Elliptic Integrals - 19.34 Mutual Inductance of Coaxial Circles

From testwiki
Revision as of 11:55, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.34.E1 a b 0 2 π ( h 2 + a 2 + b 2 - 2 a b cos θ ) - 1 / 2 cos θ d θ = 2 a b - 1 1 t d t ( 1 + t ) ( 1 - t ) ( a 3 - 2 a b t ) 𝑎 𝑏 superscript subscript 0 2 𝜋 superscript superscript 2 superscript 𝑎 2 superscript 𝑏 2 2 𝑎 𝑏 𝜃 1 2 𝜃 𝜃 2 𝑎 𝑏 superscript subscript 1 1 𝑡 𝑡 1 𝑡 1 𝑡 subscript 𝑎 3 2 𝑎 𝑏 𝑡 {\displaystyle{\displaystyle ab\int_{0}^{2\pi}(h^{2}+a^{2}+b^{2}-2ab\cos\theta% )^{-1/2}\cos\theta\mathrm{d}\theta=2ab\int_{-1}^{1}\frac{t\mathrm{d}t}{\sqrt{(% 1+t)(1-t)(a_{3}-2abt)}}}}
ab\int_{0}^{2\pi}(h^{2}+a^{2}+b^{2}-2ab\cos@@{\theta})^{-1/2}\cos@@{\theta}\diff{\theta} = 2ab\int_{-1}^{1}\frac{t\diff{t}}{\sqrt{(1+t)(1-t)(a_{3}-2abt)}}

a*b*int(((h)^(2)+ (a)^(2)+ (b)^(2)- 2*a*b*cos(theta))^(- 1/2)* cos(theta), theta = 0..2*Pi) = 2*a*b*int((t)/(sqrt((1 + t)*(1 - t)*(a[3]- 2*a*b*t))), t = - 1..1)
a*b*Integrate[((h)^(2)+ (a)^(2)+ (b)^(2)- 2*a*b*Cos[\[Theta]])^(- 1/2)* Cos[\[Theta]], {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 2*a*b*Integrate[Divide[t,Sqrt[(1 + t)*(1 - t)*(Subscript[a, 3]- 2*a*b*t)]], {t, - 1, 1}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.34.E1 2 a b - 1 1 t d t ( 1 + t ) ( 1 - t ) ( a 3 - 2 a b t ) = 2 a b I ( 𝐞 5 ) 2 𝑎 𝑏 superscript subscript 1 1 𝑡 𝑡 1 𝑡 1 𝑡 subscript 𝑎 3 2 𝑎 𝑏 𝑡 2 𝑎 𝑏 𝐼 subscript 𝐞 5 {\displaystyle{\displaystyle 2ab\int_{-1}^{1}\frac{t\mathrm{d}t}{\sqrt{(1+t)(1% -t)(a_{3}-2abt)}}=2abI(\mathbf{e}_{5})}}
2ab\int_{-1}^{1}\frac{t\diff{t}}{\sqrt{(1+t)(1-t)(a_{3}-2abt)}} = 2abI(\mathbf{e}_{5})

2*a*b*int((t)/(sqrt((1 + t)*(1 - t)*(a[3]- 2*a*b*t))), t = - 1..1) = 2*abI(e[5])
2*a*b*Integrate[Divide[t,Sqrt[(1 + t)*(1 - t)*(Subscript[a, 3]- 2*a*b*t)]], {t, - 1, 1}, GenerateConditions->None] == 2*abI[Subscript[e, 5]]
Failure Aborted
Failed [300 / 300]
Result: -3.959693187-6.593729744*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, a[3] = 1/2*3^(1/2)+1/2*I, e[5] = 1/2*3^(1/2)+1/2*I}

Result: 2.187421133-4.946615428*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, a[3] = 1/2*3^(1/2)+1/2*I, e[5] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
19.34#Ex1 a 3 = h 2 + a 2 + b 2 subscript 𝑎 3 superscript 2 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle a_{3}=h^{2}+a^{2}+b^{2}}}
a_{3} = h^{2}+a^{2}+b^{2}

a[3] = (h)^(2)+ (a)^(2)+ (b)^(2)
Subscript[a, 3] == (h)^(2)+ (a)^(2)+ (b)^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.34#Ex2 a 5 = 0 subscript 𝑎 5 0 {\displaystyle{\displaystyle a_{5}=0}}
a_{5} = 0

a[5] = 0
Subscript[a, 5] == 0
Skipped - no semantic math Skipped - no semantic math - -
19.34#Ex3 b 5 = 1 subscript 𝑏 5 1 {\displaystyle{\displaystyle b_{5}=1}}
b_{5} = 1

b[5] = 1
Subscript[b, 5] == 1
Skipped - no semantic math Skipped - no semantic math - -
19.34.E3 2 a b I ( 𝐞 5 ) = a 3 I ( 𝟎 ) - I ( 𝐞 3 ) 2 𝑎 𝑏 𝐼 subscript 𝐞 5 subscript 𝑎 3 𝐼 0 𝐼 subscript 𝐞 3 {\displaystyle{\displaystyle 2abI(\mathbf{e}_{5})=a_{3}I(\boldsymbol{{0}})-I(% \mathbf{e}_{3})}}
2abI(\mathbf{e}_{5}) = a_{3}I(\boldsymbol{{0}})-I(\mathbf{e}_{3})

2*abI(e[5]) = a[3]*I(0)- I(e[3])
2*abI[Subscript[e, 5]] == Subscript[a, 3]*I[0]- I[Subscript[e, 3]]
Skipped - no semantic math Skipped - no semantic math - -
19.34.E4 r + 2 = a 3 + 2 a b superscript subscript 𝑟 2 subscript 𝑎 3 2 𝑎 𝑏 {\displaystyle{\displaystyle r_{+}^{2}=a_{3}+2ab}}
r_{+}^{2} = a_{3}+ 2ab

(r[+])^(2) = a[3]+ 2*a*b
(Subscript[r, +])^(2) == Subscript[a, 3]+ 2*a*b
Skipped - no semantic math Skipped - no semantic math - -