Theta Functions - 20.4 Values at = 0
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
20.4.E1 | \Jacobithetaq{1}@{0}{q} = \Jacobithetaq{2}'@{0}{q} |
|
JacobiTheta1(0, q) = diff( JacobiTheta2(0, q), 0$(1) )
|
EllipticTheta[1, 0, q] == D[EllipticTheta[2, 0, q], {0, 1}]
|
Error | Failure | - | Failed [10 / 10]
Result: Times[-1.0, D[EllipticTheta[2, 0.0, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {0.0, 1.0}]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Times[-1.0, D[EllipticTheta[2, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]]
Test Values: {0.0, 1.0}]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E1 | \Jacobithetaq{2}'@{0}{q} = \Jacobithetaq{3}'@{0}{q} |
|
diff( JacobiTheta2(0, q), 0$(1) ) = diff( JacobiTheta3(0, q), 0$(1) )
|
D[EllipticTheta[2, 0, q], {0, 1}] == D[EllipticTheta[3, 0, q], {0, 1}]
|
Error | Failure | - | Failed [10 / 10]
Result: Plus[D[EllipticTheta[2, 0.0, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {0.0, 1.0}], Times[-1.0, D[EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], {0.0, 1.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[D[EllipticTheta[2, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]]
Test Values: {0.0, 1.0}], Times[-1.0, D[EllipticTheta[3, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], {0.0, 1.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E1 | \Jacobithetaq{3}'@{0}{q} = \Jacobithetaq{4}'@{0}{q} |
|
diff( JacobiTheta3(0, q), 0$(1) ) = diff( JacobiTheta4(0, q), 0$(1) )
|
D[EllipticTheta[3, 0, q], {0, 1}] == D[EllipticTheta[4, 0, q], {0, 1}]
|
Error | Failure | - | Failed [10 / 10]
Result: Plus[D[EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {0.0, 1.0}], Times[-1.0, D[EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], {0.0, 1.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[D[EllipticTheta[3, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]]
Test Values: {0.0, 1.0}], Times[-1.0, D[EllipticTheta[4, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], {0.0, 1.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E1 | \Jacobithetaq{4}'@{0}{q} = 0 |
|
diff( JacobiTheta4(0, q), 0$(1) ) = 0
|
D[EllipticTheta[4, 0, q], {0, 1}] == 0
|
Error | Failure | - | Failed [10 / 10]
Result: D[EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {0.0, 1.0}], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: D[EllipticTheta[4, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]]
Test Values: {0.0, 1.0}], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E6 | \Jacobithetaq{1}'@{0}{q} = \Jacobithetaq{2}@{0}{q}\Jacobithetaq{3}@{0}{q}\Jacobithetaq{4}@{0}{q} |
|
diff( JacobiTheta1(0, q), 0$(1) ) = JacobiTheta2(0, q)*JacobiTheta3(0, q)*JacobiTheta4(0, q)
|
D[EllipticTheta[1, 0, q], {0, 1}] == EllipticTheta[2, 0, q]*EllipticTheta[3, 0, q]*EllipticTheta[4, 0, q]
|
Error | Failure | - | Failed [10 / 10]
Result: Plus[D[0.0
Test Values: {0.0, 1.0}], Times[-1.0, EllipticTheta[2, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[D[0.0
Test Values: {0.0, 1.0}], Times[-1.0, EllipticTheta[2, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], EllipticTheta[3, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], EllipticTheta[4, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E7 | \Jacobithetaq{1}''(0,q) = \Jacobithetaq{2}'''@{0}{q} |
|
subs( temp=(0 , q) , diff( JacobiTheta1(temp, =), temp$(2) ) )*diff( JacobiTheta2(0, q), 0$(3) )
|
(D[EllipticTheta[1, temp, ==], {temp, 2}]/.temp-> (0 , q) )*D[EllipticTheta[2, 0, q], {0, 3}]
|
Translation Error | Translation Error | - | Skip - symbolical successful subtest |
20.4.E7 | \Jacobithetaq{2}'''@{0}{q} = \Jacobithetaq{3}'''@{0}{q} |
|
diff( JacobiTheta2(0, q), 0$(3) ) = diff( JacobiTheta3(0, q), 0$(3) )
|
D[EllipticTheta[2, 0, q], {0, 3}] == D[EllipticTheta[3, 0, q], {0, 3}]
|
Error | Failure | - | Failed [10 / 10]
Result: Plus[D[EllipticTheta[2, 0.0, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {0.0, 3.0}], Times[-1.0, D[EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[D[EllipticTheta[2, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]]
Test Values: {0.0, 3.0}], Times[-1.0, D[EllipticTheta[3, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E7 | \Jacobithetaq{3}'''@{0}{q} = \Jacobithetaq{4}'''@{0}{q} |
|
diff( JacobiTheta3(0, q), 0$(3) ) = diff( JacobiTheta4(0, q), 0$(3) )
|
D[EllipticTheta[3, 0, q], {0, 3}] == D[EllipticTheta[4, 0, q], {0, 3}]
|
Error | Failure | - | Failed [10 / 10]
Result: Plus[D[EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {0.0, 3.0}], Times[-1.0, D[EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[D[EllipticTheta[3, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]]
Test Values: {0.0, 3.0}], Times[-1.0, D[EllipticTheta[4, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E7 | \Jacobithetaq{4}'''@{0}{q} = 0 |
|
diff( JacobiTheta4(0, q), 0$(3) ) = 0
|
D[EllipticTheta[4, 0, q], {0, 3}] == 0
|
Error | Failure | - | Failed [10 / 10]
Result: D[EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {0.0, 3.0}], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: D[EllipticTheta[4, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]]
Test Values: {0.0, 3.0}], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E8 | \frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}} = -1+24\sum_{n=1}^{\infty}\frac{q^{2n}}{(1-q^{2n})^{2}} |
|
(diff( JacobiTheta1(0, q), 0$(3) ))/(diff( JacobiTheta1(0, q), 0$(1) )) = - 1 + 24*sum(((q)^(2*n))/((1 - (q)^(2*n))^(2)), n = 1..infinity)
|
Divide[D[EllipticTheta[1, 0, q], {0, 3}],D[EllipticTheta[1, 0, q], {0, 1}]] == - 1 + 24*Sum[Divide[(q)^(2*n),(1 - (q)^(2*n))^(2)], {n, 1, Infinity}, GenerateConditions->None]
|
Error | Failure | - | Failed [10 / 10]
Result: Plus[1.0, Times[Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]], Times[-24.0, NSum[Times[Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[2, n]], Power[Plus[1, Times[-1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[2, n]]]], -2]], {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[1.0, Times[Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]], Times[-24.0, NSum[Times[Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[2, n]], Power[Plus[1, Times[-1, Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[2, n]]]], -2]], {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.4.E9 | \frac{\Jacobithetaq{2}''@{0}{q}}{\Jacobithetaq{2}@{0}{q}} = -1-8\sum_{n=1}^{\infty}\frac{q^{2n}}{(1+q^{2n})^{2}} |
|
(diff( JacobiTheta2(0, q), 0$(2) ))/(JacobiTheta2(0, q)) = - 1 - 8*sum(((q)^(2*n))/((1 + (q)^(2*n))^(2)), n = 1..infinity)
|
Divide[D[EllipticTheta[2, 0, q], {0, 2}],EllipticTheta[2, 0, q]] == - 1 - 8*Sum[Divide[(q)^(2*n),(1 + (q)^(2*n))^(2)], {n, 1, Infinity}, GenerateConditions->None]
|
Error | Failure | - | Skipped - Because timed out |
20.4.E10 | \frac{\Jacobithetaq{3}''@{0}{q}}{\Jacobithetaq{3}@{0}{q}} = -8\sum_{n=1}^{\infty}\frac{q^{2n-1}}{(1+q^{2n-1})^{2}} |
|
(diff( JacobiTheta3(0, q), 0$(2) ))/(JacobiTheta3(0, q)) = - 8*sum(((q)^(2*n - 1))/((1 + (q)^(2*n - 1))^(2)), n = 1..infinity)
|
Divide[D[EllipticTheta[3, 0, q], {0, 2}],EllipticTheta[3, 0, q]] == - 8*Sum[Divide[(q)^(2*n - 1),(1 + (q)^(2*n - 1))^(2)], {n, 1, Infinity}, GenerateConditions->None]
|
Error | Aborted | - | Skipped - Because timed out |
20.4.E11 | \frac{\Jacobithetaq{4}''@{0}{q}}{\Jacobithetaq{4}@{0}{q}} = 8\sum_{n=1}^{\infty}\frac{q^{2n-1}}{(1-q^{2n-1})^{2}} |
|
(diff( JacobiTheta4(0, q), 0$(2) ))/(JacobiTheta4(0, q)) = 8*sum(((q)^(2*n - 1))/((1 - (q)^(2*n - 1))^(2)), n = 1..infinity)
|
Divide[D[EllipticTheta[4, 0, q], {0, 2}],EllipticTheta[4, 0, q]] == 8*Sum[Divide[(q)^(2*n - 1),(1 - (q)^(2*n - 1))^(2)], {n, 1, Infinity}, GenerateConditions->None]
|
Error | Aborted | - | Skipped - Because timed out |
20.4.E12 | \frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}} = \frac{\Jacobithetaq{2}''@{0}{q}}{\Jacobithetaq{2}@{0}{q}}+\frac{\Jacobithetaq{3}''@{0}{q}}{\Jacobithetaq{3}@{0}{q}}+\frac{\Jacobithetaq{4}''@{0}{q}}{\Jacobithetaq{4}@{0}{q}} |
|
(diff( JacobiTheta1(0, q), 0$(3) ))/(diff( JacobiTheta1(0, q), 0$(1) )) = (diff( JacobiTheta2(0, q), 0$(2) ))/(JacobiTheta2(0, q))+(diff( JacobiTheta3(0, q), 0$(2) ))/(JacobiTheta3(0, q))+(diff( JacobiTheta4(0, q), 0$(2) ))/(JacobiTheta4(0, q))
|
Divide[D[EllipticTheta[1, 0, q], {0, 3}],D[EllipticTheta[1, 0, q], {0, 1}]] == Divide[D[EllipticTheta[2, 0, q], {0, 2}],EllipticTheta[2, 0, q]]+Divide[D[EllipticTheta[3, 0, q], {0, 2}],EllipticTheta[3, 0, q]]+Divide[D[EllipticTheta[4, 0, q], {0, 2}],EllipticTheta[4, 0, q]]
|
Error | Failure | - | Failed [10 / 10]
Result: Plus[Times[Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]], Times[-1.0, D[EllipticTheta[2, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], {0.0, 2.0}], Power[EllipticTheta[2, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], -1]], Times[-1.0, D[EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], {0.0, 2.0}], Power[EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], -1]], Times[-1.0, D[EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], {0.0, 2.0}], Power[EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], -1]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Times[Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]], Times[-1.0, D[EllipticTheta[2, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], {0.0, 2.0}], Power[EllipticTheta[2, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], -1]], Times[-1.0, D[EllipticTheta[3, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], {0.0, 2.0}], Power[EllipticTheta[3, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], -1]], Times[-1.0, D[EllipticTheta[4, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], {0.0, 2.0}], Power[EllipticTheta[4, 0.0, Complex[-0.4999999999999998, 0.8660254037844387]], -1]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |