Elliptic Integrals - 19.36 Methods of Computation
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.36.E3 | \CarlsonsymellintRF@{1}{2}{4} = \CarlsonsymellintRF@{z_{1}}{z_{2}}{z_{3}} |
|
0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.5*int(1/(sqrt(t+z[1])*sqrt(t+z[2])*sqrt(t+z[3])), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == EllipticF[ArcCos[Sqrt[Subscript[z, 1]/Subscript[z, 3]]],(Subscript[z, 3]-Subscript[z, 2])/(Subscript[z, 3]-Subscript[z, 1])]/Sqrt[Subscript[z, 3]-Subscript[z, 1]]
|
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.6113291272616378, 0.7460602493090597]
Test Values: {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.36.E4 |
\begin{aligned} \displaystyle z_{1}&\displaystyle = 2.10985\;99098\;8,\\ \displaystyle z_{3}&\displaystyle |
|
Skipped - no semantic math | Skipped - no semantic math | - | - | ||
19.36.E5 | \CarlsonsymellintRF@{1}{2}{4} = 0.68508\;58166\dots |
|
0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.6850858166
|
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 0.6850858166
|
Failure | Failure | Successful [Tested: 0] | Successful [Tested: 1] |
19.36#Ex1 | 2a_{n+1} = a_{n}+\sqrt{a_{n}^{2}-c_{n}^{2}} |
|
2*a[n + 1] = a[n]+sqrt((a[n])^(2)- (c[n])^(2)) |
2*Subscript[a, n + 1] == Subscript[a, n]+Sqrt[(Subscript[a, n])^(2)- (Subscript[c, n])^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex2 | 2c_{n+1} = a_{n}-\sqrt{a_{n}^{2}-c_{n}^{2}} |
|
2*c[n + 1] = a[n]-sqrt((a[n])^(2)- (c[n])^(2)) |
2*Subscript[c, n + 1] == Subscript[a, n]-Sqrt[(Subscript[a, n])^(2)- (Subscript[c, n])^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex3 | 2t_{n+1} = t_{n}+\sqrt{t_{n}^{2}+\theta c_{n}^{2}} |
|
2*t[n + 1] = t[n]+sqrt((t[n])^(2)+ theta*(c[n])^(2)) |
2*Subscript[t, n + 1] == Subscript[t, n]+Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[c, n])^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex4 | 0 < c_{0} |
|
0 < c[0] |
0 < Subscript[c, 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex5 | t_{0} \geq 0 |
|
t[0] >= 0 |
Subscript[t, 0] >= 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex6 | t_{0}^{2}+\theta a_{0}^{2} \geq 0 |
|
(t[0])^(2)+ theta*(a[0])^(2) >= 0 |
(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2) >= 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex7 | \theta = + 1 |
|
theta = + 1 |
\[Theta] == + 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36.E9 | \CarlsonsymellintRF@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}} |
|
0.5*int(1/(sqrt(t+(t[0])^(2))*sqrt(t+(t[0])^(2)+ theta*(c[0])^(2))*sqrt(t+(t[0])^(2)+ theta*(a[0])^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+(T)^(2))*sqrt(t+(T)^(2))*sqrt(t+(T)^(2)+ theta*(M)^(2))), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]/Sqrt[(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)] == EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)]
|
Error | Failure | - | Failed [300 / 300]
Result: Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.36.E9 | \CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}} = \CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}} |
|
Error
|
EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))]
|
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[-1.634056915706757, -0.008820605997006181]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-1.6914869520542948, 0.13073697514602478]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.36#Ex9 | a_{3}^{2} = 2.46209\;30206\;0 |
|
(a[3])^(2) = 2.46209302060 |
(Subscript[a, 3])^(2) == 2.46209302060 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex10 | t_{3}^{2} = 1.46971\;53173\;1 |
|
(t[3])^(2) = 1.46971531731 |
(Subscript[t, 3])^(2) == 1.46971531731 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36.E11 | \CarlsonsymellintRF@{1}{2}{4} = \CarlsonellintRC@{T^{2}+M^{2}}{T^{2}} |
|
Error
|
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))]
|
Missing Macro Error | Failure | - | Failed [100 / 100]
Result: Complex[-0.841498016533642, 0.8813735870195429]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.8857105197615976, -2.720699010523131]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.36.E11 | \CarlsonellintRC@{T^{2}+M^{2}}{T^{2}} = 0.68508\;58166 |
|
Error
|
1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))] == 0.6850858166
|
Missing Macro Error | Failure | - | Failed [100 / 100]
Result: Complex[0.8414980165670778, -0.8813735870195429]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.8857105197950335, 2.720699010523131]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.36#Ex11 | h_{n} = \sqrt{t_{n}^{2}+\theta a_{n}^{2}} |
|
h[n] = sqrt((t[n])^(2)+ theta*(a[n])^(2)) |
Subscript[h, n] == Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[a, n])^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex12 | h_{n} = h_{n-1}\frac{t_{n}}{\sqrt{t_{n}^{2}+\theta c_{n}^{2}}} |
|
h[n] = h[n - 1]*(t[n])/(sqrt((t[n])^(2)+ theta*(c[n])^(2))) |
Subscript[h, n] == Subscript[h, n - 1]*Divide[Subscript[t, n],Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[c, n])^(2)]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36.E13 | 2\CarlsonsymellintRG@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \left(t_{0}^{2}+\theta\sum_{m=0}^{\infty}2^{m-1}c_{m}^{2}\right)\CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}}+h_{0}+\sum_{m=1}^{\infty}2^{m}(h_{m}-h_{m-1}) |
|
Error
|
2*Sqrt[(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)]*(EllipticE[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]+(Cot[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]])^2*EllipticF[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]+Cot[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]]^2]) == ((Subscript[t, 0])^(2)+ \[Theta]*Sum[(2)^(m - 1)* (Subscript[c, m])^(2), {m, 0, Infinity}, GenerateConditions->None])*1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))]+ Subscript[h, 0]+ Sum[(2)^(m)*(Subscript[h, m]- Subscript[h, m - 1]), {m, 1, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Failed [1 / 1]
|