error Missing Macro Error - -