Elliptic Integrals - 19.36 Methods of Computation

From testwiki
Revision as of 11:55, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.36.E3 R F ⁑ ( 1 , 2 , 4 ) = R F ⁑ ( z 1 , z 2 , z 3 ) Carlson-integral-RF 1 2 4 Carlson-integral-RF subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 3 {\displaystyle{\displaystyle R_{F}\left(1,2,4\right)=R_{F}\left(z_{1},z_{2},z_% {3}\right)}}
\CarlsonsymellintRF@{1}{2}{4} = \CarlsonsymellintRF@{z_{1}}{z_{2}}{z_{3}}

0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.5*int(1/(sqrt(t+z[1])*sqrt(t+z[2])*sqrt(t+z[3])), t = 0..infinity)
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == EllipticF[ArcCos[Sqrt[Subscript[z, 1]/Subscript[z, 3]]],(Subscript[z, 3]-Subscript[z, 2])/(Subscript[z, 3]-Subscript[z, 1])]/Sqrt[Subscript[z, 3]-Subscript[z, 1]]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6113291272616378, 0.7460602493090597]
Test Values: {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36.E4


\begin{aligned} \displaystyle z_{1}&\displaystyle = 2.10985\;99098\;8,\\ \displaystyle z_{3}&\displaystyle

Skipped - no semantic math Skipped - no semantic math - -
19.36.E5 R F ⁑ ( 1 , 2 , 4 ) = 0.68508 58166 ⁒ … Carlson-integral-RF 1 2 4 0.68508 58166 … {\displaystyle{\displaystyle R_{F}\left(1,2,4\right)=0.68508\;58166\dots}}
\CarlsonsymellintRF@{1}{2}{4} = 0.68508\;58166\dots

0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.6850858166
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 0.6850858166
Failure Failure Successful [Tested: 0] Successful [Tested: 1]
19.36#Ex1 2 ⁒ a n + 1 = a n + a n 2 - c n 2 2 subscript π‘Ž 𝑛 1 subscript π‘Ž 𝑛 superscript subscript π‘Ž 𝑛 2 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle 2a_{n+1}=a_{n}+\sqrt{a_{n}^{2}-c_{n}^{2}}}}
2a_{n+1} = a_{n}+\sqrt{a_{n}^{2}-c_{n}^{2}}

2*a[n + 1] = a[n]+sqrt((a[n])^(2)- (c[n])^(2))
2*Subscript[a, n + 1] == Subscript[a, n]+Sqrt[(Subscript[a, n])^(2)- (Subscript[c, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex2 2 ⁒ c n + 1 = a n - a n 2 - c n 2 2 subscript 𝑐 𝑛 1 subscript π‘Ž 𝑛 superscript subscript π‘Ž 𝑛 2 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle 2c_{n+1}=a_{n}-\sqrt{a_{n}^{2}-c_{n}^{2}}}}
2c_{n+1} = a_{n}-\sqrt{a_{n}^{2}-c_{n}^{2}}

2*c[n + 1] = a[n]-sqrt((a[n])^(2)- (c[n])^(2))
2*Subscript[c, n + 1] == Subscript[a, n]-Sqrt[(Subscript[a, n])^(2)- (Subscript[c, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex3 2 ⁒ t n + 1 = t n + t n 2 + ΞΈ ⁒ c n 2 2 subscript 𝑑 𝑛 1 subscript 𝑑 𝑛 superscript subscript 𝑑 𝑛 2 πœƒ superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle 2t_{n+1}=t_{n}+\sqrt{t_{n}^{2}+\theta c_{n}^{2}}}}
2t_{n+1} = t_{n}+\sqrt{t_{n}^{2}+\theta c_{n}^{2}}

2*t[n + 1] = t[n]+sqrt((t[n])^(2)+ theta*(c[n])^(2))
2*Subscript[t, n + 1] == Subscript[t, n]+Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[c, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex4 0 < c 0 0 subscript 𝑐 0 {\displaystyle{\displaystyle 0<c_{0}}}
0 < c_{0}

0 < c[0]
0 < Subscript[c, 0]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex5 t 0 β‰₯ 0 subscript 𝑑 0 0 {\displaystyle{\displaystyle t_{0}\geq 0}}
t_{0} \geq 0

t[0] >= 0
Subscript[t, 0] >= 0
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex6 t 0 2 + ΞΈ ⁒ a 0 2 β‰₯ 0 superscript subscript 𝑑 0 2 πœƒ superscript subscript π‘Ž 0 2 0 {\displaystyle{\displaystyle t_{0}^{2}+\theta a_{0}^{2}\geq 0}}
t_{0}^{2}+\theta a_{0}^{2} \geq 0

(t[0])^(2)+ theta*(a[0])^(2) >= 0
(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2) >= 0
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex7 ΞΈ = + 1 πœƒ 1 {\displaystyle{\displaystyle\theta=+1}}
\theta = + 1

theta = + 1
\[Theta] == + 1
Skipped - no semantic math Skipped - no semantic math - -
19.36.E9 R F ⁑ ( t 0 2 , t 0 2 + ΞΈ ⁒ c 0 2 , t 0 2 + ΞΈ ⁒ a 0 2 ) = R F ⁑ ( T 2 , T 2 , T 2 + ΞΈ ⁒ M 2 ) Carlson-integral-RF superscript subscript 𝑑 0 2 superscript subscript 𝑑 0 2 πœƒ superscript subscript 𝑐 0 2 superscript subscript 𝑑 0 2 πœƒ superscript subscript π‘Ž 0 2 Carlson-integral-RF superscript 𝑇 2 superscript 𝑇 2 superscript 𝑇 2 πœƒ superscript 𝑀 2 {\displaystyle{\displaystyle R_{F}\left(t_{0}^{2},t_{0}^{2}+\theta c_{0}^{2},t% _{0}^{2}+\theta a_{0}^{2}\right)=R_{F}\left(T^{2},T^{2},T^{2}+\theta M^{2}% \right)}}
\CarlsonsymellintRF@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}}

0.5*int(1/(sqrt(t+(t[0])^(2))*sqrt(t+(t[0])^(2)+ theta*(c[0])^(2))*sqrt(t+(t[0])^(2)+ theta*(a[0])^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+(T)^(2))*sqrt(t+(T)^(2))*sqrt(t+(T)^(2)+ theta*(M)^(2))), t = 0..infinity)
EllipticF[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]/Sqrt[(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)] == EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)]
Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36.E9 R F ⁑ ( T 2 , T 2 , T 2 + ΞΈ ⁒ M 2 ) = R C ⁑ ( T 2 + ΞΈ ⁒ M 2 , T 2 ) Carlson-integral-RF superscript 𝑇 2 superscript 𝑇 2 superscript 𝑇 2 πœƒ superscript 𝑀 2 Carlson-integral-RC superscript 𝑇 2 πœƒ superscript 𝑀 2 superscript 𝑇 2 {\displaystyle{\displaystyle R_{F}\left(T^{2},T^{2},T^{2}+\theta M^{2}\right)=% R_{C}\left(T^{2}+\theta M^{2},T^{2}\right)}}
\CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}} = \CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}}

Error
EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[-1.634056915706757, -0.008820605997006181]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.6914869520542948, 0.13073697514602478]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36#Ex9 a 3 2 = 2.46209 30206 0 superscript subscript π‘Ž 3 2 2.46209 30206 0 {\displaystyle{\displaystyle a_{3}^{2}=2.46209\;30206\;0}}
a_{3}^{2} = 2.46209\;30206\;0

(a[3])^(2) = 2.46209302060
(Subscript[a, 3])^(2) == 2.46209302060
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex10 t 3 2 = 1.46971 53173 1 superscript subscript 𝑑 3 2 1.46971 53173 1 {\displaystyle{\displaystyle t_{3}^{2}=1.46971\;53173\;1}}
t_{3}^{2} = 1.46971\;53173\;1

(t[3])^(2) = 1.46971531731
(Subscript[t, 3])^(2) == 1.46971531731
Skipped - no semantic math Skipped - no semantic math - -
19.36.E11 R F ⁑ ( 1 , 2 , 4 ) = R C ⁑ ( T 2 + M 2 , T 2 ) Carlson-integral-RF 1 2 4 Carlson-integral-RC superscript 𝑇 2 superscript 𝑀 2 superscript 𝑇 2 {\displaystyle{\displaystyle R_{F}\left(1,2,4\right)=R_{C}\left(T^{2}+M^{2},T^% {2}\right)}}
\CarlsonsymellintRF@{1}{2}{4} = \CarlsonellintRC@{T^{2}+M^{2}}{T^{2}}

Error
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))]
Missing Macro Error Failure -
Failed [100 / 100]
Result: Complex[-0.841498016533642, 0.8813735870195429]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.8857105197615976, -2.720699010523131]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36.E11 R C ⁑ ( T 2 + M 2 , T 2 ) = 0.68508 58166 Carlson-integral-RC superscript 𝑇 2 superscript 𝑀 2 superscript 𝑇 2 0.68508 58166 {\displaystyle{\displaystyle R_{C}\left(T^{2}+M^{2},T^{2}\right)=0.68508\;5816% 6}}
\CarlsonellintRC@{T^{2}+M^{2}}{T^{2}} = 0.68508\;58166

Error
1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))] == 0.6850858166
Missing Macro Error Failure -
Failed [100 / 100]
Result: Complex[0.8414980165670778, -0.8813735870195429]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.8857105197950335, 2.720699010523131]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36#Ex11 h n = t n 2 + ΞΈ ⁒ a n 2 subscript β„Ž 𝑛 superscript subscript 𝑑 𝑛 2 πœƒ superscript subscript π‘Ž 𝑛 2 {\displaystyle{\displaystyle h_{n}=\sqrt{t_{n}^{2}+\theta a_{n}^{2}}}}
h_{n} = \sqrt{t_{n}^{2}+\theta a_{n}^{2}}

h[n] = sqrt((t[n])^(2)+ theta*(a[n])^(2))
Subscript[h, n] == Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[a, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex12 h n = h n - 1 ⁒ t n t n 2 + ΞΈ ⁒ c n 2 subscript β„Ž 𝑛 subscript β„Ž 𝑛 1 subscript 𝑑 𝑛 superscript subscript 𝑑 𝑛 2 πœƒ superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle h_{n}=h_{n-1}\frac{t_{n}}{\sqrt{t_{n}^{2}+\theta c% _{n}^{2}}}}}
h_{n} = h_{n-1}\frac{t_{n}}{\sqrt{t_{n}^{2}+\theta c_{n}^{2}}}

h[n] = h[n - 1]*(t[n])/(sqrt((t[n])^(2)+ theta*(c[n])^(2)))
Subscript[h, n] == Subscript[h, n - 1]*Divide[Subscript[t, n],Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[c, n])^(2)]]
Skipped - no semantic math Skipped - no semantic math - -
19.36.E13 2 ⁒ R G ⁑ ( t 0 2 , t 0 2 + ΞΈ ⁒ c 0 2 , t 0 2 + ΞΈ ⁒ a 0 2 ) = ( t 0 2 + ΞΈ ⁒ βˆ‘ m = 0 ∞ 2 m - 1 ⁒ c m 2 ) ⁒ R C ⁑ ( T 2 + ΞΈ ⁒ M 2 , T 2 ) + h 0 + βˆ‘ m = 1 ∞ 2 m ⁒ ( h m - h m - 1 ) 2 Carlson-integral-RG superscript subscript 𝑑 0 2 superscript subscript 𝑑 0 2 πœƒ superscript subscript 𝑐 0 2 superscript subscript 𝑑 0 2 πœƒ superscript subscript π‘Ž 0 2 superscript subscript 𝑑 0 2 πœƒ superscript subscript π‘š 0 superscript 2 π‘š 1 superscript subscript 𝑐 π‘š 2 Carlson-integral-RC superscript 𝑇 2 πœƒ superscript 𝑀 2 superscript 𝑇 2 subscript β„Ž 0 superscript subscript π‘š 1 superscript 2 π‘š subscript β„Ž π‘š subscript β„Ž π‘š 1 {\displaystyle{\displaystyle 2R_{G}\left(t_{0}^{2},t_{0}^{2}+\theta c_{0}^{2},% t_{0}^{2}+\theta a_{0}^{2}\right)=\left(t_{0}^{2}+\theta\sum_{m=0}^{\infty}2^{% m-1}c_{m}^{2}\right)R_{C}\left(T^{2}+\theta M^{2},T^{2}\right)+h_{0}+\sum_{m=1% }^{\infty}2^{m}(h_{m}-h_{m-1})}}
2\CarlsonsymellintRG@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \left(t_{0}^{2}+\theta\sum_{m=0}^{\infty}2^{m-1}c_{m}^{2}\right)\CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}}+h_{0}+\sum_{m=1}^{\infty}2^{m}(h_{m}-h_{m-1})

Error
2*Sqrt[(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)]*(EllipticE[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]+(Cot[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]])^2*EllipticF[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]+Cot[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]]^2]) == ((Subscript[t, 0])^(2)+ \[Theta]*Sum[(2)^(m - 1)* (Subscript[c, m])^(2), {m, 0, Infinity}, GenerateConditions->None])*1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))]+ Subscript[h, 0]+ Sum[(2)^(m)*(Subscript[h, m]- Subscript[h, m - 1]), {m, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted -
Failed [1 / 1]