Elliptic Integrals - 20.2 Definitions and Periodic Properties
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
20.2.E1 | \Jacobithetatau{1}@{z}{\tau} = \Jacobithetaq{1}@{z}{q} |
|
JacobiTheta1(z,exp(I*Pi*tau)) = JacobiTheta1(z, q)
|
EllipticTheta[1, z, Exp[I*Pi*(\[Tau])]] == EllipticTheta[1, z, q]
|
Failure | Failure | Error | Successful [Tested: 300] |
20.2.E2 | \Jacobithetatau{2}@{z}{\tau} = \Jacobithetaq{2}@{z}{q} |
|
JacobiTheta2(z,exp(I*Pi*tau)) = JacobiTheta2(z, q)
|
EllipticTheta[2, z, Exp[I*Pi*(\[Tau])]] == EllipticTheta[2, z, q]
|
Failure | Failure | Error | Successful [Tested: 300] |
20.2.E3 | \Jacobithetatau{3}@{z}{\tau} = \Jacobithetaq{3}@{z}{q} |
|
JacobiTheta3(z,exp(I*Pi*tau)) = JacobiTheta3(z, q)
|
EllipticTheta[3, z, Exp[I*Pi*(\[Tau])]] == EllipticTheta[3, z, q]
|
Failure | Failure | Error | Successful [Tested: 300] |
20.2.E4 | \Jacobithetatau{4}@{z}{\tau} = \Jacobithetaq{4}@{z}{q} |
|
JacobiTheta4(z,exp(I*Pi*tau)) = JacobiTheta4(z, q)
|
EllipticTheta[4, z, Exp[I*Pi*(\[Tau])]] == EllipticTheta[4, z, q]
|
Failure | Failure | Error | Successful [Tested: 300] |
20.2.E5 | z_{m,n} = (m+n\tau)\pi |
|
z[m , n] = (m + n*tau)*Pi |
Subscript[z, m , n] == (m + n*\[Tau])*Pi |
Skipped - no semantic math | Skipped - no semantic math | - | - |
20.2.E6 | \Jacobithetatau{1}@{z+(m+n\tau)\pi}{\tau} = (-1)^{m+n}q^{-n^{2}}e^{-2inz}\Jacobithetatau{1}@{z}{\tau} |
|
JacobiTheta1(z +(m + n*tau)*Pi,exp(I*Pi*tau)) = (- 1)^(m + n)* (q)^(- (n)^(2))* exp(- 2*I*n*z)*JacobiTheta1(z,exp(I*Pi*tau))
|
EllipticTheta[1, z +(m + n*\[Tau])*Pi, Exp[I*Pi*(\[Tau])]] == (- 1)^(m + n)* (q)^(- (n)^(2))* Exp[- 2*I*n*z]*EllipticTheta[1, z, Exp[I*Pi*(\[Tau])]]
|
Failure | Failure | Failed [300 / 300] Result: -18.62843952+6.320473139*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
Result: -4187.991134+3174.249087*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
... skip entries to safe data |
Failed [72 / 300]
Result: Complex[-18.628439525286133, 6.320473094431787]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-4187.991166649552, 3174.249038247393]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
20.2.E7 | \Jacobithetatau{2}@{z+(m+n\tau)\pi}{\tau} = (-1)^{m}q^{-n^{2}}e^{-2inz}\Jacobithetatau{2}@{z}{\tau} |
|
JacobiTheta2(z +(m + n*tau)*Pi,exp(I*Pi*tau)) = (- 1)^(m)* (q)^(- (n)^(2))* exp(- 2*I*n*z)*JacobiTheta2(z,exp(I*Pi*tau))
|
EllipticTheta[2, z +(m + n*\[Tau])*Pi, Exp[I*Pi*(\[Tau])]] == (- 1)^(m)* (q)^(- (n)^(2))* Exp[- 2*I*n*z]*EllipticTheta[2, z, Exp[I*Pi*(\[Tau])]]
|
Failure | Failure | Failed [300 / 300] Result: 3.950576529-14.16574159*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
Result: 194.3416227+3923.809342*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
... skip entries to safe data |
Failed [72 / 300]
Result: Complex[3.9505765593957305, -14.165741580817551]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[194.34158297403354, 3923.809350793304]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
20.2.E8 | \Jacobithetatau{3}@{z+(m+n\tau)\pi}{\tau} = q^{-n^{2}}e^{-2inz}\Jacobithetatau{3}@{z}{\tau} |
|
JacobiTheta3(z +(m + n*tau)*Pi,exp(I*Pi*tau)) = (q)^(- (n)^(2))* exp(- 2*I*n*z)*JacobiTheta3(z,exp(I*Pi*tau))
|
EllipticTheta[3, z +(m + n*\[Tau])*Pi, Exp[I*Pi*(\[Tau])]] == (q)^(- (n)^(2))* Exp[- 2*I*n*z]*EllipticTheta[3, z, Exp[I*Pi*(\[Tau])]]
|
Failure | Failure | Failed [300 / 300] Result: -8.181021151+18.44680448*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
Result: 516.5479372-5365.925849*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
... skip entries to safe data |
Failed [72 / 300]
Result: Complex[-8.181021187984683, 18.446804447343553]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[516.547995329447, -5365.925840115722]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
20.2.E9 | \Jacobithetatau{4}@{z+(m+n\tau)\pi}{\tau} = (-1)^{n}q^{-n^{2}}e^{-2inz}\Jacobithetatau{4}@{z}{\tau} |
|
JacobiTheta4(z +(m + n*tau)*Pi,exp(I*Pi*tau)) = (- 1)^(n)* (q)^(- (n)^(2))* exp(- 2*I*n*z)*JacobiTheta4(z,exp(I*Pi*tau))
|
EllipticTheta[4, z +(m + n*\[Tau])*Pi, Exp[I*Pi*(\[Tau])]] == (- 1)^(n)* (q)^(- (n)^(2))* Exp[- 2*I*n*z]*EllipticTheta[4, z, Exp[I*Pi*(\[Tau])]]
|
Failure | Failure | Failed [300 / 300] Result: -4.510694228-11.16801166*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
Result: -2085.869632-2449.864344*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
... skip entries to safe data |
Failed [72 / 300]
Result: Complex[-4.5106942149502025, -11.168011665083736]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2085.8696157878926, -2449.864367431773]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
20.2.E11 | \Jacobithetatau{1}@{z}{\tau} = -\Jacobithetatau{2}@{z+\tfrac{1}{2}\pi}{\tau} |
|
JacobiTheta1(z,exp(I*Pi*tau)) = - JacobiTheta2(z +(1)/(2)*Pi,exp(I*Pi*tau))
|
EllipticTheta[1, z, Exp[I*Pi*(\[Tau])]] == - EllipticTheta[2, z +Divide[1,2]*Pi, Exp[I*Pi*(\[Tau])]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 70] |
20.2.E11 | -\Jacobithetatau{2}@{z+\tfrac{1}{2}\pi}{\tau} = -iM\Jacobithetatau{4}@{z+\tfrac{1}{2}\pi\tau}{\tau} |
|
- JacobiTheta2(z +(1)/(2)*Pi,exp(I*Pi*tau)) = - I*M*JacobiTheta4(z +(1)/(2)*Pi*tau,exp(I*Pi*tau))
|
- EllipticTheta[2, z +Divide[1,2]*Pi, Exp[I*Pi*(\[Tau])]] == - I*M*EllipticTheta[4, z +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]]
|
Failure | Failure | Failed [300 / 300] Result: -2.656130280+.8441101403*I
Test Values: {M = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: 2.726401771+.6812031274*I
Test Values: {M = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [60 / 300]
Result: Complex[-2.65613027348202, 0.8441101301235214]
Test Values: {Rule[M, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.1127027753782777, -0.09362434622808774]
Test Values: {Rule[M, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.2.E11 | -iM\Jacobithetatau{4}@{z+\tfrac{1}{2}\pi\tau}{\tau} = -iM\Jacobithetatau{3}@{z+\tfrac{1}{2}\pi+\tfrac{1}{2}\pi\tau}{\tau} |
|
- I*M*JacobiTheta4(z +(1)/(2)*Pi*tau,exp(I*Pi*tau)) = - I*M*JacobiTheta3(z +(1)/(2)*Pi +(1)/(2)*Pi*tau,exp(I*Pi*tau))
|
- I*M*EllipticTheta[4, z +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]] == - I*M*EllipticTheta[3, z +Divide[1,2]*Pi +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 300] |
20.2.E12 | \Jacobithetatau{2}@{z}{\tau} = \Jacobithetatau{1}@{z+\tfrac{1}{2}\pi}{\tau} |
|
JacobiTheta2(z,exp(I*Pi*tau)) = JacobiTheta1(z +(1)/(2)*Pi,exp(I*Pi*tau))
|
EllipticTheta[2, z, Exp[I*Pi*(\[Tau])]] == EllipticTheta[1, z +Divide[1,2]*Pi, Exp[I*Pi*(\[Tau])]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 70] |
20.2.E12 | \Jacobithetatau{1}@{z+\tfrac{1}{2}\pi}{\tau} = M\Jacobithetatau{3}@{z+\tfrac{1}{2}\pi\tau}{\tau} |
|
JacobiTheta1(z +(1)/(2)*Pi,exp(I*Pi*tau)) = M*JacobiTheta3(z +(1)/(2)*Pi*tau,exp(I*Pi*tau))
|
EllipticTheta[1, z +Divide[1,2]*Pi, Exp[I*Pi*(\[Tau])]] == M*EllipticTheta[3, z +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]]
|
Failure | Failure | Failed [300 / 300] Result: -.5985410657+1.995750316*I
Test Values: {M = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: -.54909285e-2-5.605651596*I
Test Values: {M = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [60 / 300]
Result: Complex[-0.5985410729973577, 1.9957503125524838]
Test Values: {Rule[M, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.3220776692839347, 1.382964384147599]
Test Values: {Rule[M, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.2.E12 | M\Jacobithetatau{3}@{z+\tfrac{1}{2}\pi\tau}{\tau} = M\Jacobithetatau{4}@{z+\tfrac{1}{2}\pi+\tfrac{1}{2}\pi\tau}{\tau} |
|
M*JacobiTheta3(z +(1)/(2)*Pi*tau,exp(I*Pi*tau)) = M*JacobiTheta4(z +(1)/(2)*Pi +(1)/(2)*Pi*tau,exp(I*Pi*tau))
|
M*EllipticTheta[3, z +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]] == M*EllipticTheta[4, z +Divide[1,2]*Pi +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 300] |
20.2.E13 | \Jacobithetatau{3}@{z}{\tau} = \Jacobithetatau{4}@{z+\tfrac{1}{2}\pi}{\tau} |
|
JacobiTheta3(z,exp(I*Pi*tau)) = JacobiTheta4(z +(1)/(2)*Pi,exp(I*Pi*tau))
|
EllipticTheta[3, z, Exp[I*Pi*(\[Tau])]] == EllipticTheta[4, z +Divide[1,2]*Pi, Exp[I*Pi*(\[Tau])]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 70] |
20.2.E13 | \Jacobithetatau{4}@{z+\tfrac{1}{2}\pi}{\tau} = M\Jacobithetatau{2}@{z+\tfrac{1}{2}\pi\tau}{\tau} |
|
JacobiTheta4(z +(1)/(2)*Pi,exp(I*Pi*tau)) = M*JacobiTheta2(z +(1)/(2)*Pi*tau,exp(I*Pi*tau))
|
EllipticTheta[4, z +Divide[1,2]*Pi, Exp[I*Pi*(\[Tau])]] == M*EllipticTheta[2, z +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]]
|
Failure | Failure | Failed [300 / 300] Result: -1.209558888+2.590545189*I
Test Values: {M = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: -.8537358258+1.281173247*I
Test Values: {M = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [60 / 300]
Result: Complex[-1.2095588901959111, 2.5905451776573183]
Test Values: {Rule[M, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.901447370098885, -0.21207958455265288]
Test Values: {Rule[M, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.2.E13 | M\Jacobithetatau{2}@{z+\tfrac{1}{2}\pi\tau}{\tau} = M\Jacobithetatau{1}@{z+\tfrac{1}{2}\pi+\tfrac{1}{2}\pi\tau}{\tau} |
|
M*JacobiTheta2(z +(1)/(2)*Pi*tau,exp(I*Pi*tau)) = M*JacobiTheta1(z +(1)/(2)*Pi +(1)/(2)*Pi*tau,exp(I*Pi*tau))
|
M*EllipticTheta[2, z +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]] == M*EllipticTheta[1, z +Divide[1,2]*Pi +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 300] |
20.2.E14 | \Jacobithetatau{4}@{z}{\tau} = \Jacobithetatau{3}@{z+\tfrac{1}{2}\pi}{\tau} |
|
JacobiTheta4(z,exp(I*Pi*tau)) = JacobiTheta3(z +(1)/(2)*Pi,exp(I*Pi*tau))
|
EllipticTheta[4, z, Exp[I*Pi*(\[Tau])]] == EllipticTheta[3, z +Divide[1,2]*Pi, Exp[I*Pi*(\[Tau])]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 70] |
20.2.E14 | \Jacobithetatau{3}@{z+\tfrac{1}{2}\pi}{\tau} = -iM\Jacobithetatau{1}@{z+\tfrac{1}{2}\pi\tau}{\tau} |
|
JacobiTheta3(z +(1)/(2)*Pi,exp(I*Pi*tau)) = - I*M*JacobiTheta1(z +(1)/(2)*Pi*tau,exp(I*Pi*tau))
|
EllipticTheta[3, z +Divide[1,2]*Pi, Exp[I*Pi*(\[Tau])]] == - I*M*EllipticTheta[1, z +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]]
|
Failure | Failure | Failed [300 / 300] Result: .6082553523+1.594370406*I
Test Values: {M = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: -3.995156823-3.872683361*I
Test Values: {M = 1/2*3^(1/2)+1/2*I, tau = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [60 / 300]
Result: Complex[0.6082553477594059, 1.594370409676146]
Test Values: {Rule[M, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.5995966648178563, -0.1152010311326023]
Test Values: {Rule[M, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
20.2.E14 | -iM\Jacobithetatau{1}@{z+\tfrac{1}{2}\pi\tau}{\tau} = iM\Jacobithetatau{2}@{z+\tfrac{1}{2}\pi+\tfrac{1}{2}\pi\tau}{\tau} |
|
- I*M*JacobiTheta1(z +(1)/(2)*Pi*tau,exp(I*Pi*tau)) = I*M*JacobiTheta2(z +(1)/(2)*Pi +(1)/(2)*Pi*tau,exp(I*Pi*tau))
|
- I*M*EllipticTheta[1, z +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]] == I*M*EllipticTheta[2, z +Divide[1,2]*Pi +Divide[1,2]*Pi*\[Tau], Exp[I*Pi*(\[Tau])]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 300] |